• Juan P. Olano
Part of the Molecular Pathology Library book series (MPLB, volume 1)


In this chapter, I explore the advances made in understanding the molecular pathogenesis and basic immunologic principles of the most common protozoan and metazoan organisms that affect the lungs. These eukaryotic organisms are far more complex genetically than their bacterial and viral counterparts. Genome sizes range from 7,000 to 20,000 protein-encoding genes.1 This level of complexity is needed in order to survive through multiple stages of development that occur in intermediate and definitive hosts. As a rule, most parasitic diseases lead to chronicity, suggesting that the host-parasite relationship enters a level of “tolerance” that we are beginning to understand at the molecular level through a complex interaction between parasite-derived immunomodulatory products and the host immune response.


Polar Tube Toxoplasma Gondii Entamoeba Histolytica Echinococcus Granulosus Parasitophorous Vacuole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pearce EJ, Tarleton RL. Overview of Parasitic Pathogens. In Kaufmann SHE, Sher A, Ahmed R, eds. Immunology of Infectious Diseases. Washington, DC: ASM Press; 2002:39–52.Google Scholar
  2. 2.
    Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986;136:2348–2357.PubMedGoogle Scholar
  3. 3.
    Scott P, Grencis RK. Adaptive immune effector mechanisms against intracellular protozoa and gut-dwelling nematodes. In Kaufmann SHE, Sher A, Ahmed R, eds. Immunology of Infectious Diseases. Washington, DC: ASM Press; 2002:235–246.Google Scholar
  4. 4.
    Gazzinelli RT, Wysocka M, Hieny S, et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J Immunol 1996;157:798–805.PubMedGoogle Scholar
  5. 5.
    Bessieres MH, Swierczynski B, Cassaing S, et al. Role of IFN-gamma, TNF-alpha, IL4 and IL10 in the regulation of experimental Toxoplasma gondii infection. J Eukaryot Microbiol 1997;44:87S.PubMedCrossRefGoogle Scholar
  6. 6.
    Butcher BA, Kim L, Panopoulos AD, Watowich SS, Murray PJ, Denkers EY. IL-10-independent STAT3 activation by Toxoplasma gondii mediates suppression of IL-12 and TNF-alpha in host macrophages. J Immunol 2005;174:3148–3152.PubMedGoogle Scholar
  7. 7.
    Dunne DW, Pearce EJ. Immunology of hepatosplenic schistosomiasis mansoni: a human perspective. Microbes Infect 1999;1:553–560.PubMedCrossRefGoogle Scholar
  8. 8.
    Cheever AW, Yap GS. Immunologic basis of disease and disease regulation in schistosomiasis. Chem Immunol 1997;66:159–176.PubMedCrossRefGoogle Scholar
  9. 9.
    Chiaramonte MG, Schopf LR, Neben TY, et al. IL-13 is a key regulatory cytokine for Th2 cell-mediated pulmonary granuloma formation and IgE responses induced by Schistosoma mansoni eggs. J Immunol 1999;162:920–930.PubMedGoogle Scholar
  10. 10.
    Wynn TA, Thompson RW, Cheever AW, Mentink-Kane MM. Immunopathogenesis of schistosomiasis. Immunol Rev 2004;201:156–167.PubMedCrossRefGoogle Scholar
  11. 11.
    Norris KA, Schrimpf JE. Biochemical analysis of the membrane and soluble forms of the complement regulatory protein of Trypanosoma cruzi. Infect Immun 1994;62:236–243.PubMedGoogle Scholar
  12. 12.
    Reed SL, Ember JA, Herdman DS, et al. The extracellular neutral cysteine proteinase of Entamoeba histolytica degrades anaphylatoxins C3a and C5a. J Immunol 1995;155:266–274.PubMedGoogle Scholar
  13. 13.
