Apoptosis and Cell Death: Relevance to Lung

  • Pothana Saikumar
  • Rekha Kar
Part of the Molecular Pathology Library book series (MPLB, volume 1)


In multicellular organisms, cell death plays an important role in development, morphogenesis, control of cell numbers, and removal of infected, mutated, or damaged cells. The term apoptosis was first coined in 1972 by Kerr et al.1 to describe the morphologic features of a type of cell death that is distinct from necrosis and is today considered to represent programmed cell death. In fact, the evidence that a genetic program existed for physiologic cell death came from the developmental studies of the nematode Caenorhabditis elegans.2 As time has progressed, however, apoptotic cell death has been shown to occur in many cell types under a variety of physiologic and pathologic conditions. Cells dying by apoptosis exhibit several characteristic morphologic features that include cell shrinkage, nuclear condensation, membrane blebbing, nuclear and cellular fragmentation into membrane-bound apoptotic bodies, and eventual phagocytosis of the fragmented cell (Figure 4.1).
Figure 4.1

Morphologic features of cell death. Necrosis: Cells die by necrosis, and their organelles are characteristically swollen. There is early membrane damage with eventual loss of plasma membrane integrity and leakage of cytosol into extra-cellular space. Despite early clumping, the nuclear chromatin undergoes lysis (karyolysis). Apoptosis: Cells die by type I programmed cell death (also called apoptosis); they are shrunken and develop blebs containing dense cytoplasm. Membrane integrity is not lost until after cell death. Nuclear chromatin undergoes striking condensation and fragmentation. The cytoplasm becomes divided to form apoptotic bodies containing organelles and/or nuclear debris. Terminally, apoptotic cells and fragments are engulfed by phagocytes or surrounding cells. Autophagy: Cells die by type II programmed cell death, which is characterized by the accumulation of autophagic vesicles (autophagosomes and autophagolysosomes). One feature that distinguishes apoptosis from autophagic cell death is the source of the lysosomal enzymes used for most of the dying-cell degradation. Apoptotic cells use phagocytic cell lysosomes for this process, whereas cells with autophagic morphology use the endogenous lysosomal machinery of dying cells. Paraptosis: Cells die by type III programmed cell death, which is characterized by extensive cytoplasmic vacuolization and swelling and clumping of mitochondria, along with absence of nuclear fragmentation, membrane blebbing, or apoptotic body formation. Autoschizis: In this form of cell death, the cell membrane forms cuts or schisms that allow the cytoplasm to leak out. The cell shrinks to about one-third of its original size, and the nucleus and organelles remain surrounded by a tiny ribbon of cytoplasm. After further excisions of cytoplasm, the nuclei exhibit nucleolar segregation and chromatin decondensation followed by nuclear karyorrhexis and karyolysis.


Chronic Obstructive Pulmonary Disease Programme Cell Death Acute Respiratory Distress Syndrome Alveolar Epithelial Cell NSCLC Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26(4):239–257.PubMedGoogle Scholar
  2. 2.
    Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986;44(6):817–829.PubMedCrossRefGoogle Scholar
  3. 3.
    Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell 1997;88(3):347–354.PubMedCrossRefGoogle Scholar
  4. 4.
    Saikumar P, Dong Z, Mikhailov V, et al. Apoptosis: definition, mechanisms, and relevance to disease. Am J Med 1999;107(5):489–506.PubMedCrossRefGoogle Scholar
  5. 5.
    de Souza PM, Lindsay MA. Apoptosis as a therapeutic target for the treatment of lung disease. Curr Opin Pharmacol 2005;5(3):232–237.PubMedCrossRefGoogle Scholar
  6. 6.
    Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001;2(8):589–598.PubMedCrossRefGoogle Scholar
  7. 7.
    Vercammen D, Brouckaert G, Denecker G, et al. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 1998;188(5):919–930.PubMedCrossRefGoogle Scholar
  8. 8.
    Zong WX, Ditsworth D, Bauer DE, et al. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 2004;18(11):1272–1282.PubMedCrossRefGoogle Scholar
  9. 9.
    Paglin S, Hollister T, Delohery T, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 2001;61(2):439–444.PubMedGoogle Scholar
  10. 10.
    Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biol 2004;14(2):70–77.PubMedCrossRefGoogle Scholar
  11. 11.
    Canuto RA, Tessitore L, Muzio G, et al. Tissue protein turnover during liver carcinogenesis. Carcinogenesis 1993;14(12):2581–2587.PubMedCrossRefGoogle Scholar
  12. 12.
    Kisen GO, Tessitore L, Costelli P, et al. Reduced autophagic activity in primary rat hepatocellular carcinoma and ascites hepatoma cells. Carcinogenesis 1993;14(12):2501–2505.PubMedCrossRefGoogle Scholar
  13. 13.
    Yu L, Alva A, Su H, et al. Regulation of an ATG 7-beclin 1 program of autophagic cell death by caspase-8. Science 2004;304(5676):1500–1502.PubMedCrossRefGoogle Scholar
  14. 14.
    Shimizu S, Kanaseki T, Mizushima N, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 2004;6(12):1221–1228.PubMedCrossRefGoogle Scholar
  15. 15.
    Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 2000;97(26):14376–14381.PubMedCrossRefGoogle Scholar
  16. 16.
    Sperandio S, Poksay K, de Belle I, et al. Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ 2004;11(10):1066–1075.PubMedCrossRefGoogle Scholar
  17. 17.
    Jamison JM, Gilloteaux J, Taper HS, et al. Autoschizis: a novel cell death. Biochem Pharmacol 2002;63(10):1773–1783.PubMedCrossRefGoogle Scholar
  18. 18.
    Taper HS, Jamison JM, Gilloteaux J, et al. Inhibition of the development of metastases by dietary vitamin C:K3 combination. Life Sci 2004;75(8):955–967.PubMedCrossRefGoogle Scholar
  19. 19.
    Gilloteaux J, Jamison JM, Lorimer HE, et al. Autoschizis: a new form of cell death for human ovarian carcinoma cells following ascorbate/menadione treatment. Nuclear and DNA degradation. Tissue Cell 2004;36(3):197–209.PubMedCrossRefGoogle Scholar
  20. 20.
    Vaux DL, Strasser A. The molecular biology of apoptosis. Proc Natl Acad Sci USA 1996;93(6):2239–2244.PubMedCrossRefGoogle Scholar
  21. 21.
    Yuan J. Evolutionary conservation of a genetic pathway of programmed cell death. J Cell Biochem 1996;60(1):4–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Spector MS, Desnoyers S, Hoeppner DJ, Hengartner MO. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 1997;385(6617):653–656.PubMedCrossRefGoogle Scholar
  23. 23.
    Wu D, Wallen HD, Inohara N, Nunez G. Interaction and regulation of the Caenorhabditis elegans death protease CED-3 by CED-4 and CED-9. J Biol Chem 1997;272(34):21449–21454.PubMedCrossRefGoogle Scholar
  24. 24.
    Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281(5381):1312–1316.PubMedCrossRefGoogle Scholar
  25. 25.
    Launay S, Hermine O, Fontenay M, et al. Vital functions for lethal caspases. Oncogene 2005;24(33):5137–5148.PubMedCrossRefGoogle Scholar
  26. 26.
    Shiozaki EN, Chai J, Rigotti DJ, et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 2003;11(2):519–527.PubMedCrossRefGoogle Scholar
  27. 27.
    Donepudi M, Mac Sweeney A, Briand C, Grutter MG. Insights into the regulatory mechanism for caspase-8 activation. Mol Cell 2003;11(2):543–549.PubMedCrossRefGoogle Scholar
  28. 28.
    Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997;272(29):17907–17911.PubMedCrossRefGoogle Scholar
  29. 29.
    Magnusson C, Vaux DL. Signalling by CD95 and TNF receptors: not only life and death. Immunol Cell Biol 1999;77(1):41–46.PubMedCrossRefGoogle Scholar
  30. 30.
    Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999;11(2):255–260.PubMedCrossRefGoogle Scholar
  31. 31.
    Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 1995;81(4):495–504.PubMedCrossRefGoogle Scholar
  32. 32.
    Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995;81(4):505–512.PubMedCrossRefGoogle Scholar
  33. 33.
    Cowling V, Downward J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ 2002;9(10):1046–1056.PubMedCrossRefGoogle Scholar
  34. 34.
    Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998;17(6):1675–1687.PubMedCrossRefGoogle Scholar
  35. 35.
    Grell M, Zimmermann G, Gottfried E, et al. Induction of cell death by tumour necrosis factor (TNF) receptor 2, CD40 and CD30: a role for TNF-R1 activation by endogenous membrane-anchored TNF. EMBO J 1999;18(11):3034–3043.PubMedCrossRefGoogle Scholar
  36. 36.
    Natoli G, Costanzo A, Moretti F, et al. Tumor necrosis factor (TNF) receptor 1 signaling downstream of TNF receptor-associated factor 2. Nuclear factor kappaB (NFkappaB)-inducing kinase requirement for activation of activating protein 1 and NFkappaB but not of c-Jun Nterminal kinase/stress-activated protein kinase. J Biol Chem 1997;272(42):26079–26082.PubMedCrossRefGoogle Scholar
  37. 37.
    Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 1996;85(6):803–815.PubMedCrossRefGoogle Scholar
  38. 38.
    Imai Y, Kimura T, Murakami A, et al. The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature 1999;398(6730):777–785.PubMedCrossRefGoogle Scholar
  39. 39.
    Thome M, Schneider P, Hofmann K, et al. Viral FLICEinhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 1997;386(6624):517–521.PubMedCrossRefGoogle Scholar
  40. 40.
    Offit PA, Cunningham SL, Dudzik KI. Memory and distribution of virus-specific cytotoxic T lymphocytes (CTLs) and CTL precursors after rotavirus infection. J Virol 1991;65(3):1318–1324.PubMedGoogle Scholar
  41. 41.
    Zajac AJ, Quinn DG, Cohen PL, Frelinger JA. Fasdependent CD4+ cytotoxic T-cell-mediated pathogenesis during virus infection. Proc Natl Acad Sci USA 1996;93(25):14730–14735.PubMedCrossRefGoogle Scholar
  42. 42.
    Wu Q, Kirschmeier P, Hockenberry T, et al. Transcriptional regulation during p21WAF1/CIP1-induced apoptosis in human ovarian cancer cells. J Biol Chem 2002;277(39):36329–36337.PubMedCrossRefGoogle Scholar
  43. 43.
    Kunz M, Ibrahim S, Koczan D, et al. Activation of c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) is critical for hypoxia-induced apoptosis of human malignant melanoma. Cell Growth Differ 2001;12(3):137–145.PubMedGoogle Scholar
  44. 44.
    Li P, Allen H, Banerjee S, Seshadri T. Characterization of mice deficient in interleukin-1 beta converting enzyme. J Cell Biochem 1997;64(1):27–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Schielke GP, Yang GY, Shivers BD, Betz AL. Reduced ischemic brain injury in interleukin-1 beta converting enzyme-deficient mice. J Cereb Blood Flow Metab 1998;18(2):180–185.PubMedCrossRefGoogle Scholar
  46. 46.
    Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998;273(16):9357–9360.PubMedCrossRefGoogle Scholar
  47. 47.
    Varfolomeev EE, Schuchmann M, Luria V, et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 1998;9(2):267–276.PubMedCrossRefGoogle Scholar
  48. 48.
    Yeh WC, Pompa JL, McCurrach ME, et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998;279(5358):1954–1958.PubMedCrossRefGoogle Scholar
  49. 49.
    Kuida K, Haydar TF, Kuan CY, et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998;94(3):325–337.PubMedCrossRefGoogle Scholar
  50. 50.
    Hengartner MO, Horvitz HR. The ins and outs of programmed cell death during C. elegans development. Philos Trans R Soc Lond B Biol Sci 1994;345(1313):243–246.PubMedCrossRefGoogle Scholar
  51. 51.
    Chang DW, Xing Z, Pan Y, et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 2002;21(14):3704–3714.PubMedCrossRefGoogle Scholar
  52. 52.
    Peter ME. The flip side of FLIP. Biochem J 2004;382 (Pt 2):e1–e3.PubMedCrossRefGoogle Scholar
  53. 53.
    Zou H, Henzel WJ, Liu X, et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90(3):405–413.PubMedCrossRefGoogle Scholar
  54. 54.
    Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999;274(17):11549–11556.PubMedCrossRefGoogle Scholar
  55. 55.
    Cecconi F, Alvarez-Bolado G, Meyer BI, et al. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 1998;94(6):727–737.PubMedCrossRefGoogle Scholar
  56. 56.
    Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1998;1(7):949–957.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhong LT, Sarafian T, Kane DJ, et al. bcl-2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci U S A 1993;90(10):4533–4537.PubMedCrossRefGoogle Scholar
  58. 58.
    Reed JC. Bcl-2 family proteins. Oncogene 1998;17(25):3225–3236.PubMedCrossRefGoogle Scholar
  59. 59.
    Saikumar P, Dong Z, Patel Y, et al. Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 1998;17(26):3401–3415.PubMedCrossRefGoogle Scholar
  60. 60.
    Mikhailov V, Mikhailova M, Degenhardt K, et al. Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release. J Biol Chem 2003;278(7):5367–5376.PubMedCrossRefGoogle Scholar
  61. 61.
    Mikhailov V, Mikhailova M, Pulkrabek DJ, et al. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem 2001;276(21):18361–18374.PubMedCrossRefGoogle Scholar
  62. 62.
    Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 2002;9(3):459–470.PubMedCrossRefGoogle Scholar
  63. 63.
    Ekert PG, Silke J, Hawkins CJ, et al. DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J Cell Biol 2001;152(3):483–490.PubMedCrossRefGoogle Scholar
  64. 64.
    Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev 1999;13(3):239–252.PubMedCrossRefGoogle Scholar
  65. 65.
    Imoto I, Yang ZQ, Pimkhaokham A, et al. Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res 2001;61(18):6629–6634.PubMedGoogle Scholar
  66. 66.
    Dierlamm J, Baens M, Wlodarska I, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 1999;93(11):3601–3609.PubMedGoogle Scholar
  67. 67.
    Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997;3(8):917–921.PubMedCrossRefGoogle Scholar
  68. 68.
    Suzuki Y, Imai Y, Nakayama H, et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 2001;8(3):613–621.PubMedCrossRefGoogle Scholar
  69. 69.
    Yang QH, Church-Hajduk R, Ren J, et al. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irrevers-ibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 2003;17(12):1487–1496.PubMedCrossRefGoogle Scholar
  70. 70.
    Pandey P, Farber R, Nakazawa A, et al. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 2000;19(16):1975–1981.PubMedCrossRefGoogle Scholar
  71. 71.
    Beere HM, Wolf BB, Cain K, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000;2(8): 469–475.PubMedCrossRefGoogle Scholar
  72. 72.
    Pandey P, Saleh A, Nakazawa A, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 2000;19(16):4310–4322.PubMedCrossRefGoogle Scholar
  73. 73.
    Jiang X, Kim HE, Shu H, et al. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 2003;299(5604):223–226.PubMedCrossRefGoogle Scholar
  74. 74.
    Widmann C, Gibson S, Johnson GL. Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J Biol Chem 1998;273(12):7141–7147.PubMedCrossRefGoogle Scholar
  75. 75.
    Sanghavi DM, Thelen M, Thornberry NA, et al. Caspasemediated proteolysis during apoptosis: insights from apoptotic neutrophils. FEBS Lett 1998;422(2):179–184.PubMedCrossRefGoogle Scholar
  76. 76.
    Schittny JC, Djonov V, Fine A, Burri PH. Programmed cell death contributes to postnatal lung development. Am J Respir Cell Mol Biol 1998;18(6):786–793.PubMedGoogle Scholar
  77. 77.
    Haslett C. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 1999;160(5 Pt 2):S5–S11.PubMedGoogle Scholar
  78. 78.
    Bardales RH, Xie SS, Schaefer RF, Hsu SM. Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. Am J Pathol 1996;149(3):845–852.PubMedGoogle Scholar
  79. 79.
    Durmowicz AG, Stenmark KR. Mechanisms of structural remodeling in chronic pulmonary hypertension. Pediatr Rev 1999;20(11):e91–e102.PubMedGoogle Scholar
  80. 80.
    Hagimoto N, Kuwano K, Miyazaki H, et al. Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen. Am J Respir Cell Mol Biol 1997; 17(3):272–278.PubMedGoogle Scholar
  81. 81.
    Kuwano K, Hagimoto N, Kawasaki M, et al. Essential roles of the Fas-Fas ligand pathway in the development of pulmonary fibrosis. J Clin Invest 1999;104(1):13–19.PubMedCrossRefGoogle Scholar
  82. 82.
    Haslett C, Savill JS, Whyte MK, et al. Granulocyte apoptosis and the control of inflammation. Philos Trans R Soc Lond B Biol Sci 1994;345(1313):327–333.PubMedCrossRefGoogle Scholar
  83. 83.
    Cox G, Crossley J, Xing Z. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am J Respir Cell Mol Biol 1995;12(2):232–237.PubMedGoogle Scholar
  84. 84.
    Matute-Bello G, Liles WC, Radella F 2nd, et al. Modulation of neutrophil apoptosis by granulocyte colony-stimulating factor and granulocyte/macrophage colony-stimulating factor during the course of acute respiratory distress syndrome. Crit Care Med 2000;28(1):1–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Aggarwal A, Baker CS, Evans TW, Haslam PL. G-CSF and IL-8 but not GM-CSF correlate with severity of pulmonary neutrophilia in acute respiratory distress syndrome. Eur Respir J 2000;15(5):895–901.PubMedCrossRefGoogle Scholar
  86. 86.
    Lesur O, Kokis A, Hermans C, et al. Interleukin-2 involvement in early acute respiratory distress syndrome: relationship with polymorphonuclear neutrophil apoptosis and patient survival. Crit Care Med 2000;28(12):3814–3822.PubMedCrossRefGoogle Scholar
  87. 87.
    Teder P, Vandivier RW, Jiang D, et al. Resolution of lung inflammation by CD44. Science 2002;296(5565):155–158.PubMedCrossRefGoogle Scholar
  88. 88.
    Fadok VA, Bratton DL, Konowal A, et al. Macrophages that have ingested apoptotic cells in vitro inhibit proin-flammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998;101(4):890–898.PubMedCrossRefGoogle Scholar
  89. 89.
    Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGFbeta1 secretion and the resolution of inflammation. J Clin Invest 2002;109(1):41–50.PubMedGoogle Scholar
  90. 90.
    Matute-Bello G, Liles WC, Frevert CW, et al. Recombinant human Fas ligand induces alveolar epithelial cell apoptosis and lung injury in rabbits. Am J Physiol Lung Cell Mol Physiol 2001;281(2):L328–L335.PubMedGoogle Scholar
  91. 91.
    Fine A, Anderson NL, Rothstein TL, et al. Fas expression in pulmonary alveolar type II cells. Am J Physiol 1997;273(1 Pt 1):L64–L71.PubMedGoogle Scholar
  92. 92.
    Hamann KJ, Dorscheid DR, Ko FD, et al. Expression of Fas (CD95) and FasL (CD95L) in human airway epithelium. Am J Respir Cell Mol Biol 1998;19(4):537–542.PubMedGoogle Scholar
  93. 93.
    White MK, Baireddy V, Strayer DS. Natural protection from apoptosis by surfactant protein A in type II pneumocytes. Exp Cell Res 2001;263(2):183–192.PubMedCrossRefGoogle Scholar
  94. 94.
    Segura-Valdez L, Pardo A, Gaxiola M, et al. Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 2000;117(3):684–694.PubMedCrossRefGoogle Scholar
  95. 95.
    Kasahara Y, Tuder RM, Taraseviciene-Stewart L, et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 2000;106(11):1311–1319.PubMedCrossRefGoogle Scholar
  96. 96.
    Tuder RM, Zhen L, Cho CY, et al. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol 2003;29(1):88–97.PubMedCrossRefGoogle Scholar
  97. 97.
    Druilhe A, Letuve S, Pretolani M. Glucocorticoid-induced apoptosis in human eosinophils: mechanisms of action. Apoptosis 2003;8(5):481–495.PubMedCrossRefGoogle Scholar
  98. 98.
    Kuwano K, Maeyama T, Inoshima I, et al. Increased circulating levels of soluble Fas ligand are correlated with disease activity in patients with fibrosing lung diseases. Respirology 2002;7(1):15–21.PubMedCrossRefGoogle Scholar
  99. 99.
    Li X, Zhang H, Soledad-Conrad V, Zhuang J, Uhal BD. Bleomycin-induced apoptosis of alveolar epithelial cells requires angiotensin synthesis de novo. Am J Physiol Lung Cell Mol Physiol 2003;284(3):L501–L507.PubMedGoogle Scholar
  100. 100.
    Miyazaki H, Kuwano K, Yoshida K, et al. The perforin mediated apoptotic pathway in lung injury and fibrosis. J Clin Pathol 2004;57(12):1292–1298.PubMedCrossRefGoogle Scholar
  101. 101.
    Lee CG, Homer RJ, Zhu Z, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 2001; 194(6):809–821.PubMedCrossRefGoogle Scholar
  102. 102.
    Lee CG, Cho SJ, Kang MJ, et al. Early growth response gene 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis. J Exp Med 2004;200(3):377–389.PubMedCrossRefGoogle Scholar
  103. 103.
    Travis WD, Lubin J, Ries L, Devesa S. United States lung carcinoma incidence trends: declining for most histologic types among males, increasing among females. Cancer 1996;77(12):2464–2470.PubMedCrossRefGoogle Scholar
  104. 104.
    Sekido Y, Fong KM, Minna JD. Progress in understanding the molecular pathogenesis of human lung cancer. Biochim Biophys Acta 1998;1378(1):F21–F59.PubMedGoogle Scholar
  105. 105.
    Shivapurkar N, Reddy J, Matta H, et al. Loss of expression of death-inducing signaling complex (DISC) components in lung cancer cell lines and the influence of MYC amplification. Oncogene 2002;21(55):8510–8514.PubMedCrossRefGoogle Scholar
  106. 106.
    Cheng EH, Kirsch DG, Clem RJ, et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 1997; 278(5345):1966–1968.PubMedCrossRefGoogle Scholar
  107. 107.
    Joseph B, Ekedahl J, Sirzen F, et al. Differences in expression of pro-caspases in small cell and non-small cell lung carcinoma. Biochem Biophys Res Commun 1999;262(2):381–387.PubMedCrossRefGoogle Scholar
  108. 108.
    Joseph B, Ekedahl J, Lewensohn R, et al. Defective caspase-3 relocalization in non-small cell lung carcinoma. Oncogene 2001;20(23):2877–2888.PubMedCrossRefGoogle Scholar
  109. 109.
    Krepela E, Prochazka J, Liul X, et al. Increased expression of Apaf-1 and procaspase-3 and the functionality of intrinsic apoptosis apparatus in non-small cell lung carcinoma. Biol Chem 2004;385(2):153–168.PubMedCrossRefGoogle Scholar
  110. 110.
    Okouoyo S, Herzer K, Ucur E, et al. Rescue of death receptor and mitochondrial apoptosis signaling in resistant human NSCLC in vivo. Int J Cancer 2004;108(4):580–587.PubMedCrossRefGoogle Scholar
  111. 111.
    Ekedahl J, Joseph B, Grigoriev MY, et al. Expression of inhibitor of apoptosis proteins in small-and non-small-cell lung carcinoma cells. Exp Cell Res 2002;279(2):277–290.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Pothana Saikumar
    • 1
  • Rekha Kar
    • 2
  1. 1.Department of PathologyUniversity of Texas Health Science Center at San AntonioSan AntonioUSA
  2. 2.Department of Pathology and BiochemistryUniversity of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations