Molecular Pathology of Viral Respiratory Diseases

  • Geoffrey A. Land
Part of the Molecular Pathology Library book series (MPLB, volume 1)


Virology has long been the gold standard by which advances in molecular biology and methodology have been measured.1 As new molecular tools have been developed, new viruses or variants of older, established taxons have been described. Recent advances in genetic sequencing and amplification technologies were pivotal in detecting and describing the two newest agents with a tropism for the respiratory system, severe acute respiratory syndrome (SARS) and avian influenza virus,2, 3, 4 both of which have the potential to be pandemic agents with a high mortality and morbidity rate. The rapid development of specific molecular tests led to effective public health measures to be put in place to successfully quarantine these agents thus far. The identification of these two new agents underscores the fact that the major cause of nonbacterial epidemics in history has been viruses with a predilection for the respiratory system. The classic example is the global “Spanish flu” pandemic of 1918, attributed to causing the deaths of 20–40 million people within 1 year, a mortality rate greater than that recorded for World War I and the 4 worst years of the Black Plague (AD 1347–1351) combined.4, 5, 6, 7


Respiratory Syncytial Virus Measle Virus Respiratory Syncytial Virus Infection Severe Acute Respiratory Syndrome Antigenic Drift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colman P, Ward C. Structure and diversity of influenza virus neuraminidase. Curr Top Microbiol Immunol 1985;114:178–254.Google Scholar
  2. 2.
    Peiris J, Lai S, Poon L, et al. SARS study group. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003;361:1319–1325.PubMedCrossRefGoogle Scholar
  3. 3.
    McIntosh K, Anderson L. Coronavirus, including severe acute respiratory syndrome (SARS)-associated coronavirus. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed, vol 2. Philadelphia: Elsevier; 2005:1990–1987.Google Scholar
  4. 4.
    Treanor J. Influenza virus. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed, vol 2. Philadelphia: Elsevier; 2005:2060–2085.Google Scholar
  5. 5.
    Rogers G, Paulson J. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 1983;127:361–373.PubMedCrossRefGoogle Scholar
  6. 6.
    Laver G, Garman E. The origin and control of pandemic influenza. Science 2001;293:1776–1777.PubMedCrossRefGoogle Scholar
  7. 7.
    Reid A, Janczewski T, Lourens R, et al. 1918 Influenza pandemic caused by highly conserved viruses with two receptor-binding variants. Emerg Infect Dis 2003;9:1249–1253.PubMedGoogle Scholar
  8. 8.
    Flint S, Enquist L, Racaniello V, Skalka A. Principles of Virology, 2nd ed. Washington, DC: ASM; 2004:918.Google Scholar
  9. 9.
    Dermody T, Tyler K. Introduction to viruses and viral diseases. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed. Philadelphia: Elsevier; 2005:1729–1742.Google Scholar
  10. 10.
    Webster R, Laver W, Air G, et al. The mechanism of antigenic drift in influenza viruses: analysis of Hong Kong (H3N2) variants with monoclonal antibodies to the hemagglutinin molecule. Ann NY Acad Sci 1980;354:142–161.PubMedCrossRefGoogle Scholar
  11. 11.
    Brownlee G, Fodor E. The predicted antigenicity of the haemagglutinin of the 1918 Spanish influenza pandemic suggests an avian origin. Philos Trans R Soc Lond Biol Sci 2001;356:1871–1876.CrossRefGoogle Scholar
  12. 12.
    Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 2001;293:1840–1842.PubMedCrossRefGoogle Scholar
  13. 13.
    Hay A, Gregory V, Douglas A, Lin Y. The evolution of human influenza viruses. Philos Trans R Soc Lond Biol Sci 2001;356:1861–1869.CrossRefGoogle Scholar
  14. 14.
    Suzuki Y, Nei N. Origin and evolution of influenza virus hemagglutinin genes. Mol Biol Evol 2002;19:501–509.PubMedGoogle Scholar
  15. 15.
    Prince G, Ottolini M, Moscona A. Contribution of the human parainfluenza virus type 3 HN-receptor interactions to pathogenesis in vivo. J Virol 2001;75:2446–12451.CrossRefGoogle Scholar
  16. 16.
    Shukla D, Spear P. Herpes virus and heparin sulfate: an intimate relationship in aid of viral entry. J Clin Invest 2001;108:503–510.PubMedGoogle Scholar
  17. 17.