    Pearce EJ, Hall BF, Sher A. Host-specific evasion of the alternative complement pathway by schistosomes correlates with the presence of a phospholipase C-sensitive surface molecule resembling human decay accelerating factor. J Immunol 1990;144:2751–2756.PubMedGoogle Scholar
  14. 14.
    Da Silva RP, Hall BF, Joiner KA, Sacks DL. CR1, the C3b receptor, mediates binding of infective Leishmania major metacyclic promastigotes to human macrophages. J Immunol 1989;143:617–622.PubMedGoogle Scholar
  15. 15.
    Andrews NW, Abrams CK, Slatin SL, Griffiths G. A T. cruzi-secreted protein immunologically related to the complement component C9: evidence for membrane poreforming activity at low pH. Cell 1990;61:1277–1287.PubMedCrossRefGoogle Scholar
  16. 16.
    Sibley LD, Weidner E, Krahenbuhl JL. Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature 1985;315:416–419.PubMedCrossRefGoogle Scholar
  17. 17.
    Nebl T, De Veer MJ, Schofield L. Stimulation of innate immune responses by malarial glycosylphosphatidylinositol via pattern recognition receptors. Parasitology 2005;130(Suppl):S45–S62.PubMedCrossRefGoogle Scholar
  18. 18.
    Ropert C, Ferreira LR, Campos MA, et al. Macrophage signaling by glycosylphosphatidylinositol-anchored mucinlike glycoproteins derived from Trypanosoma cruzi trypomastigotes. Microbes Infect 2002;4:1015–1025.PubMedCrossRefGoogle Scholar
  19. 19.
    Proudfoot L, O’Donnell CA, Liew FY. Glycoinositolphospholipids of Leishmania major inhibit nitric oxide synthesis and reduce leishmanicidal activity in murine macrophages. Eur J Immunol 1995;25:745–750.PubMedCrossRefGoogle Scholar
  20. 20.
    Carrera L, Gazzinelli RT, Badolato R, et al. Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J Exp Med 1996;183:515–526.PubMedCrossRefGoogle Scholar
  21. 21.
    Hunter CA, Sher A. Innate immunity to parasitic infections. In Kaufmann SHE, Sher A, Ahmed R, eds. Immunology of Infectious Diseases. Washington, DC: ASM Press; 2002:111–127.Google Scholar
  22. 22.
    Trinchieri G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol 1998;70:83–243.PubMedCrossRefGoogle Scholar
  23. 23.
    Aliberti J, Reis e Sousa C, Schito M, et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8 alpha+ dendritic cells. Nat Immunol 2000;1:83–87.PubMedCrossRefGoogle Scholar
  24. 24.
    Soong L, Xu JC, Grewal IS, et al. Disruption of CD40-CD40 ligand interactions results in an enhanced susceptibility to Leishmania amazonensis infection. Immunity 1996;4:263–273.PubMedCrossRefGoogle Scholar
  25. 25.
    Finkelman FD, Shea-Donohue T, Goldhill J, et al. Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models. Annu Rev Immunol 1997;15:505–533.PubMedCrossRefGoogle Scholar
  26. 26.
    Donaldson LE, Schmitt E, Huntley JF, Newlands GF, Grencis RK. A critical role for stem cell factor and c-kit in host protective immunity to an intestinal helminth. Int Immunol 1996;8:559–567.PubMedCrossRefGoogle Scholar
  27. 27.
    Grencis RK, Entwistle GM. Production of an interferongamma homologue by an intestinal nematode: functionally significant or interesting artefact? Parasitology 1997;115(Suppl):S101–S106.PubMedCrossRefGoogle Scholar
  28. 28.
    Tort J, Brindley PJ, Knox D, et al. Proteinases and associated genes of parasitic helminths. Adv Parasitol 1999;43:161–266.PubMedCrossRefGoogle Scholar
  29. 29.
    Lackey A, James ER, Sakanari JA, et al. Extracellular proteases of Onchocerca. Exp Parasitol 1989;68:176–185.PubMedCrossRefGoogle Scholar
  30. 30.
    Park H, Kim SI, Hong KM, et al. Characterization and classification of five cysteine proteinases expressed by Paragonimus westermani adult worm. Exp Parasitol 2002;102:143–149.PubMedGoogle Scholar
  31. 31.
    Na BK, Lee HJ, Cho SH, et al. Expression of cysteine proteinase of Clonorchis sinensis and its use in serodiagnosis of clonorchiasis. J Parasitol 2002;88:1000–1006.PubMedGoogle Scholar
  32. 32.
    Shin MH, Lee SY. Proteolytic activity of cysteine protease in excretory-secretory product of Paragonimus westermani newly excysted metacercariae pivotally regulates IL-8 production of human eosinophils. Parasite Immunol 2000;22:529–533.PubMedCrossRefGoogle Scholar
  33. 33.
    Curwen RS, Wilson RA. Invasion of skin by schistosome cercariae: some neglected facts. Trends Parasitol 2003;19:63–68.PubMedCrossRefGoogle Scholar
  34. 34.
    McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M. Proteases in parasitic diseases. Annul Rev Pathol Mech Dis 2006:497–536.Google Scholar
  35. 35.
    Hartmann S, Lucius R. Modulation of host immune responses by nematode cystatins. Int J Parasitol 2003;33:1291–1302.PubMedCrossRefGoogle Scholar
  36. 36.
    Manoury B, Gregory WF, Maizels RM, Watts C. Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Curr Biol 2001;11:447–451.PubMedCrossRefGoogle Scholar
  37. 37.
    Silverman GA, Bird PI, Carrell RW, et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 2001;276:33293–33296.PubMedCrossRefGoogle Scholar
  38. 38.
    Bruchhaus I, Jacobs T, Leippe M, Tannich E. Entamoeba histolytica and Entamoeba dispar: differences in numbers and expression of cysteine proteinase genes. Mol Microbiol 1996;22:255–263.PubMedCrossRefGoogle Scholar
  39. 39.
    Hill DE, Chirukandoth S, Dubey JP. Biology and epidemiology of Toxoplasma gondii in man and animals. Anim Health Res Rev 2005;6:41–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Dobrowolski JM, Sibley LD. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 1996;84:933–939.PubMedCrossRefGoogle Scholar
  41. 41.
    Sibley LD. Intracellular parasite invasion strategies. Science 2004;304:248–253.PubMedCrossRefGoogle Scholar
  42. 42.
    Dowse T, Soldati D. Host cell invasion by the apicomplexans: the significance of microneme protein proteolysis. Curr Opin Microbiol 2004;7:388–396.PubMedCrossRefGoogle Scholar
  43. 43.
    Meissner M, Schluter D, Soldati D. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 2002;298:837–840.PubMedCrossRefGoogle Scholar
  44. 44.
    Lovett JL, Marchesini N, Moreno SN, Sibley LD. Toxoplasma gondii microneme secretion involves intracellular Ca(2+) release from inositol 1,4,5-triphosphate (IP[3])/ryanodine-sensitive stores. J Biol Chem 2002;277:25870–25876.PubMedCrossRefGoogle Scholar
  45. 45.
    Sinai AP, Joiner KA. The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane. J Cell Biol 2001;154:95–108.PubMedCrossRefGoogle Scholar
  46. 46.
    Aliberti J, Jankovic D, Sher A. Turning it on and off: regulation of dendritic cell function in Toxoplasma gondii infection. Immunol Rev 2004;201:26–34.PubMedCrossRefGoogle Scholar
  47. 47.
    Sher A, Collazzo C, Scanga C, et al. Induction and regulation of IL-12-dependent host resistance to Toxoplasma gondii. Immunol Res 2003;27:521–528.PubMedCrossRefGoogle Scholar
  48. 48.
    Fadul CE, Channon JY, Kasper LH. Survival of immunoglobulin G-opsonized Toxoplasma gondii in nonadherent human monocytes. Infect Immun 1995;63:4290–4294.PubMedGoogle Scholar
  49. 49.
    Eichinger D. A role for a galactose lectin and its ligands during encystment of Entamoeba. J Eukaryot Microbiol 2001;48:17–21.PubMedCrossRefGoogle Scholar
  50. 50.
    Reed SL, Gigli I. Lysis of complement-sensitive Entamoeba histolytica by activated terminal complement components. Initiation of complement activation by an extracellular neutral cysteine proteinase. J Clin Invest 1990;86:1815–1822.PubMedCrossRefGoogle Scholar
  51. 51.
    Ravdin JI, Moreau F, Sullivan JA, et al. Relationship of free intracellular calcium to the cytolytic activity of Entamoeba histolytica. Infect Immun 1988;56:1505–1512.PubMedGoogle Scholar
  52. 52.
    Haque R, Ali IM, Sack RB, Farr BM, Ramakrishnan G, Petri WA, Jr. Amebiasis and mucosal IgA antibody against the Entamoeba histolytica adherence lectin in Bangladeshi children. J Infect Dis 2001;183:1787–1793.PubMedCrossRefGoogle Scholar
  53. 53.
    Salata RA, Martinez-Palomo A, Murray HW, et al. Patients treated for amebic liver abscess develop cellmediated immune responses effective in vitro against Entamoeba histolytica. J Immunol 1986;136:2633–2639.PubMedGoogle Scholar
  54. 54.
    Denis M, Chadee K. Human neutrophils activated by interferon-gamma and tumour necrosis factor-alpha kill Entamoeba histolytica trophozoites in vitro. J Leuk Biol 1989;46:270–274.Google Scholar
  55. 55.
    Weiss LM, Schwartz DA. Microsporidiosis. In Guerrant RL, Walker DH, Weller PF, eds. Tropical Infectious Diseases: Principles, Pathogens and Practice, vol 2. Philadelphia: Churchill Livingstone; 2006:1126–1140.Google Scholar
  56. 56.
    Xu Y, Weiss LM. The microsporidian polar tube: a highly specialised invasion organelle. Int J Parasitol 2005;35:941–953.PubMedCrossRefGoogle Scholar
  57. 57.
    Xu Y, Takvorian PM, Cali A, et al. Glycosylation of the major polar tube protein of Encephalitozoon hellem, a microsporidian parasite that infects humans. Infect Immun 2004;72:6341–6350.PubMedCrossRefGoogle Scholar
  58. 58.
    Peek R, Delbac F, Speijer D, et al. Carbohydrate moieties of microsporidian polar tube proteins are targeted by immunoglobulin G in immunocompetent individuals. Infect Immun 2005;73:7906–7913.PubMedCrossRefGoogle Scholar
  59. 59.
    Peuvel I, Peyret P, Metenier G, et al. The microsporidian polar tube: evidence for a third polar tube protein (PTP3) in Encephalitozoon cuniculi. Mol Biochem Parasitol 2002;122:69–80.PubMedCrossRefGoogle Scholar
  60. 60.
    Franzen C, Muller A, Hartmann P, Salzberger B. Cell invasion and intracellular fate of Encephalitozoon cuniculi (Microsporidia). Parasitology 2005;130:285–292.PubMedCrossRefGoogle Scholar
  61. 61.
    Scanlon M, Shaw AP, Zhou CJ, et al. Infection by microsporidia disrupts the host cell cycle. J Eukaryot Microbiol 2000;47:525–531.PubMedCrossRefGoogle Scholar
  62. 62.
    MacKenzie WR, Hoxie NJ, Proctor ME, et al. A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. N Engl J Med 1994;331:161–167.CrossRefGoogle Scholar
  63. 63.
    Bushen OY, Lima AAM, Guerrant RL. Cryptosporidiosis. In Guerrant RL, Walker DH, Weller PF, eds. Tropical Infectious Diseases: Principles, Pathogens and Practice, vol 2. Philadelphia: Churchill Livingstone; 2006:1003–1014.Google Scholar
  64. 64.
    Kirkpatrick BD, Daniels MM, Jean SS, et al. Cryptosporidiosis stimulates an inflammatory intestinal response in malnourished Haitian children. J Infect Dis 2002;186:94–101.PubMedCrossRefGoogle Scholar
  65. 65.
    Argenzio RA, Rhoads JM, Armstrong M, Gomez G. Glutamine stimulates prostaglandin-sensitive Na(+)-H+ exchange in experimental porcine cryptosporidiosis. Gastroenterology 1994;106:1418–1428.PubMedGoogle Scholar
  66. 66.
    Kandil HM, Berschneider HM, Argenzio RA. Tumour necrosis factor alpha changes porcine intestinal ion transport through a paracrine mechanism involving prostaglandins. Gut 1994;35:934–940.PubMedCrossRefGoogle Scholar
  67. 67.
    Seydel KB, Zhang T, Champion GA, et al. Cryptosporidium parvum infection of human intestinal xenografts in SCID mice induces production of human tumor necrosis factor alpha and interleukin-8. Infect Immun 1998;66:2379–2382.PubMedGoogle Scholar
  68. 68.
    Robinson P, Okhuysen PC, Chappell CL, et al. Substance P expression correlates with severity of diarrhea in cryptosporidiosis. J Infect Dis 2003;188:290–296.PubMedCrossRefGoogle Scholar
  69. 69.
    Hashim A, Mulcahy G, Bourke B, Clyne M. Interaction of Cryptosporidium hominis and Cryptosporidium parvum with primary human and bovine intestinal cells. Infect Immun 2006;74:99–107.PubMedCrossRefGoogle Scholar
  70. 70.
    Abrahamsen MS, Templeton TJ, Enomoto S, et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 2004;304:441–445.PubMedCrossRefGoogle Scholar
  71. 71.
    White AC, Robinson P, Okhuysen PC, et al. Interferongamma expression in jejunal biopsies in experimental human cryptosporidiosis correlates with prior sensitization and control of oocyst excretion. J Infect Dis 2000;181:701–709.PubMedCrossRefGoogle Scholar
  72. 72.
    Robinson P, Okhuysen PC, Chappell CL, et al. Expression of IL-15 and IL-4 in IFN-gamma-independent control of experimental human Cryptosporidium parvum infection. Cytokine 2001;15:39–46.PubMedCrossRefGoogle Scholar
  73. 73.
    Nutman TB, Kazura JW. Filariasis. In Guerrant RL, Walker DH, Weller PF, eds. Tropical Infectious Diseases: Principles, Pathogens and Practice, vol 2. Philadelphia: Churchill Livingstone; 2006:1152–1162.Google Scholar
  74. 74.
    Babu S, Nutman TB. Proinflammatory cytokines dominate the early immune response to filarial parasites. J Immunol 2003;171:6723–6732.PubMedGoogle Scholar
  75. 75.
    Graham SP, Trees AJ, Collins RA, et al. Down-regulated lymphoproliferation coincides with parasite maturation and with the collapse of both gamma interferon and interleukin-4 responses in a bovine model of onchocerciasis. Infect Immun 2001;69:4313–4319.PubMedCrossRefGoogle Scholar
  76. 76.
    Steel C, Nutman TB. CTLA-4 in filarial infections: implications for a role in diminished T cell reactivity. J Immunol 2003;170:1930–1938.PubMedGoogle Scholar
  77. 77.
    King CL, Mahanty S, Kumaraswami V, et al. Cytokine control of parasite-specific anergy in human lymphatic filariasis. Preferential induction of a regulatory T helper type 2 lymphocyte subset. J Clin Invest 1993;92:1667–1673.PubMedCrossRefGoogle Scholar
  78. 78.
    Hise AG, Gillette-Ferguson I, Pearlman E. The role of endosymbiotic Wolbachia bacteria in filarial disease. Cell Microbiol 2004;6:97–104.PubMedCrossRefGoogle Scholar
  79. 79.
    Taylor MJ. A new insight into the pathogenesis of filarial disease. Curr Mol Med 2002;2:299–302.PubMedCrossRefGoogle Scholar
  80. 80.
    Taylor MJ, Cross HF, Bilo K. Inflammatory responses induced by the filarial nematode Brugia malayi are mediated by lipopolysaccharide-like activity from endosymbiotic Wolbachia bacteria. J Exp Med 2000;191:1429–1436.PubMedCrossRefGoogle Scholar
  81. 81.
    Eberhard ML. Zoonotic Filariasis. In Guerrant RL, Walker DH, Weller PF, eds. Tropical Infectious Diseases: Principles, Pathogens and Practice, vol 2. Philadelphia: Churchill Livingstone; 2006:1189–1203.Google Scholar
  82. 82.
    Theis JH. Public health aspects of dirofilariasis in the United States. Vet Parasitol 2005;133:157–180.PubMedCrossRefGoogle Scholar
  83. 83.
    Siddiqui AA, Genta RM, Berk LB. Strongyloidiasis. In Guerrant RL, Walker DH, Weller PF, eds. Tropical Infectious Diseases: Principles, Pathogens and Practice, vol 2. Philadelphia: Churchill Livingstone; 2006:1274–1285.Google Scholar
  84. 84.
    Ashton FT, Li J, Schad GA. Chemo-and thermosensory neurons: structure and function in animal parasitic nematodes. Vet Parasitol 1999;84:297–316.PubMedCrossRefGoogle Scholar
  85. 85.
    Gomez Gallego S, Loukas A, Slade RW, et al. Identification of an astacin-like metallo-proteinase transcript from the infective larvae of Strongyloides stercoralis. Parasitol Int 2005;54:123–133.PubMedCrossRefGoogle Scholar
  86. 86.
    Genta RM. Dysregulation of strongyloidiasis: a new hypothesis. Clin Microbiol Rev 1992;5:345–355.PubMedGoogle Scholar
  87. 87.
    Escobedo G, Roberts CW, Carrero JC, Morales-Montor J. Parasite regulation by host hormones: an old mechanism of host exploitation? Trends Parasitol 2005;21:588–593.PubMedCrossRefGoogle Scholar
  88. 88.
    Siddiqui AA, Stanley CS, Berk SL. A cDNA encoding the highly immunodominant antigen of Strongyloides stercoralis: gamma-subunit of isocitrate dehydrogenase (NAD+). Parasitol Res 2000;86:279–283.PubMedCrossRefGoogle Scholar
  89. 89.
    Carvalho EM, Da Fonseca Porto A. Epidemiological and clinical interaction between HTLV-1 and Strongyloides stercoralis. Parasite Immunol 2004;26:487–497.PubMedCrossRefGoogle Scholar
  90. 90.
    Gabet AS, Mortreux F, Talarmin A, et al. High circulating proviral load with oligoclonal expansion of HTLV-1 bearing T cells in HTLV-1 carriers with strongyloidiasis. Oncogene 2000;19:4954–460.PubMedCrossRefGoogle Scholar
  91. 91.
    Velez ID, Ortega JE, Velasquez LE. Paragonimiasis: a view from Colombia. Clin Chest Med 2002;23:421–431.PubMedCrossRefGoogle Scholar
  92. 92.
    Maclean JD, Cross J, Mahanty S. Liver, Lung, and Intestinal Fluke Infections. In Guerrant RL, Walker DH, Weller PF, eds. Tropical Infectious Diseases: Principles, Pathogens and Practice, vol 2. Philadelphia: Churchill Livingstone; 2006:1349–1369.Google Scholar
  93. 93.
    Lee EG, Na BK, Bae YA, et al. Identification of immunodominant excretory-secretory cysteine proteases of adult Paragonimus westermani by proteome analysis. Proteomics 2006;6:1290–1300.PubMedCrossRefGoogle Scholar
  94. 94.
    Jin Y, Lee JC, Choi IY, et al. Excretory-secretory products produced by Paragonimus westermani differentially regulate the nitric oxide production and viability of microglial cells. Int Arch Allergy Immunol 2006;139:16–24.PubMedCrossRefGoogle Scholar
  95. 95.
    Shin MH, Chung YB, Kita H. Degranulation of human eosinophils induced by Paragonimus westermani-secreted protease. Korean J Parasitol 2005;43:33–37.PubMedCrossRefGoogle Scholar
  96. 96.
    Min DY, Lee YA, Ryu JS, et al. Caspase-3-mediated apoptosis of human eosinophils by the tissue-invading helminth Paragonimus westermani. Int Arch Allergy Immunol 2004;133:357–364.PubMedCrossRefGoogle Scholar
  97. 97.
    Li AH, Na BK, Kong Y, et al. Molecular cloning and characterization of copper/zinc-superoxide dismutase of Paragonimus westermani. J Parasitol 2005;91:293–299.PubMedCrossRefGoogle Scholar
  98. 98.
    Matsumoto N, Mukae H, Nakamura-Uchiyama F, et al. Elevated levels of thymus and activation-regulated chemokine (TARC) in pleural effusion samples from patients infested with Paragonimus westermani. Clin Exp Immunol 2002;130:314–318.PubMedCrossRefGoogle Scholar
  99. 99.
    Ross AG, Bartley PB, Sleigh AC, et al. Schistosomiasis. N Eng J Med 2002;346:1212–1220.CrossRefGoogle Scholar
  100. 100.
    King CH. Schistosomiasis. In Guerrant RL, Walker DH, Weller PF, eds. Tropical Infectious Diseases: Principles, Pathogens and Practice, vol 2. Philadelphia: Churchill Livingstone; 2006:1341–1348.Google Scholar
  101. 101.
    King CH. Acute and chronic schistosomiasis. Hosp Pract (Off Ed) 1991;26:117–130.Google Scholar
  102. 102.
    Cheever AW. Schistosomiasis. Infection versus disease and hypersensitivity versus immunity. Am J Pathol 1993;142:699–702.PubMedGoogle Scholar
  103. 103.
    Jankovic D, Kullberg MC, Noben-Trauth N, et al. Schistosome-infected IL-4 receptor knockout (KO) mice, in contrast to IL-4 KO mice, fail to develop granulomatous pathology while maintaining the same lymphokine expression profile. J Immunol 1999;163:337–342.PubMedGoogle Scholar
  104. 104.
    Hokke CH, Yazdanbakhsh M. Schistosome glycans and innate immunity. Parasite Immunol 2005;27:257–264.PubMedCrossRefGoogle Scholar
  105. 105.
    Stadecker MJ, Asahi H, Finger E, et al. The immunobiology of Th1 polarization in high-pathology schistosomiasis. Immunol Rev 2004;201:168–179.PubMedCrossRefGoogle Scholar
  106. 106.
    Thompson RC, McManus DP. Towards a taxonomic revision of the genus Echinococcus. Trends Parasitol 2002;18:452–457.PubMedCrossRefGoogle Scholar
  107. 107.
    Schantz PM, Kern P, Brunett E. Echinococcosis. In Guerrant RL, Walker DH, Weller PF, eds. Tropical Infectious Diseases: Principles, Pathogens and Practice, vol 2. Philadelphia: Churchill Livingstone; 2006:1304–1326.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Juan P. Olano
    • 1
  1. 1.Department of PathologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations