Smoking-Related Lung Diseases

  • Manuel G. Cosio
  • Helmut H. Popper
Part of the Molecular Pathology Library book series (MPLB, volume 1)


Tobacco smoking results in inhalation of various amounts of toxins, which can induce a wide variety of effects on different cell systems in the respiratory tract. The toxins are acidic as well as basic; heat additionally harms the respiratory tract. However, there is also a protective system working, which can reduce the effects of this toxic inhalation. We discuss the toxic effects of tobacco substances, briefly review the protective system, and finally focus on nontumorous tobacco smoke-induced lung diseases.


Chronic Obstructive Pulmonary Disease Alveolar Macrophage Respir Crit Environmental Tobacco Smoke Neutrophil Elastase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooke JP, Bitterman H. Nicotine and angiogenesis: a new paradigm for tobacco-related diseases. Ann Med 2004;36(1):33–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhu BQ, Heeschen C, Sievers RE, et al. Second hand smoke stimulates tumor angiogenesis and growth. Cancer Cell 2003;4:191–196.PubMedCrossRefGoogle Scholar
  3. 3.
    Schick S, Glantz S. Philip Morris toxicological experiments with fresh sidestream smoke: more toxic than mainstream smoke. Tob Control 2005;14(6):396–404.PubMedCrossRefGoogle Scholar
  4. 4.
    Husgafvel-Pursiainen K. Genotoxicity of environmental tobacco smoke: a review. Mutat Res 2004;567(2–3):427–445.PubMedGoogle Scholar
  5. 5.
    Dopp E, Saedler J, Stopper H, et al. Mitotic disturbances and micronucleus induction in Syrian hamster embryo fibroblast cells caused by asbestos fibers. Environ Health Perspect 1995;103(3):268–271.PubMedCrossRefGoogle Scholar
  6. 6.
    Harden SV, Tokumaru Y, Westra WH, et al. Gene promoter hypermethylation in tumors and lymph nodes of stage I lung cancer patients. Clin Cancer Res 2003;9(4):1370–1375.PubMedGoogle Scholar
  7. 7.
    Lu C, Soria JC, Tang X, et al. Prognostic factors in resected stage I non-small-cell lung cancer: a multivariate analysis of six molecular markers. J Clin Oncol 2004;22(22):4575–4583.PubMedCrossRefGoogle Scholar
  8. 8.
    Toyooka S, Maruyama R, Toyooka KO, et al. Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small cell lung cancer. Int J Cancer 2003;103(2):153–160.PubMedCrossRefGoogle Scholar
  9. 9.
    Harke HP, Schuller D, Klimisch JH, Meissner K. [Investigations of polycyclic aromatic hydrocarbons in cigarette smoke.] Z Lebensm Unters Forsch 1976;162(3):291–297.PubMedCrossRefGoogle Scholar
  10. 10.
    Andrew AS, Warren AJ, Barchowsky A, et al. Genomic and proteomic profiling of responses to toxic metals in human lung cells. Environ Health Perspect 2003;111(6):825–835.PubMedGoogle Scholar
  11. 11.
    Bachelet M, Pinot F, Polla RI, et al. Toxicity of cadmium in tobacco smoke: protection by antioxidants and chelating resins. Free Radic Res 2002;36(1):99–106.PubMedCrossRefGoogle Scholar
  12. 12.
    Waalkes MP. Cadmium carcinogenesis. Mutat Res 2003;533(1–2):107–120.PubMedGoogle Scholar
  13. 13.
    Zaridze DG, Safaev RD, Belitsky GA, et al. Carcinogenic substances in Soviet tobacco products. IARC Sci Publ 1991(105):485–488.PubMedGoogle Scholar
  14. 14.
    Stabbert R, Voncken P, Rustemeier K, et al. Toxicological evaluation of an electrically heated cigarette. Part 2: Chemical composition of mainstream smoke. J Appl Toxicol 2003;23(5):329–339.PubMedCrossRefGoogle Scholar
  15. 15.
    Jin Z, Gao F, Flagg T, et al. Tobacco-specific nitrosamine NNK promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation. J Biol Chem 2004;279(38):40209–40219.PubMedCrossRefGoogle Scholar
  16. 16.
    Tsurutani J, Castillo SS, Brognard J, et al. Tobacco com ponents stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. Carcinogenesis 2005;26(7):1182–1195.PubMedCrossRefGoogle Scholar
  17. 17.
    Wynder EL, Muscat JE. The changing epidemiology of smoking and lung cancer histology. Environ Health Perspect 1995;103Suppl 8:143–148.PubMedCrossRefGoogle Scholar
  18. 18.
    Witschi H. Carcinogenic activity of cigarette smoke gas phase and its modulation by beta-carotene and Nacetylcysteine. Toxicol Sci 2005;84(1):81–87.PubMedCrossRefGoogle Scholar
  19. 19.
    White JL, Conner BT, Perfetti TA, et al. Effect of pyrolysis temperature on the mutagenicity of tobacco smoke condensate. Food Chem Toxicol 2001;39(5):499–505.PubMedCrossRefGoogle Scholar
  20. 20.
    Torikai K, Yoshida S, Takahashi H. Effects of temperature, atmosphere and pH on the generation of smoke compounds during tobacco pyrolysis. Food Chem Toxicol 2004;42(9):1409–1417.PubMedCrossRefGoogle Scholar
  21. 21.
    Knaapen AM, Borm PJ, Albrecht C, et al. Inhaled particles and lung cancer. Part A: mechanisms. Int J Cancer 2004;109(6):799–809.PubMedCrossRefGoogle Scholar
  22. 22.
    Norppa H. Cytogenetic biomarkers and genetic polymorphisms. Toxicol Lett 2004;149(1–3):309–334.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang GF, Lai MD, Yang RR, et al. Histological types and significance of bronchial epithelial dysplasia. Mod Pathol 2006;19(3):429–437.PubMedCrossRefGoogle Scholar
  24. 24.
    Ullmann R, Bongiovanni M, Halbwedl I, et al. Bronchiolar columnar cell dysplasia-genetic analysis of a novel preneoplastic lesion of peripheral lung. Virchows Arch 2003;442(5):429–436.PubMedGoogle Scholar
  25. 25.
    Mori M, Rao SK, Popper HH, et al. Atypical adenomatous hyperplasia of the lung: a probable forerunner in the development of adenocarcinoma of the lung. Mod Pathol 2001;14(2):72–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Pilmane M, Luts A, Sundler F. Changes in neuroendocrine elements in bronchial mucosa in chronic lung disease in adults. Thorax 1995;50(5):551–554.PubMedCrossRefGoogle Scholar
  27. 27.
    Shenberger JS, Shew RL, Johnson DE. Hyperoxia-induced airway remodeling and pulmonary neuroendocrine cell hyperplasia in the weanling rat. Pediatr Res 1997;42(4):539–544.PubMedCrossRefGoogle Scholar
  28. 28.
    Stevens TP, McBride JT, Peake JL, et al. Cell proliferation contributes to PNEC hyperplasia after acute airway injury. Am J Physiol 1997;272(3 Pt 1):L486–L493.PubMedGoogle Scholar
  29. 29.
    Boers JE, den Brok JL, Koudstaal J, et al. Number and proliferation of neuroendocrine cells in normal human airway epithelium. Am J Respir Crit Care Med 1996;154(3 Pt 1):758–763.PubMedGoogle Scholar
  30. 30.
    Brown MJ, English J, Muller NL. Bronchiolitis obliterans due to neuroendocrine hyperplasia: high-resolution CT-pathologic correlation. AJR Am J Roentgenol 1997;168(6):1561–1562.PubMedGoogle Scholar
  31. 31.
    Miller RR, Muller NL. Neuroendocrine cell hyperplasia and obliterative bronchiolitis in patients with peripheral carcinoid tumors. Am J Surg Pathol 1995;19(6):653–658.PubMedGoogle Scholar
  32. 32.
    Wang H, Tan W, Hao B, et al. Substantial reduction in risk of lung adenocarcinoma associated with genetic polymorphism in CYP2A13, the most active cytochrome P450 for the metabolic activation of tobacco-specific carcinogen NNK. Cancer Res 2003;63(22):8057–8061.PubMedGoogle Scholar
  33. 33.
    Paolini M, Perocco P, Canistro D, et al. Induction of cytochrome P450, generation of oxidative stress and in vitro cell-transforming and DNA-damaging activities by glucoraphanin, the bioprecursor of the chemopreventive agent sulforaphane found in broccoli. Carcinogenesis 2004;25(1):61–67.PubMedCrossRefGoogle Scholar
  34. 34.
    Kiyohara C, Yoshimasu K, Takayama K, et al. EPHX1 polymorphisms and the risk of lung cancer: a HuGE review. Epidemiology 2006;17(1):89–99.PubMedCrossRefGoogle Scholar
  35. 35.
    Schabath MB, Spitz MR, Zhang X, et al. Genetic variants of myeloperoxidase and lung cancer risk. Carcinogenesis 2000;21(6):1163–1166.PubMedCrossRefGoogle Scholar
  36. 36.
    Bartsch H, Petruzzelli S, De Flora S, et al. Carcinogen metabolism in human lung tissues and the effect of tobacco smoking: results from a case-control multicenter study on lung cancer patients. Environ Health Perspect 1992;98:119–124.PubMedCrossRefGoogle Scholar
  37. 37.
    Hu Z, Ma H, Lu D, et al. A promoter polymorphism (−77T>C) of DNA repair gene XRCC1 is associated with risk of lung cancer in relation to tobacco smoking. Pharmacogenet Genomics 2005;15(7):457–463.PubMedCrossRefGoogle Scholar
  38. 38.
    Matullo G, Dunning AM, Guarrera S, et al. DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis 2006;27(5):997–1007.PubMedCrossRefGoogle Scholar
  39. 39.
    Zienolddiny S, Campa D, Lind H, et al. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 2006;27(3):560–567.PubMedCrossRefGoogle Scholar
  40. 40.
    Forgacs E, Zochbauer-Muller S, Olah E, et al. Molecular genetic abnormalities in the pathogenesis of human lung cancer. Pathol Oncol Res 2001;7(1):6–13.PubMedCrossRefGoogle Scholar
  41. 41.
    He B, You L, Uematsu K, et al. SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci USA 2003;100(24):14133–14138.PubMedCrossRefGoogle Scholar
  42. 42.
    Lamy A, Sesboue R, Bourguignon J, et al. Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: a prospective study in high-risk patients without invasive cancer. Int J Cancer 2002;100(2):189–193.PubMedCrossRefGoogle Scholar
  43. 43.
    Li QL, Kim HR, Kim WJ, et al. Transcriptional silencing of the RUNX3 gene by CpG hypermethylation is associated with lung cancer. Biochem Biophys Res Commun 2004;314(1):223–228.PubMedCrossRefGoogle Scholar
  44. 44.
    GOLD. Global Initiative for Chronic Obstructive Lung Disease (GOLD): global strategy for the diagnosis mocopd. NHLBI/WHO Workshop Report. 2003.Google Scholar
  45. 45.
    Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 2004;364:709–721.PubMedCrossRefGoogle Scholar
  46. 46.
    Finkelstein R, Fraser RS, Ghezzo H, et al. Alveolar inflammation and its relation to emphysema in smokers. Am J Respir Crit Care Med 1995;152:1666–1672.PubMedGoogle Scholar
  47. 47.
    Barnes PJ. Mediators of chronic obstructive pulmonary disease. Pharmacol Rev 2004;56:515–548.PubMedCrossRefGoogle Scholar
  48. 48.
    Spurzen JR, Renard IR. Epithelial cells. In Barnes PJ, ed. Chronic Obstructive Pulmonary Disease: Cellular and Molecular Mechanisms. New York: Taylor & Francis; 2005.Google Scholar
  49. 49.
    Barnes PJ, Cosio MG. Cells and mediators of COPD. European Respiratory Monograph: Management of COPD. 2006 (in press).Google Scholar
  50. 50.
    Takizawa H, Tanaka M, Takami K, et al. Increased expression of transforming growth factor-beta1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). Am J Respir Crit Care Med 2001;163:1476–1483.PubMedGoogle Scholar
  51. 51.
    Kranenburg AR, Willems-Widyastuti A, Mooi WJ, et al. Chronic obstructive pulmonary disease is associated with enhanced bronchial expression of FGF-1, FGF-2, and FGFR-1. J Pathol 2005;206:28–38.PubMedCrossRefGoogle Scholar
  52. 52.
    Lacoste JY, Bousquet J, Chanez P, et al. Eosinophilic and neutrophilic inflammation in asthma, chronic bronchitis, and chronic obstructive pulmonary disease. J Allergy Clin Immunol 1993;92:537–548.PubMedCrossRefGoogle Scholar
  53. 53.
    Di Stefano A, Capelli A, Lusuardi M, et al. Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am J Respir Crit Care Med 1998;158:1277–1285.PubMedGoogle Scholar
  54. 54.
    Traves SL, Culpitt SV, Russell RE, et al. Increased levels of the chemokines GROalpha and MCP-1 in sputum samples from patients with COPD. Thorax 2002;57:590–595.PubMedCrossRefGoogle Scholar
  55. 55.
    Sommerhoff CP, Nadel JA, Basbaum CB, et al. Neutrophil elastase and cathepsin G stimulate secretion from cultured bovine airway gland serous cells. J Clin Invest 1990;85:682–689.PubMedCrossRefGoogle Scholar
  56. 56.
    Russell RE, Culpitt SV, DeMatos C, et al. Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2002;26:602–609.PubMedGoogle Scholar
  57. 57.
    Barnes PJ. Macrophages as orchestrators of COPD. J COPD 2004;1:59–70.CrossRefGoogle Scholar
  58. 58.
    Cosio MG. T-lymphocytes. In: Barnes PJ, ed. Chronic Obstructive Pulmonary Disease: Cellular and Molecular Mechanisms. New York: Taylor & Francis Group; 2005:321–325.Google Scholar
  59. 59.
    Caramori G, Romagnoli M, Casolari P, et al. Nuclear localisation of p65 in sputum macrophages but not in sputum neutrophils during COPD exacerbations. Thorax 2003;58:348–351.PubMedCrossRefGoogle Scholar
  60. 60.
    de Boer WI, Sont JK, van Schadewijk A, et al. Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD. J Pathol 2000;190:619–626.PubMedCrossRefGoogle Scholar
  61. 61.
    Tomita K, Caramori G, Lim S, et al. Increased p21(CIP1/WAF1) and B cell lymphoma leukemia-x(L) expression and reduced apoptosis in alveolar macrophages from smokers. Am J Respir Crit Care Med 2002;166:724–731.PubMedCrossRefGoogle Scholar
  62. 62.
    Culpitt SV, Rogers DF, Shah P, et al. Impaired inhibition by dexamethasone of cytokine release by alveolar macro-phages from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003;167:24–31.PubMedCrossRefGoogle Scholar
  63. 63.
    Barnes PJ, Adcock IM, Ito K. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J 2005;25:552–563.PubMedCrossRefGoogle Scholar
  64. 64.
    Papi A, Romagnoli M, Baraldo S, et al. Partial reversibility of airflow limitation and increased exhaled NO and sputum eosinophilia in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000;162:1773–1777.PubMedGoogle Scholar
  65. 65.
    Soler P, Moreau A, Basset F, et al. Cigarette smokinginduced changes in the number and differentiated state of pulmonary dendritic cells/Langerhans cells. Am Rev Respir Dis 1989;139:1112–1117.PubMedGoogle Scholar
  66. 66.
    Hogg JC, Chu F, Utokaparch S, et al. The nature of smallairway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004;350:2645–2653.PubMedCrossRefGoogle Scholar
  67. 67.
    Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J 2001;17:946–953.PubMedCrossRefGoogle Scholar
  68. 68.
    Saetta M, Baraldo S, Corbino L, et al. CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999;160:711–717.PubMedGoogle Scholar
  69. 69.
    Grumelli S, Corry DB, Song LZ, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med 2004;1:e8.PubMedCrossRefGoogle Scholar
  70. 70.
    Saetta M, Mariani M, Panina-Bordignon P, et al. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;165:1404–1409.PubMedCrossRefGoogle Scholar
  71. 71.
    Di Stefano A, Caramori G, Capelli A, et al. STAT4 activation in smokers and patients with chronic obstructive pulmonary disease. Eur Respir J 2004;24:78–85.PubMedCrossRefGoogle Scholar
  72. 72.
    Cosio MG, Majo J, Cosio MG. Inflammation of the airways and lung parenchyma in COPD: role of T cells. Chest 2002;121:160S–165S.PubMedCrossRefGoogle Scholar
  73. 73.
    Cosio MG. Autoimmunity, T-cells and STAT-4 in the pathogenesis of chronic obstructive pulmonary disease. Eur Respir J 2004;24:3–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Bowler RP, Barnes PJ, Crapo JD. The role of oxidative stress in chronic obstructive pulmonary disease. J COPD 2004;2:255–277.CrossRefGoogle Scholar
  75. 75.
    Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann NY Acad Sci 1993;686:12–27.PubMedCrossRefGoogle Scholar
  76. 76.
    Maestrelli P, Paska C, Saetta M, et al. Decreased haem oxygenase-1 and increased inducible nitric oxide synthase in the lung of severe COPD patients. Eur Respir J 2003;21:971–976.PubMedCrossRefGoogle Scholar
  77. 77.
    Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271:C1424–C1437.PubMedGoogle Scholar
  78. 78.
    Cantin AM, Fells GA, Hubbard RC, et al. Antioxidant macromolecules in the epithelial lining fluid of the normal human lower respiratory tract. J Clin Invest 1990;86:962–971.PubMedCrossRefGoogle Scholar
  79. 79.
    Bowler RP, Crapo JD. Oxidative stress in airways: is there a role for extracellular superoxide dismutase? Am J Respir Crit Care Med 2002;166:S38–S43.PubMedCrossRefGoogle Scholar
  80. 80.
    Paredi P, Kharitonov SA, Barnes PJ. Analysis of expired air for oxidation products. Am J Respir Crit Care Med 2002;166:S31–S37.PubMedCrossRefGoogle Scholar
  81. 81.
    Rahman I, van Schadewijk AA, Crowther AJ, et al. 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;166:490–495.PubMedCrossRefGoogle Scholar
  82. 82.
    Janssen-Heininger YM, Poynter ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 2000;28:1317–1327.PubMedCrossRefGoogle Scholar
  83. 83.
    Ogura M, Kitamura M. Oxidant stress incites spreading of macrophages via extracellular signal-regulated kinases and p38 mitogen-activated protein kinase. J Immunol 1998;161:3569–3574.PubMedGoogle Scholar
  84. 84.
    Carp H, Janoff A. Possible mechanisms of emphysema in smokers. In vitro suppression of serum elastase-inhibitory capacity by fresh cigarette smoke and its prevention by antioxidants. Am Rev Respir Dis 1978;118:617–621.PubMedGoogle Scholar
  85. 85.
    Rao T, Richardson B. Environmentally induced autoimmune diseases: potential mechanisms. Environ Health Perspect 1999;107(Suppl 5):737–742.PubMedCrossRefGoogle Scholar
  86. 86.
    Rose N, Afanasyeva M. Autoimmunity: busting the atherosclerotic plaque. Nat Med 2003;9:641–642.PubMedCrossRefGoogle Scholar
  87. 87.
    Senior RM, Tegner H, Kuhn C, et al. The induction of pulmonary emphysema with human leukocyte elastase. Am Rev Respir Dis 1977;116:469–475.PubMedGoogle Scholar
  88. 88.
    Damiano VV, Tsang A, Kucich U, et al. Immunolocalization of elastase in human emphysematous lungs. J Clin Invest 1986;78:482–493.PubMedCrossRefGoogle Scholar
  89. 89.
    Takeyabu K, Betsuyaku T, Nishimura M, et al. Cysteine proteinases and cystatin C in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Eur Respir J 1998;12:1033–1039.PubMedCrossRefGoogle Scholar
  90. 90.
    Shapiro SD, Senior RM. Matrix metalloproteinases. Matrix degradation and more. Am J Respir Cell Mol Biol 1999;20:1100–1102.PubMedGoogle Scholar
  91. 91.
    Dallas SL, Rosser JL, Mundy GR, et al. Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem 2002;277:21352–21360.PubMedCrossRefGoogle Scholar
  92. 92.
    Cawston T, Carrere S, Catterall J, et al. Matrix metalloproteinases and TIMPs: properties and implications for the treatment of chronic obstructive pulmonary disease. Novartis Found Symp 2001;234:205–218.PubMedCrossRefGoogle Scholar
  93. 93.
    Niewöhner D KJ, Rice D. Pathologic changes in peripheral airways of young cigarette smokers. N Engl J Med 1974;291:755–758.CrossRefGoogle Scholar
  94. 94.
    Nezelof C, Basset F. Langerhans cell histiocytosis research. Past, present, and future. Hematol Oncol Clin North Am 1998;12(2):385–406.PubMedCrossRefGoogle Scholar
  95. 95.
    Youkeles LH, Grizzanti JN, Liao Z, et al. Decreased tobacco-glycoprotein-induced lymphocyte proliferation in vitro in pulmonary eosinophilic granuloma. Am J Respir Crit Care Med 1995;151(1):145–150.PubMedGoogle Scholar
  96. 96.
    Egeler RM, Favara BE, van Meurs M, et al. Differential In situ cytokine profiles of Langerhans-like cells and T cells in Langerhans cell histiocytosis: abundant expression of cytokines relevant to disease and treatment. Blood 1999;94(12):4195–4201.PubMedGoogle Scholar
  97. 97.
    Pileri SA, Grogan TM, Harris NL, et al. Tumours of histiocytes and accessory dendritic cells: an immunohistochemical approach to classification from the International Lymphoma Study Group based on 61 cases. Histopathology 2002;41(1):1–29.PubMedCrossRefGoogle Scholar
  98. 98.
    Stachura I, Singh G, Whiteside TL. Mechanisms of tissue injury in desquamative interstitial pneumonitis. Am J Med 1980;68(5):733–740.PubMedCrossRefGoogle Scholar
  99. 99.
    Oberdorster G. Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal Toxicol 2002;14(1):29–56.PubMedCrossRefGoogle Scholar
  100. 100.
    Carrington CB, Gaensler EA, Coutu RE, et al. Natural history and treated course of usual and desquamative interstitial pneumonia. N Engl J Med 1978;298(15):801–809.PubMedCrossRefGoogle Scholar
  101. 101.
    Liebow AA, Steer A, Billingsley JG. Desquamative interstitial pneumonia. Am J Med 1965;39:369–404.PubMedCrossRefGoogle Scholar
  102. 102.
    Ryu JH, Colby TV, Hartman TE, et al. Smoking-related interstitial lung diseases: a concise review. Eur Respir J 2001;17(1):122–132.PubMedCrossRefGoogle Scholar
  103. 103.
    Abraham JL, Hertzberg MA. Inorganic particulates associated with desquamative interstitial pneumonia. Chest 1981;80(1 Suppl):67–70.PubMedCrossRefGoogle Scholar
  104. 104.
    Freed JA, Miller A, Gordon RE, et al. Desquamative interstitial pneumonia associated with chrysotile asbestos fibres. Br J Ind Med 1991;48(5):332–337.PubMedGoogle Scholar
  105. 105.
    Hammar SP, Hallman KO. Localized inflammatory pulmonary disease in subjects occupationally exposed to asbestos. Chest 1993;103(6):1792–1799.PubMedCrossRefGoogle Scholar
  106. 106.
    Herbert A, Sterling G, Abraham J, et al. Desquamative interstitial pneumonia in an aluminum welder. Hum Pathol 1982;13(8):694–699.PubMedCrossRefGoogle Scholar
  107. 107.
    Kern DG, Kuhn C, Ely EW, et al. Flock worker’s lung: broadening the spectrum of clinicopathology, narrowing the spectrum of suspected etiologies. Chest 2000;117(1):251–259.PubMedCrossRefGoogle Scholar
  108. 108.
    Hoshino Y, Radzioch D, Ghezzo H, et al. Smoke-induced and inherent differences at the level of gene expression in mice with different susceptibility to emphysema. Eur Respir J 2003;22(Suppl 45):195s.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Manuel G. Cosio
    • 1
  • Helmut H. Popper
    • 2
  1. 1.Department of MedicineMcGill University, Royal Victoria HospitalMontrealCanada
  2. 2.Institute of Pathology, Laboratories for Molecular Cytogenetics, Environmental and Respiratory PathologyMedical University of GrazGrazAustria

Personalised recommendations