    Spear P, Longenecker R. Herpes virus entry: and update. J Virol 2003;77:10179.PubMedCrossRefGoogle Scholar
  18. 18.
    Beersma M, Bizlemaker M, Pleogh H. Human cytomegalovirus down regulates HLA class I expression by reducing the stability of class I H chains. J Immunol 1993;151:4455–4464.PubMedGoogle Scholar
  19. 19.
    Chiu C, Mathias P, Nemerow G, Stewart P. Structure of adenovirus complexed with its membrane receptor, αvβ5 integrin. J Virol 1 1999;73:6759–6768.Google Scholar
  20. 20.
    Connor R, Kawaoka Y, Webster R, Paulson J. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 1994;205:17–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Cohen CJ, Shieh JT, Pickles RJ, et al. The coxsackie and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 2001;98:15191–15196.PubMedCrossRefGoogle Scholar
  22. 22.
    Condit R. Principles of virology. In Knipe D, Howley P, eds. Fields Virology, 4th ed. Philadelphia: Lippincott-Raven; 2001:19–51.Google Scholar
  23. 23.
    Horvath C, Paterson R, Shaughnessy M, et al. Biological activity of paramyxovirus fusion proteins: factors influencing formation of syncytia. J Virol 1992;66:4564–4569.PubMedGoogle Scholar
  24. 24.
    Lamb R. Paramyxovirus fusion: a hypothesis for changes. Virology 1993;197:1–11.PubMedCrossRefGoogle Scholar
  25. 25.
    Li Q, Ali M, Cohen J. Insulin degrading enzyme is a cellular receptor mediating varicella-zoster virus infection and cell to cell spread. Cell 2006;127:305–331.PubMedCrossRefGoogle Scholar
  26. 26.
    Burgert H, Maryanski J, Kvist S. E3/19K protein of adenovirus type 2 inhibits lysis of cytolytic T lymphocytes by blocking cell-surface expression of histocompatibility class I antigens. Proc Natl Acad Sci USA 1987;84:1356–1360.PubMedCrossRefGoogle Scholar
  27. 27.
    Kolatkar P, Bella J, Olson N, et al. Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor. EMBO J 1999;18:6249–6259.PubMedCrossRefGoogle Scholar
  28. 28.
    Li W, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450–454.PubMedCrossRefGoogle Scholar
  29. 29.
    Frade R, Barel M, Ehlin-Henriksson B, et al. gp140, the C3d receptor of human B lymphocytes is also the Epstein-Barr virus receptor. Proc Natl Acad Sci USA 1985;82:1490–1493.PubMedCrossRefGoogle Scholar
  30. 30.
    Shieh M, WuDunn D, Montgomery R, et al. Cell surface receptors for herpes simplex virus are heparin sulfate proteoglycans. J Cell Biol 1992;116:1273–1281.PubMedCrossRefGoogle Scholar
  31. 31.
    Mauri D, Ebner R, Montgomery R, et al. LIGHT, a new member of the TNF superfamily and lymphotoxin α are ligands for herpesvirus entry mediator. Immunity 1 1998;8:21.CrossRefGoogle Scholar
  32. 32.
    Varga M, Weibull C, Everitt E. Infectious entry pathway of adenovirus type 2. J Virol 1991;65:6061–6070.PubMedGoogle Scholar
  33. 33.
    Wickham T, Mathias P, Cheresh D, Nemerow G. Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment Cell 1993;73:309–319PubMedCrossRefGoogle Scholar
  34. 34.
    Bergelson J, Cunningham J, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997;275:1320–1323.PubMedCrossRefGoogle Scholar
  35. 35.
    Yeager C, Ashmun R, Williams R, et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 1991;357:420–422.CrossRefGoogle Scholar
  36. 36.
    Prince A, Szmuness W, Millian S, David D. A serologic study of cytomegalovirus infections associated with blood transfusions. N Engl J Med 1971;284:1125–1131.PubMedGoogle Scholar
  37. 37.
    Nobusawa E, Ishihara H, Morishita T, et al. Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides. Virology 2000;278:587–596.PubMedCrossRefGoogle Scholar
  38. 38.
    Horwitz M. The adenoviridae and their replication. In Fields B, Knipe D, eds. Virology. Raven Press: New York; 1990:1679–1721.Google Scholar
  39. 39.
    Knopf C. Molecular mechanisms of replication of herpes simplex virus I. Acta Virol 2000;44:289–307.PubMedGoogle Scholar
  40. 40.
    DiMaio D, Coen D. Replication strategies in DNA viruses. In Knipe D, Howley P, eds. Fields Virology, 4th ed. Philadelphia: Lippincott-Raven; 2001:119–132.Google Scholar
  41. 41.
    Flexman J, Kay I, Fonte R, et al. Differences between the quantitative antigenemia assay and cobas amplicor monitor quantitative PCR for detecting CMV viraemia in bone marrow and solid organ transplants. J Med Virol 2001;64:275–282.PubMedCrossRefGoogle Scholar
  42. 42.
    Wagner R. Cytopathic effect of viruses: a general survey. In Fraenkel-Conrat H, Wagner R, eds. Comprehensive Virology. New York: Plenum Press; 1984:1–63.Google Scholar
  43. 43.
    Ito T, Couceiro J, Kelm S, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 1998;72:7367–7373.PubMedGoogle Scholar
  44. 44.
    Glaser L, Stevens J, Zamarin D, et al. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol 2005;79:11533–11536.PubMedCrossRefGoogle Scholar
  45. 45.
    D’Halluin J. Virus assembly. Curr Top Microbiol Immunol 1995;99:47–66.Google Scholar
  46. 46.
    Baltimore D. Expression of animal virus genomes. Bacteriol Rev 1971;35:235–241.PubMedGoogle Scholar
  47. 47.
    Castrucci M, Donatelli I, Sidoli I, et al. Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology 1993;193:503–506.PubMedCrossRefGoogle Scholar
  48. 48.
    Jacobs J, Njenga M, Alvarez R, et al. Subtype B avian metapneumoviruses resembles subtype A more closely than subtype C or human metapneumovirus with respect to the phosphoprotein, and second matrix and small hydrophobic proteins. Virus Res 2003;95:171–178.CrossRefGoogle Scholar
  49. 49.
    Toquin D, de Boisseioson C, Beven V, et al. Subgroup C avian metapneumovirus (MPV) and the recently isolated human MPV exhibit a common organization but have extensive sequence divergence in their putative SH and G genes. J Gen Virol 2003;84:2169–2178.PubMedCrossRefGoogle Scholar
  50. 50.
    Crotty S, Cameron C, Andino R. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA 2001;98:6895–6900.PubMedCrossRefGoogle Scholar
  51. 51.
    de R, Morrison L, Knipe D. Viral Persistence. In Nathanson N, Ahmed R, Gonzalez-Scarano F, et al., eds. Viral Pathogenesis. Lippincott-Raven: New York; 1997:181–205.Google Scholar
  52. 52.
    Corey L. Herpes simplex virus. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed. Philadelphia: Elsevier; 2005:1762–1780.Google Scholar
  53. 53.
    Milstone A, Brumble L, Barnes J, et al. A single-season prospective study of respiratory viral infections in lung transplant recipients. Eur Respir J 2006;28:131–137.PubMedCrossRefGoogle Scholar
  54. 54.
    Brandt C, Kim H, Arrobio J, et al. Epidemiology of respiratory syncytial virus infection in Washington, DC: III. Composite analysis of eleven consecutive yearly epidemics. Am J Epidemiol 1973;98:355–364.PubMedGoogle Scholar
  55. 55.
    Ennis F, Cruz J, Spiropoulou C, et al. Hantavirus pulmonary syndrome: CD8+ and CD4+ cytotoxic T lymphocytes to epitopes on Sin Nombre virus nucleocapsid protein isolated during acute illness. Virology 1997;238:380–390.PubMedCrossRefGoogle Scholar
  56. 56.
    Lin M, Tseng H, Trejaut J, et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet 2003;4:1–7.CrossRefGoogle Scholar
  57. 57.
    Papadopoulos N. Do rhinoviruses cause pneumonia in children? Paediatr Respir Rev 2005;5:s191–s195.CrossRefGoogle Scholar
  58. 58.
    Crumpacker C, Wadhwa S. Cytomegalovirus. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed. Philadelphia: Elsevier; 2005:1786–1801.Google Scholar
  59. 59.
    Johannsen E, Schooley R, Kaye K. Epstein-Barr virus. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed. Philadelphia: Elsevier; 2005:1801–1820.Google Scholar
  60. 60.
    Whitley R. Varicella-zoster virus. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed. Philadelphia: Elsevier; 2005:1780–1786.Google Scholar
  61. 61.
    Baum S. Adenoviruses. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed. Philadelphia: Elsevier; 2005:1835–1841.Google Scholar
  62. 62.
    Wright P. Parainfluenza viruses. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed. Philadelphia: Elsevier; 2005:1998–2002.Google Scholar
  63. 63.
    Wiertz E, Jones T, Sun L, et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 1996;7:769–779.CrossRefGoogle Scholar
  64. 64.
    Harcourt J, Alvarez R, Jones L, et al. Respiratory syncytial virus G protein CX3C motif adversely affects CX3CR1+ T cell responses. J Immunol 2006;176:1600–1608.PubMedGoogle Scholar
  65. 65.
    Drake J, Holland J. Mutation rates among RNA viruses. Proc Natl Acad Sci USA 1999;96:13910–13913.PubMedCrossRefGoogle Scholar
  66. 66.
    Taubenberger J, Reid A, Krafft A, et al. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 1997;275:1793–1796.PubMedCrossRefGoogle Scholar
  67. 67.
    Gamblin S, Haire L, Russell R, et al. The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 2004;303:1838–1842.PubMedCrossRefGoogle Scholar
  68. 68.
    Tumpey T, Garcia-Sastre A, Mikulasova A, et al. Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus. Proc Natl Acad Sci USA 2002;99:13849–13854.PubMedCrossRefGoogle Scholar
  69. 69.
    Gershon A. Measles virus (rubeola). In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed. Philadelphia: Elsevier; 2005:2031–2038.Google Scholar
  70. 70.
    Allwinn R, Preiser W, Rabenau H, et al. Laboratory diagnosis of influenza-virology or serology? Med Microbiol Immunol 2002;191:157–160.PubMedCrossRefGoogle Scholar
  71. 71.
    Freymouth F, Vabret A, Galateau-Salke F, et al. Detection of respiratory syncytial virus, parainfluenza 3, adenovirus, and rhinovirus sequences in respiratory tract of infants by polymerase chain reaction and hybridization. Clin Diagn Virol 1997;8:31–40.CrossRefGoogle Scholar
  72. 72.
    Fan J, Henricksson K, Savatski L. Rapid simultaneous diagnosis of infections with respiratory syncytial viruses A and B, influenza viruses A and B, and human parainfluenza types 1, 2, and 3 by multiplex quantitation reverse transcriptase-polymerase chain reaction-enzyme hybridization assay (hexaplex). Clin Infect Dis 1998;s26:1397–1402.CrossRefGoogle Scholar
  73. 73.
    Parrott R, Kim H, Arrobio J, et al. Epidemiology of respiratory syncytial virus infection in Washington, DC: II. Infection and disease with respect to age, immunologic status, race, and sex. Am J Epidemiol 1973;98:289–300.PubMedGoogle Scholar
  74. 74.
    Hall C, Hall W, Speers D. Clinical and physiologic manifestations of bronchiolitis and pneumonia: outcome of respiratory syncytial virus. Am J Dis Child 1979;133:798–802.PubMedGoogle Scholar
  75. 75.
    Glezen W, Taber L, Frank A, Kasel J. Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child 1986;140:543–546.PubMedGoogle Scholar
  76. 76.
    Hall C, McCarthy C. Respiratory syncytial virus. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed. Philadelphia: Elsevier; 2005:2008–2026.Google Scholar
  77. 77.
    Groothuis J, Simoes E, Levin M, et al. Prophylactic administration of respiratory syncytial virus immune globulin to high-risk infants and young children. N Engl J Med 1993;329:1524–1530.PubMedCrossRefGoogle Scholar
  78. 78.
    Stang P, Brandenberg N, Carter B. The economic burden of respiratory syncytial virus associated bronchiolitis hospitalizations. Arch Pediatr Adolesc Med 2001;155:95–96.PubMedGoogle Scholar
  79. 79.
    Howe C, Schluederberg A. A neuraminidase associated with measles virus. Biochem Biophys Res Commun 1970;40:606.PubMedCrossRefGoogle Scholar
  80. 80.
    Harcourt B, Rota P, Hummel K, et al. Induction of intercellular adhesion molecule 1 gene expression by measles virus in human umbilical vein endothelial cells. J Med Virol 1999;57:9–16.PubMedCrossRefGoogle Scholar
  81. 81.
    Rota P, Liffick S, Jota J, et al. Molecular epidemiology of measles virus in the United States, 1997-2001. Emerg Infect Dis 2002;8:902–908.PubMedGoogle Scholar
  82. 82.
    Boivin G, Abed Y, Pelletier G, et al. Virological features and clinical manifestations associated with human metapneumovirus: a new paramyxovirus responsible for acute respiratory-tract infections in all age groups. J Infect Dis 2004;186:1330–1334.CrossRefGoogle Scholar
  83. 83.
    Boivin G, De Serres G, Cote S, et al. Human metapneumovirus infections in young and elderly adults. Emerg Infect Dis 2003;9:634–640.PubMedGoogle Scholar
  84. 84.
    Williams J, Harris P, Tollefson S, et al. Human metapneumoviruses and lower respiratory tract disease in otherwise healthy infants and children. N Eng J Med 2004;350:443–450.CrossRefGoogle Scholar
  85. 85.
    Kahn J. Epidemiology of human metapneumoviruses. Clin Micro Rev 2006;19:546–557.PubMedCrossRefGoogle Scholar
  86. 86.
    Falsey A. Human metapneumovirus. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed. Philadelphia: Elsevier; 2005:2026–2031.Google Scholar
  87. 87.
    Cole S, Abed Y, Boivin G. Comparative evaluation of real-time PCR assays for detection of the human metapneumoviruses. J Clin Microbiol 2003;41:3631–3635.CrossRefGoogle Scholar
  88. 88.
    Mackay I, Jacob K, Woolhouse D, et al. Molecular assays for detection of human metapneumoviruses. J Clin Microbiol 2003;41:100–105.PubMedCrossRefGoogle Scholar
  89. 89.
    Walters R, Freimuth P, Moninger TO, et al. Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 2002;11:789–799.CrossRefGoogle Scholar
  90. 90.
    Liu Q, Muruve D. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 2003;10:935–940.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhou M, Xu D, Li X, et al. Screening and identification of severe acute respiratory syndrome-associated coronavirus-specific CTL epitopes. J Immunol 2006;177:2138–2145.PubMedGoogle Scholar
  92. 92.
    Zaki S, Greer P, Coffield L, et al. Hantavirus pulmonary syndrome. Pathogenesis of an emerging infectious disease. Am J Pathol 1995;146:552–579.PubMedGoogle Scholar
  93. 93.
    Peters C. California encephalitis, hantavirus pulmonary syndrome, and bunyavirid hemorrhagic fevers. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed. Philadelphia: Elsevier; 2005:2086–2090.Google Scholar
  94. 94.
    Gavrilovskaya I, Shepley M, Shaw R, et al. β3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci USA 1998;95:7074–7079.PubMedCrossRefGoogle Scholar
  95. 95.
    Sundstrom J, McMullan L, Spiropoulou C, et al. Hantavirus infection induces the expression of RANTES and IP-10 without causing increased permeability in human lung microvascular endothelial cells. J Virol 2001;75:6070–6085.PubMedCrossRefGoogle Scholar
  96. 96.
    Nichol S, Spiropoulou C, Morzunov S, et al. Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 1993;262:914–917.PubMedCrossRefGoogle Scholar
  97. 97.
    Rossman M, Arnold E, Erickson J, et al. Structure of a common cold virus and functional relationship to other picornaviruses. Nature 1985;317:145–153.CrossRefGoogle Scholar
  98. 98.
    Hayden F. Rhinovirus and the lower respiratory tract. Rev Med Virol 2004;14:17–31.PubMedCrossRefGoogle Scholar
  99. 99.
    Defferenz C, Wunderli W, Thomas Y, et al. Amplicon sequencing and improved detection of human rhinovirus in respiratory samples. J Clin Microbiol 2004;42:3212–3218.CrossRefGoogle Scholar
  100. 100.
    Straus S. Introduction to Herpesvirinae. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed. Philadelphia: Elsevier; 2005:1757–1762.Google Scholar
  101. 101.
    Smith G, Gross S, Enquist L. Herpes use bidirectional fast-axonal transport to spread to sensory neurons. Proc Natl Acad Sci USA 2001;98:3466–3470.PubMedCrossRefGoogle Scholar
  102. 102.
    Straus S. Human herpesvirus types 6 and 7. In Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases, 6th ed. Philadelphia: Elsevier; 2005:1821–1825.Google Scholar
  103. 103.
    McMillan J, Weiner L, Higgins A, Lamparella V. Pharyngitis associated with herpes simplex virus in college students. Pediatr Infect Dis 1993;12:280.CrossRefGoogle Scholar
  104. 104.
    Montgomery R, Warner M, Lum B, Spear P. Herpes simplex virus-1 entry into cells mediated by a novel TNF/TGF receptor family. Cell 1996;87:427–436.PubMedCrossRefGoogle Scholar
  105. 105.
    Mettenleiter T. Herpesvirus assembly and egress. J Virol 2002;76:1537–1547.PubMedCrossRefGoogle Scholar
  106. 106.
    Clark D, Griffiths P. Human herpesvirus relevance of infection in the immunocompromised host. Br J Haematol 2003;120:384–395.PubMedCrossRefGoogle Scholar
  107. 107.
    Koelle D, Corey L. Recent progress in herpes virus immunobiology and vaccine research. Clin Microbiol Rev 2003;16:96–113.PubMedCrossRefGoogle Scholar
  108. 108.
    Morrow R. Inaccuracy of certain commercial enzyme immunoassays in diagnosing genital infections with herpes simplex types 1 or 2. Am J Clin Pathol 2003;120:829.Google Scholar
  109. 109.
    Masoka T, Hiroka A, Ohta K, et al. Evaluation of the amplicor CMV, cobas amplicor CMV monitor and antigenemia assay for cytomegalovirus disease. J Infect Dis 2001;54:12–16.Google Scholar
  110. 110.
    Caliendo A, St George K, Allega J, et al. Distinguishing cytomegalovirus (CMV) infection and disease with CMV nucleic acid assays. J Clin Microbiol 2002;40:1581–1586.PubMedCrossRefGoogle Scholar
  111. 111.
    Piiparinen H, Hockerstedt K, Lappaleinen M, et al. Monitoring viral load by quantitative plasma PCR during active cytomegalovirus infection of individual liver transplant patients. J Clin Microbiol 2002;40:2945–2952.PubMedCrossRefGoogle Scholar
  112. 112.
    Hall C, Long C, Schnabel K, et al. Human herpesvirus 6 infection in children: a prospective study of complications and reactivation. N Engl J Med 1994;33:432–438.CrossRefGoogle Scholar
  113. 113.
    Gompels U, Nicholas J, Lawrence G, et al. The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology 1995;209:29–51.PubMedCrossRefGoogle Scholar
  114. 114.
    Dockrell C. Human herpesvirus 6: molecular biology and clinical features. J Med Microbiol 2003;52:5–18.PubMedCrossRefGoogle Scholar
  115. 115.
    Huang L, Lee C, Chen J, et al. Primary herpesvirus 6 infection in children: a prospective serologic study. J Infect Dis 1992;165:1163–1164.PubMedGoogle Scholar
  116. 116.
    Locatelli G, Santoro F, Veglia F, et al. Real-time quantitative PCR for human herpesvirus 6 DNA. J Clin Microbiol 2003;38:4042–4048.Google Scholar
  117. 117.
    Greenberg S. Respiratory viral infections in high-risk patients. Am J Respir Crit Care Med 2004;170:1142–1143.PubMedCrossRefGoogle Scholar
  118. 118.
    Linde A. The importance of specific virus diagnosis and monitoring for antiviral treatment. Antiviral Res 2001;51:81–94.PubMedCrossRefGoogle Scholar
  119. 119.
    Chan PK, Tam JS, Lam CW, et al. Human metapneumovirus detection in patients with severe acute respiratory syndrome. Emerg Infect Dis 2003;9:1058–1063.PubMedGoogle Scholar
  120. 120.
    Garbino J, Gerbase M, Wunderli W, et al. Lower respiratory viral illness: improved diagnosis by molecular methods and clinical impact. Am J Respir Crit Care Med 2004;170:1197–1203.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Geoffrey A. Land
    • 1
  1. 1.Transplant Immunology, and MicrobiologyMethodist Hospital/Weill-Cornell Medical CollegeHoustonUSA

Personalised recommendations