Cell Adhesion Molecules

  • Timothy Craig Allen
  • Philip T. Cagle
Part of the Molecular Pathology Library book series (MPLB, volume 1)


Cell adhesion molecules, also termed cell adhesion receptors, are one of three classes of macromolecules—along with extracellular matrix molecules and adhesion plaque proteins—that mediate cell adhesion, an activity that is critical for the commencement and maintenance of the three-dimensional structure and normal function of tissues.1,2 Cell adhesion molecules are predominantly transmembrane glycoproteins that mediate binding to extracellular matrix molecules or to associated receptors on other cells in a manner that determines the specificity of cell-cell or cell-extracellular matrix interactions.1 There are five families of adhesion receptors—integrins, cadherins, immunoglobulin cell adhesion molecules (IgCAMs), selectins, and CD44.1,3, 4, 5, 6, 7 Complexes formed by cell adhesion receptors are not static, but are dynamic units capable of obtaining and incorporating extracellular environmental signals and are indeed the foundation of two-way signaling between the cell and its external environment.1,8 These cell adhesion molecule families are also involved in cell motility, migration, signaling, differentiation, apoptosis, and gene transcription.5


Lung Cancer Epidermal Growth Factor Receptor Cell Adhesion Molecule Small Cell Lung Cancer Focal Adhesion Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aplin AE, Howe A, Alahari SK, Juliano RL. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 1998;50:197–263.PubMedGoogle Scholar
  2. 2.
    Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996;84:345–357.PubMedCrossRefGoogle Scholar
  3. 3.
    Gogali A, Charalabopoulos K, Constantopoulos S. Integrin receptors in primary lung cancer. Exp Oncol 2004;26:106–110.PubMedGoogle Scholar
  4. 4.
    Petruzzelli L, Takami M, Humes HD. Structure and function of cell adhesion molecules. Am J Med 1999;106:467–476.PubMedCrossRefGoogle Scholar
  5. 5.
    Nair KS, Naidoo R, Chetty R. Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J Clin Pathol 2005;58:343–351.PubMedCrossRefGoogle Scholar
  6. 6.
    Charalabopoulos K, Gogali A, Kostoula OK, Constantopoulos SH. Cadherin superfamily of adhesion molecules in primary lung cancer. Exp Oncol 2004;26:256–260.PubMedGoogle Scholar
  7. 7.
    Meyer T, Hart IR. Mechanisms of tumour metastasis. Eur J Cancer 1998;34:214–221.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosales C, O’Brian V, Kornberg L, Juliano RL. Signal transduction by cell adhesion receptors. Biochim Biophys Acta 1995;1242:77–98.PubMedGoogle Scholar
  9. 9.
    Nicolson GL. Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta 1988;948:175–224.PubMedGoogle Scholar
  10. 10.
    Han SW, Roman J. COX-2 inhibitors suppress integrin α5 expression in human lung carcinoma cells through activation of Erk: Involvement of Sp1 and AP-1 sites. Int J Cancer 2005;116:536–546.PubMedCrossRefGoogle Scholar
  11. 11.
    Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J 2002;21:3919–3926.PubMedCrossRefGoogle Scholar
  12. 12.
    Okegawa T, Li Y, Pong RC, Hsieh JT. Cell adhesion proteins as tumor suppressors. J Urol 2002;167:1836–1843.PubMedCrossRefGoogle Scholar
  13. 13.
    Mukhopadhyay NK, Gordon GJ, Chen CJ, et al. Activation of focal adhesion kinase in human lung cancer cells involves multiple and potentially parallel signaling events. J Cell Mol Med 2005;9:387–397.PubMedCrossRefGoogle Scholar
  14. 14.
    Damjanovich L, Albelda SM, Mette SA. Distribution of integrin cell adhesion receptors in normal and malignant lung tissue. Am J Respir Cell Mol Biol 1992;6:197–206.PubMedGoogle Scholar
  15. 15.
    Hanby AN, Gilet CE, Pignatelli M, Stamp GW. Beta1 and beta4 integrin expression in metacarn and formalin fixed material from in situ ductal carcinoma of the breast. J Pathol 1993;171:257–262.PubMedCrossRefGoogle Scholar
  16. 16.
    Kitayama J, Nayawa H, Nakayama H, et al. Functional expression of beta1 and beta2 integrins on tumor infiltrating lymphocytes (TILs) in colorectal cancer. J Gastroenterol 1999;34:327–333.PubMedCrossRefGoogle Scholar
  17. 17.
    Bankhof H, Stein V, Remberger K. differential expression of a6 and a2 very late-antigen integrins in the normal, hyperplastic and neoplastic prostate. Hum Pathol 1993;24:243–248.CrossRefGoogle Scholar
  18. 18.
    Damkisson YP, Wilding JC, Filipe M, Hall PA, Pignatelli M. Cell-matrix interactions in gastric carcinoma. J Pathol 1993;169:120.Google Scholar
  19. 19.
    Elenrieder V, Alder G, Gress TM. Invasion and metastasis in pancreatic cancer. Ann Oncol 1999;4:46–50.CrossRefGoogle Scholar
  20. 20.
    Volpes R, Van der Oord J, Pesmet VJ. Distribution of the VLA family of integrins in normal and pathological human liver tissue. Gastroenterology 1991;101:200–206.PubMedGoogle Scholar
  21. 21.
    Bichler KH, Wechsel HW. The problematic nature of metastasized cell carcinoma. Anticancer Res 1999;19:1463–1466.PubMedGoogle Scholar
  22. 22.
    Stamb GW, Pignatelli M. Distribution of β1, α1, α2 and α3 integrin chains in basal cell carcinomas. J Pathol 1991;103:307–313.CrossRefGoogle Scholar
  23. 23.
    Strobel T, Cannisha SA. Beta-1 integrins partly mediate binding of ovarian cancer cells to perimetral mesothelium in vitro. Gynecol Oncol 1999;73:362–367.PubMedCrossRefGoogle Scholar
  24. 24.
    Vessey BA, Albelda S, Buck CA, et al. distribution of integrin cell adhesion molecules in endometrial cancer. Am J Pathol 1995;146:717–726.Google Scholar
  25. 25.
    Yamada KM, Kennedy DW, Yamada SS, et al. Monoclonal antibody and synthetic peptide inhibitors of human tumor cell migration. Cancer Res 1990;50:4485–4496.PubMedGoogle Scholar
  26. 26.
    Rostagno C, Felini M, Gensimn GF. Hemostatic vascular interactives in the pathogenesis and the treatment of adult respiratory distress syndrome. Ann Hal Med Int 1994;9:236–232.Google Scholar
  27. 27.
    Chen FA, Alosco T, Croy BA, et al. Clones of tumor cells derived from single primary human lung tumor reveal different patterns of beta1 integrin expression. Cell Adhes Commun 1994;2:345–357.PubMedCrossRefGoogle Scholar
  28. 28.
    Virtanen I, Laitinen A, Tani T, et al. Differential expression of laminins and their integrin receptors in developing and adult human lung. Am J Respir Cell Mol Biol 1996;15:184–196.PubMedGoogle Scholar
  29. 29.
    Smythe WR, LeBel E, Bavaria JE, et al. Integrin expression in non small cell carcinoma of the lung. Cancer Metastasis Rev 1995;14:229–239.PubMedCrossRefGoogle Scholar
  30. 30.
    Bredin CG, Sundqvist KG, Hauzenberger D, Klominek J. Integrin dependent migration of lung cancer cells to extracellular matrix components. Eur Respir J 1998;11:400–407.PubMedCrossRefGoogle Scholar
  31. 31.
    Bartolazzi A, Cerboni C, Flammini G, et al. Expression of α3β1 integrin receptor and its ligands in human lung tumors. Int J Cancer 1995;64:248–252.PubMedCrossRefGoogle Scholar
  32. 32.
    Barr L, Campbell S, Bochner B, Dang C. Association of the decreased expression of the α3β1 integrin with the altered cell: environmental interactions and enhanced soft agar cloning ability of c-myc-overexpressing small cell lung cancers. Cancer Res 1998;58:5537–5545.PubMedGoogle Scholar
  33. 33.
    Hartmann TJ, Burger JA, Gloded A, Fujii N, Burger M. CXCR4 chemokine receptor and integrin signaling cooperate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 2005;24:4462–4471.PubMedCrossRefGoogle Scholar
  34. 34.
    Phillips RJ, Burdick MD, Lutz M, et al. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med 2003;15:1676–1686.CrossRefGoogle Scholar
  35. 35.
    Laga AC, Zander DS, Cagle PT. Prognostic significance of cyclooxygenase 2 expression in 259 cases of non-small cell lung cancer. Arch Pathol Lab Med 2005;129:1113–1117.PubMedGoogle Scholar
  36. 36.
    Castelao JE, Bard FD III, DiPerna CA, Sievers EM, Bremner RM. Lung cancer and cyclooxygenase-2. Ann Thorac Surg 2003;76:1327–1335.PubMedCrossRefGoogle Scholar
  37. 37.
    Liao Z, Komaki R, Mason KA, Milas L. Role of cyclooxygenase-2 inhibitors in combination with radiation therapy in lung cancer. Clin Lung Cancer 2003;4:356–365.PubMedCrossRefGoogle Scholar
  38. 38.
    Masferrer JL, Leahy KM, Koki AT, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 2000;60:1306–1311.PubMedGoogle Scholar
  39. 39.
    Aktorki NK, Keresztes RS, Port JL, et al. Celecoxib, a selective cyclo-oxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J Clin Oncol 2003;21:2645–2650.CrossRefGoogle Scholar
  40. 40.
    Jendrosek V, Handrick R, Belka C. Celecoxib activates a novel mitochondrial apoptosis signaling pathway. FASEB J 2003;17:1547–1549.Google Scholar
  41. 41.
    Wong BC, Jiang XH, Lin MC, et al. Cyclooxygenase-2 inhibitor (SC-236) suppresses activator protein-1 through c-Jun NH2-terminal kinase. Gastroenterology 2004;126:136–147.PubMedCrossRefGoogle Scholar
  42. 42.
    Rajeswari J, Pande G. The significance of alpha 5 beta 1 integrin dependent and independent actin cytoskeleton organization in cell transformation and survival. Cell Biol Int 2002;26:1043–1055.PubMedCrossRefGoogle Scholar
  43. 43.
    Tani N, Higashiyama S, Kawaguchi N, et al. Expression level of integrin alpha 5 on tumour cells affects the rate of metastasis to the kidney. Br J Cancer 2003;88:327–333.PubMedCrossRefGoogle Scholar
  44. 44.
    Adachi M, Taki T, Higashiyama M, et al. Significance of integrin alpha5 gene expression as a prognostic factor in node-negative non-small cell lung cancer. Clin Cancer Res 2000;6:96–101.PubMedGoogle Scholar
  45. 45.
    Liotta LA, Stetler-Stevenson WG. Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res 1991;51:5054–5049.Google Scholar
  46. 46.
    Furuta SM, Ilic D, Kanazawa S, et al. Mesodermal defect in late phase of gastrulation by a targeted mutation of focal adhesion kinase FAK. Oncogene 1995;11:1989–1995.PubMedGoogle Scholar
  47. 47.
    Carelli S, Zadra G, Vaira V, et al. Up-regulation of focal adhesion kinase in non-small cell lung cancer. Lung Cancer 2006;53:263–271.PubMedCrossRefGoogle Scholar
  48. 48.
    Sanders MA, Basson MD. Collagen IV-dependent ERK activation in human Caco-2 intestinal epithelial cells requires focal adhesion kinase. J Biol Chem 2000;275:38040–38047.PubMedCrossRefGoogle Scholar
  49. 49.
    Guan JL, Shalloway D. Regulation of pp1256FAK both by cellular adhesion and by oncogenic transformation. Nature 1992;358:690–692.PubMedCrossRefGoogle Scholar
  50. 50.
    Mukhopadhyay NK, Gillchrist D, Gordon JG, et al. Integrin dependent tyrosine phosphorylation is a key regulatory event in collagen IV mediated adhesion and proliferation of human lung cancer cell line Calu-1. Ann Thorac Surg 2004;78:450–457.PubMedCrossRefGoogle Scholar
  51. 51.
    Lau D, Guo L, Liu R, Marik J, Lam K. Peptide ligands targeting integrin α3β1 in non-small cell lung cancer. Lung Cancer 2006;52:291–297.PubMedCrossRefGoogle Scholar
  52. 52.
    Lynch T, Bell D, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129–2139.PubMedCrossRefGoogle Scholar
  53. 53.
    Shepherd FA, Pereira JR, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005;353:123–132.PubMedCrossRefGoogle Scholar
  54. 54.
    Giancotti FG, Rouslahti E. Integrin signaling. Science 1999;285:1028–1032.PubMedCrossRefGoogle Scholar
  55. 55.
    Albert JM, Cao C, Geng L, et al. Integrin alpha(v)beta(3) antagonist cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 2006;65:1536–1543.PubMedGoogle Scholar
  56. 56.
    Boelens MC, van den Berg A, Vogelzang I, et al. Differential expression and distribution of epithelial adhesion molecules in non-small cell lung cancer and normal bronchus. J Clin Pathol 2006 Feb 17; [Epub ahead of print].Google Scholar
  57. 57.
    Hodkinson PS, Elliott T, Wong WS, et al. ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small Erlotinib cell lung cancer cells through beta1 integrin Erlotinib dependent activation of PI3-kinase. Cell Death Differ 2006;Jan 27; [Epub ahead of print].Google Scholar
  58. 58.
    Oshita F, Ito H, Idehara M, et al. Prognostic impact of survivin, cyclin D1, integrin beta1, and VEGF in patients with small adenocarcinoma of stage I lung cancer. Am J Clin Oncol 2004;27:425–428.PubMedCrossRefGoogle Scholar
  59. 59.
    Mousa S, Mousa SA. Cellular and molecular mechanisms of nicotine’s pro-angiogenesis activity and its potential impact on cancer. J Cell Biochem 2006;97:1370–1378.PubMedCrossRefGoogle Scholar
  60. 60.
    Villablanca AC. Nicotine stimulates DNA synthesis and proliferation in vascular endothelial cells in vitro. J Appl Physiol 1998;84:2089–2098.PubMedGoogle Scholar
  61. 61.
    Macklin KD, Maus AD, Pereira EF, Albuquerque EX, Conti-Fine BM. Human vascular endothelial cells express functional nicotinic acetylcholine receptors. J Pharmacol Exp Ther 1998;287:435–439.PubMedGoogle Scholar
  62. 62.
    Ruegg C, Mariotti A. Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cell Mol Life Sci 2003;60:1135–1157.PubMedGoogle Scholar
  63. 63.
    Takeichi M. Cadherin cell adhesion receptors as morphogenetic regulator. Science 1991;251:1451–1459.PubMedCrossRefGoogle Scholar
  64. 64.
    Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 1993;9:317–321.PubMedCrossRefGoogle Scholar
  65. 65.
    Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvamorulin associates with three independent proteins structurally related in different species. EMBO J 1989;8:1711–1717.PubMedGoogle Scholar
  66. 66.
    Hirano S, Kinoto N, Shimoyama Y, Hirohashi S, Takeichi M. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell 1992;70:293–301.PubMedCrossRefGoogle Scholar
  67. 67.
    Breier G, Breviario F, Caveda L, et al. Molecular cloning and expression of murine vascular endothelial cadherin in early stage development of cardiovascular system. Blood 1996;87:630–641.PubMedGoogle Scholar
  68. 68.
    Mayer B, Johnson JP, Leitl F, et al. E-cadherin expression in primary and metastatic gastric cancer: down-regulation correlates with cellular dedifferentiation and glandular disintegration. Cancer Res 1993;53:1690–1695.PubMedGoogle Scholar
  69. 69.
    Schipper JH, Frixen UH, Behrens J, et al. E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res 1991;51:6328–6337.PubMedGoogle Scholar
  70. 70.
    Bringuier PP, Umbas R, Schaafsma HE, et al. Decreased E-cadherin immunoreactivity correlates with poor survival in patients with bladder tumors. Cancer Res 1993;53:2341–2345.Google Scholar
  71. 71.
    Dorudi S, Sheffield JP, Poulsom R, Northover JM, Hart IR. E-cadherin expression in colorectal cancer. An immunocytochemical and in situ hybridization study. Am J Pathol 1993;142:981–986.PubMedGoogle Scholar
  72. 72.
    Oka H, Shiozaki H, Kobayashi K, et al. Expression of Ecadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res 1993;53:1696–1701.PubMedGoogle Scholar
  73. 73.
    Ochiai A, Akimoto S, Shimoyama Y, et al. Frequent loss of α-catenin expression in scirrhous carcinomas with scattered cell growth. Jpn J Cancer Res 1994;85:266–273.PubMedGoogle Scholar
  74. 74.
    Kadowaki T, Shiozaki H, Inoue M, et al. E-cadherin and α-catenin expression in human esophageal cancer. Cancer Res 1994;54:291–296.PubMedGoogle Scholar
  75. 75.
    Takayama T, Shinozaki H, Shibamoto S, et al. β-Catenin expression in human cancer. Am J Pathol 1996;148:39–46.PubMedGoogle Scholar
  76. 76.
    Nawrocki-Raby B, Gilles C, Polette M, et al. Upregulation of MMPs by soluble E-cadherin in human lung tumor cells. Int J Cancer 2003;105:790–795.PubMedCrossRefGoogle Scholar
  77. 77.
    Kato Y, Hirano T, Yoshida K, et al. Frequent loss of E-cadherin and/or catenins in intrabronchial lesions during carcinogenesis of the bronchial epithelium. Lung Cancer 2005;48:323–330.PubMedCrossRefGoogle Scholar
  78. 78.
    Takeichi M. Functional correlation between cell adhesive properties and some cell surface proteins. J Cell Biol 1997;75:464–474.CrossRefGoogle Scholar
  79. 79.
    Hirano S, Nose A, Hatta K, et al. Calcium dependent cell-cell adhesion molecules (cadherins). J Cell Biol 1987;105:2501–2510.PubMedCrossRefGoogle Scholar
  80. 80.
    Behrens J, Mareel MM, Van Roy FM, Birchmeier W. Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol 1989;108:2435–2447.PubMedCrossRefGoogle Scholar
  81. 81.
    Frixen UH, Behrens J, Sachs M, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 1991;113:173–185.PubMedCrossRefGoogle Scholar
  82. 82.
    Vleminckx K, Vakaet Jr L, Mareel M, Fiers W, Van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 1991;66:107–119.PubMedCrossRefGoogle Scholar
  83. 83.
    Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 1998;153:333–339.PubMedGoogle Scholar
  84. 84.
    Akimoto S, Ochiai A, Inomata M, Hirohashi S. Expression of cadherin-catenin cell adhesion molecules, phosphorylated tyrosine residues and growth factor receptor-tyrosine kinases in gastric cancer. Jpn J Cancer Res 1998;89:829–836.PubMedGoogle Scholar
  85. 85.
    Shimoyama Y, Nagafuchi A, Fujita S, et al. Cadherin dysfunction in a human cancer line: possible involvement of loss of α-catenin expression in reduced cell-cell adhesiveness. Cancer Res 1992;52:5770–5774.PubMedGoogle Scholar
  86. 86.
    Oda T, Kanai Y, Shimoyama Y, et al. Cloning of the human α-catenin cDNA and its aberrant mRNA in a human cancer cell line. Biochem Biophys Res Commun 1993;193:897–904.PubMedCrossRefGoogle Scholar
  87. 87.
    Shimoyama Y, Hirohashi S, Hirano S, et al. Cadherin cell-adhesion molecules in human epithelial tissue and carcinomas. Cancer Res 1989;49:2128–2133.PubMedGoogle Scholar
  88. 88.
    Shimoyama Y, Hirohashi S. Cadherin intercellular adhesion molecule in hepatocellular carcinomas: loss of E-cadherin expression in an undifferentiated carcinoma. Cancer Lett 1991;57:131–135.PubMedCrossRefGoogle Scholar
  89. 89.
    Shimoyama Y, Hirohashi S. Expression of E-and P-cadherin in gastric carcinomas. Cancer Res 1991;51:2185–2192.PubMedGoogle Scholar
  90. 90.
    Kadowaki T, Shiozaki H, Inoue M, et al. E-cadherin and α-catenin expression in human esophageal cancer. Cancer Res 1994;54:291–296.PubMedGoogle Scholar
  91. 91.
    Mattijssen V, Peters HM, Schalwijk L, et al. E-cadherin expression in head and neck squamous-cell carcinoma is associated with clinical outcome. Int J Cancer 1993;55:580–585.PubMedCrossRefGoogle Scholar
  92. 92.
    Umbas R, Isaacs WB, Bringuier PP, et al. Decreased E-cadherin expression is associated with poor prognosis in prostate cancer. Cancer Res 1994;15:3929–3933.Google Scholar
  93. 93.
    Nakanishi Y, Ochiai A, Akimoto S, et al. Expression of E-cadherin, α-catenin, β-catenin, and plakoglobin in esophageal carcinomas and its prognostic significance: immunohistochemical analysis of 96 lesions. Oncology 1997;54:158–165.PubMedCrossRefGoogle Scholar
  94. 94.
    Oyama T, Kanai Y, Ochiai A, et al. A truncated β-catenin disrupts the interaction between E-cadherin and α-catenin: a cause of loss of intercellular adhesiveness in human cancer cell lines. Cancer Res 1994;54:6282–6287.PubMedGoogle Scholar
  95. 95.
    Hoschuetzky H, Aberle H, Kemler R. β-Catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 1994;127:1375–1380.PubMedCrossRefGoogle Scholar
  96. 96.
    Ochiai A, Akimoto S, Kanai Y, et al. c-erbB-2 gene product associates with catenins in human cancer cells. Biochem Biophys Res Commun 1994;205:73–78.PubMedCrossRefGoogle Scholar
  97. 97.
    Kanai Y, Ochiai A, Shibata T, et al. c-erbB-2 gene product directly associates with β-catenin and plakoglobin. Biochem Biophys Res Commun 1995;208:1067–1072.PubMedCrossRefGoogle Scholar
  98. 98.
    Dohadwala M, Yan SC, Luo J, et al. Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E2 induces transcriptional repressors ZEB1 and Snail in non-small cell lung cancer. Cancer Res 2006;66:5338–5345.PubMedCrossRefGoogle Scholar
  99. 99.
    Brown JR, DuBois RN. Cyclooxygenase as a target in lung cancer. Clin Cancer Res 2004;10:4266–4269s.CrossRefGoogle Scholar
  100. 100.
    Dubinett SM, Sharma S, Huang M, et al. Cyclooxygenase-2 in lung cancer. Prog Exp Tumor Res 2003;37:138–162.PubMedCrossRefGoogle Scholar
  101. 101.
    Dannenberg AJ, Zakim D. Chemoprevention of colorectal cancer through inhibition of cyclooxygenase-2. Semin Oncol 1999;26:499–504.PubMedGoogle Scholar
  102. 102.
    Pold M, Zhu L, Sharma S, et al. Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC ligand (CXCL) 5 and interleukin8/CXCL8 in human non-small cell lung cancer. Cancer Res 2004;64:1853–1860.PubMedCrossRefGoogle Scholar
  103. 103.
    Hilda T, Yatabe Y, Achiwa H, et al. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 1998;58:3761–3764.Google Scholar
  104. 104.
    Huang M, Stolina M, Sharma S, et al. Non-small cell lung cancer cyclooxygenase-2 dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res 1998;58;1208–1216.PubMedGoogle Scholar
  105. 105.
    Sharma S, Yang SC, Zhu L, et al. Tumor cyclooxygenase-2/prostaglanding E2-dependent promotion of FOXP3-expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 2005;65:5211–5220.PubMedCrossRefGoogle Scholar
  106. 106.
    Sharma S, Zhu L, Yang SC, et al. Cyclooxygenase 2 inhibition promotes IFN-γ-dependent enhancement of antitumor responses. J Immunol 2005;175:813–819.PubMedGoogle Scholar
  107. 107.
    Jungck M, Grunhage F, Spengler U, et al. E-cadherin expression is homogeneously reduced in adenoma from patients with familial adenomatous polyposis: an immunohistochemical study of E-cadherin, β-catenin and cyclooxygenase-2 expression. 2 expression. Int J Colorectal Dis 2004;19:438–445.PubMedCrossRefGoogle Scholar
  108. 108.
    Riedl K, Krysan K, Pold M, et al. Multifaceted roles of cyclooxygenase-2 in lung cancer. Drug Resist Update 2004;7:169–184.CrossRefGoogle Scholar
  109. 109.
    Cavallaro U, Christofori G. Cell adhesion and signaling by cadherins and Ig-CAMs in cancer. Natl Rev Cancer 2004;4:118–132.Google Scholar
  110. 110.
    Choi YS, Shim YM, Kim SH, et al. Prognostic significance of E-cadherin and β-catenin in resected stage I non-small cell lung cancer. Eur J Cardiothorac Surg 2003;24:441–449.PubMedCrossRefGoogle Scholar
  111. 111.
    Liu D, Huang C, Kameyama K, et al. E-cadherin expression associated with differentiation and prognosis in patients with non-small cell lung cancer. Ann Thorac Surg 2001;71:949–951; discussion 954–955.PubMedCrossRefGoogle Scholar
  112. 112.
    Witta SE, Gemmill RM, Hirsch FR, et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 2006;66:944–950.PubMedCrossRefGoogle Scholar
  113. 113.
    Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small cell lung cancer (the IDEAL 1 Trial). J Clin Oncol 2003;21:2237–2246.PubMedCrossRefGoogle Scholar
  114. 114.
    Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 2003;290:2149–2158.PubMedCrossRefGoogle Scholar
  115. 115.
    Shepherd FA, Rodrigues P, Jose C, et al. the National Cancer Institute of Canada Clinical Trials Group. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005;353:123–132.PubMedCrossRefGoogle Scholar
  116. 116.
    Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304:1497–1500.PubMedCrossRefGoogle Scholar
  117. 117.
    Tsao MS, Sakurada A, Cutz JC, et al. Erlotinib in lung cancer—molecular and clinical predictors of outcome. N Engl J Med 2005;353:133–144.PubMedCrossRefGoogle Scholar
  118. 118.
    Cappuzzo F, Magrini E, Ceresoli GL, et al. Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 2004;96:1133–1141.PubMedCrossRefGoogle Scholar
  119. 119.
    Ohira T, Gemmill RM, Ferguson K, et al. WNT7a induces E-cadherin in lung cancer cells. Proc Natl Acad Sci USA 2003;100:10429–10434.PubMedCrossRefGoogle Scholar
  120. 120.
    Verschuren K, Remacle JE, Collart C, et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 1999;27:20489–20498.CrossRefGoogle Scholar
  121. 121.
    Chinnadurai G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 2002;9:213–224.PubMedCrossRefGoogle Scholar
  122. 122.
    Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 2000;92:1210–1216.PubMedCrossRefGoogle Scholar
  123. 123.
    Gore L, Holden SN, Basche M, et al. Updated results from a phase I trial of the histone deacetylase (HCAC) inhibitor NS-275 in patients with refractory solid tumors. Proc Am Soc Clin Oncol 2004;22:3026(14S).Google Scholar
  124. 124.
    Deeb G, Want J, Ramnath N, et al. Altered E-cadherin and epidermal growth factor receptor expressions are associated with patient survival in lung cancer: a study utilizing high-density tissue microarray and immunohistochemistry. Mod Pathol 2004;17:430–439.PubMedCrossRefGoogle Scholar
  125. 125.
    Al Moustafa AE, Yen L, Benlimame N, Alaoui-Jamali MA. Regulation of E-cadherin/catenin complex patterns by epidermal growth factor receptor modulation in human lung cancer cells. Lung Cancer 2002;37:49–56.PubMedCrossRefGoogle Scholar
  126. 125.
    Al Moustafa AE, Yen L, Benlimame N, Alaoui-Jamali MA. Regulation of E-cadherin/catenin complex patterns by epidermal growth factor receptor modulation in human lung cancer cells. Lung Cancer 2002;37:49–56.PubMedCrossRefGoogle Scholar
  127. 126.
    Zhong Y, Delgado Y, Gomez J, Lee SW, Perez-Soler R. Loss of H-cadherin protein expression in human non-small cell lung cancer is associated with tumorigenicity. Clin Cancer Res 2001;7:1683–1687.PubMedGoogle Scholar
  128. 127.
    Takeuchi T, Misaki A, Fujita J. T-cadherin (CDh13, Hcadherin) expression downregulated surfactant protein D in bronchioloalveolar cells. Virchows Arch 2001;438:370–375.PubMedCrossRefGoogle Scholar
  129. 128.
    Toyooka KO, Toyooka S, Virmani AK, et al. Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res 2001;61:4556–4560.PubMedGoogle Scholar
  130. 129.
    Bremnes RM, Veve R, Gabrielson E, et al. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J Clin Oncol 2002;20:2417–2428.PubMedCrossRefGoogle Scholar
  131. 130.
    Geng F, Shi BZ, Yuan YF, Wu XZ. The expression of core fucosylated E-cadherin in cancer cells and lung cancer patients: prognostic implications. Cell Res 2004;14:423–433.PubMedCrossRefGoogle Scholar
  132. 131.
    Nakashima T, Huang C, Liu D, et al. Neural-cadherin expression associated with angiogenesis in non-small-cell lung cancer patients. Br J Cancer 2003;88:1227–1233.CrossRefGoogle Scholar
  133. 132.
    Bremnes RM, Veve R, Hirsch FR, Franklin WA. The E-cadherin cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 2002;36:115–124.PubMedCrossRefGoogle Scholar
  134. 133.
    Chen XF, Zhang HT, Qi QY, Sung MM, Tao LY. Expression of E-cadherin and nm23 is associated with the clinicopathological factors of human non-small cell lung cancer in China. Lung Cancer 2005;48:69–76.PubMedCrossRefGoogle Scholar
  135. 134.
    Herbst RS, Yano S, Kuniyasu H, et al. Differential expression of E-cadherin and type IV collagenase genes predicts outcome in patients with stage I non-small cell lung carcinoma. Clin Cancer Res 2000;6:790–797.PubMedGoogle Scholar
  136. 135.
    Kimura K, Endo Y, Yonemura Y, et al. clinical significance of S100A4 and E-cadherin-related adhesion molecules in non-small cell lung cancer. Int J Oncol 2000;16:1125–1131.PubMedGoogle Scholar
  137. 136.
    Stefanou D, Goussia AC, Arkoumani E, Agnantis NJ. Expression of vascular endothelial growth factor and the adhesion molecule E-cadherin in non-small cell lung cancer. Anticancer Res 2003;23:4715–4720.PubMedGoogle Scholar
  138. 137.
    Shimamoto T, Ohyashiki HJ, Hirano T, Kato H, Ohyashiki K. Hypermethylation of E-cadherin gene is frequent and independent of p16INK4A methylation in non-small cell lung cancer: potential prognostic implications. Oncol Rep 2004;12:389–395.PubMedGoogle Scholar
  139. 138.
    Tang XJ, Zhou QH, Zhang SF, Liu LX. Expressions of nm23, E-cadherin, and beta-catenin in non-small cell lung cancer and their correlations with metastasis and prognosis. Al Zheng 2005;24:616–621.Google Scholar
  140. 139.
    Qiao GB, Wu YL, Ou W, et al. Expressions of E-cadherin in non-small cell lung cancer and its correlation and prognosis. Zhonghua Wai Ke Za Zhi 2005;43:913–917.PubMedGoogle Scholar
  141. 140.
    Charalabopoulos K, Gogali A, Dalavaga Y, et al. The clinical significance of soluble E-cadherin in nonsmall cell lung cancer. Exp Oncol 2006;28:83–85.PubMedGoogle Scholar
  142. 141.
    McEver RP. Properties of GMP-140, an inducible granule membrane protein of platelets and endothelium. Blood Cells 1990;16:73–80.PubMedGoogle Scholar
  143. 142.
    Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994;84:2068–2101.PubMedGoogle Scholar
  144. 143.
    Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994;76:301–314.PubMedCrossRefGoogle Scholar
  145. 144.
    Lowe JB, Ward PA. Therapeutic inhibition of carbohydrate-protein interactions in vivo. J Clin Invest 1997;100:S47–S51.PubMedGoogle Scholar
  146. 145.
    Li L, Short HJ, Qian KX, et al. Characterization of glycoprotein ligands for P-selectin on a human small cell lung cancer cell line NCI-H345. Biochem Biophys Res Commun 2001;288:637–644.PubMedCrossRefGoogle Scholar
  147. 146.
    Tedder TF, Steeber DA, Chen A, Engle P. The selectins: vascular adhesion molecules. FASEB J 1995;9:866–873.PubMedGoogle Scholar
  148. 147.
    Stone JP, Wagner DD. P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. J Clin Invest 1993;92:804–813.PubMedCrossRefGoogle Scholar
  149. 148.
    Pottratz ST, hall TD, Scribner WM, Jayaram HN, Natarajan V. P-selectin-mediated attachment of small cell lung carcinoma to endothelial cells. Am J Physiol 1996;71:L918–L923.Google Scholar
  150. 149.
    Kaytes PS, Geng JG. P-selectin mediates adhesion of the human melanoma cell line NKI-4: identification of glycoprotein ligands. Biochemistry 1998;37:10514–10521.PubMedCrossRefGoogle Scholar
  151. 150.
    Yu CJ, Shih JY, Lee YC, et al. Sialyl Lewis antigens: association with MUC5AC protein and correlation with postoperative recurrence of non-small cell lung cancer. Lung Cancer 2005;47:59–67.PubMedCrossRefGoogle Scholar
  152. 151.
    Rosen SD, Bertozzi CR. The selectins and their ligands. Curr Opin Cell Biol 1994;6:663–673.PubMedCrossRefGoogle Scholar
  153. 152.
    Izumi Y, Taniuchi Y, Tsuji T, et al. characterization of human colon carcinoma variant cells selected for sialyl Lex carbohydrate antigen: liver colonization and adhesion to vascular endothelial cells. Exp Cell Res 1995;216:215–221.PubMedCrossRefGoogle Scholar
  154. 153.
    Laack E, Nikbakht H, Peters A, et al. Expression of CEACAM1 in adenocarcinoma of the lung: a factor of independent prognostic significance. J Clin Oncol 2002;20:4279–4284.PubMedCrossRefGoogle Scholar
  155. 154.
    Yu CJ, shun CT, Yang PC, et al. Sialomucin expression is associated with erbB-2 oncoprotein overexpression, early recurrence and cancer death in non-small cell lung cancer. Am J Respir Crit Care Med 1997;155:1419–1427.PubMedGoogle Scholar
  156. 155.
    Yu CJ, Shew JY, Shun Ct, et al. Quantitative analysis of messenger ribonucleic acid encoding MUC1, MUC2, and MUC4AC genes: a correlation between specific mucin gene expression and sialomucin expression in non-small cell lung cancer. Am J Respir Cell Mol Biol 1998;18:643–652.PubMedGoogle Scholar
  157. 156.
    Kristiansen G, Schluns K, Yongwei Y, et al. CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. Br J Cancer 2003;88:231–236.PubMedCrossRefGoogle Scholar
  158. 157.
    D’Amico TA, Brooks KR, Joshi MBM, et al. Serum protein expression predicts recurrence in patients with early-stage lung cancer after resection. Ann Thorac Surg 2006;81:1982–1987.PubMedCrossRefGoogle Scholar
  159. 158.
    Rosselli M, Mineo TC, Martini F, et al. Soluble selectin levels in patients with lung cancer. Int J Biol Marker 2002;17:56–62.Google Scholar
  160. 159.
    Tsumatori G, Ozeki Y, Takagi K, Ogata T, Tanaka S. Relation between the serum E-selectin level and the survival rate of patients with resected non-small cell lung cancers. Jpn J Cancer Res 1999;90:301–307.PubMedGoogle Scholar
  161. 160.
    Gao Y, Wei M, Zheng S, Ba X. Chemically modified heparin inhibits the in vitro adhesion of nonsmall cell lung cancer cells to P-selectin. J Cancer Res Clin Oncol 2006;132:257–264.PubMedCrossRefGoogle Scholar
  162. 161.
    Borsig L, Wong R, Hynes RQ, Varki NM, Varki A. synergistic effects of L-and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci USA 2002;99:2193–2198.PubMedCrossRefGoogle Scholar
  163. 162.
    Borsig L, Wong R, Feramisco J, et al. Heparin and cancer revisited: mechanistic connections involving platelets, Pselectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 2001;98:3352–3357.PubMedCrossRefGoogle Scholar
  164. 163.
    Springer TA. Adhesion receptors of the immune system. Nature 1990;346:425–434.PubMedCrossRefGoogle Scholar
  165. 164.
    Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996;274:1123–1133.PubMedCrossRefGoogle Scholar
  166. 165.
    Pouniotis DS, Plebanski M, Apostolopoulos V, McDonald CF. Alveolar macrophage function is altered in patients with lung cancer. Clin Exp Immunol 2005;143:363–372.CrossRefGoogle Scholar
  167. 166.
    Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002;196:254–265.PubMedCrossRefGoogle Scholar
  168. 167.
    Kim YG, Kim MJ, Lim JS, et al. ICAM-3-induced cancer cell proliferation through the PI3K/Akt pathway. Cancer Lett 2006;103–110.Google Scholar
  169. 168.
    van Buul JD, Mul FP, van der Schoot CE, Hordijk PL. ICAM-3 activation modulates cell-cell contacts of human bone marrow endothelial cells. J Vasc Res 2004;41:28–37.PubMedCrossRefGoogle Scholar
  170. 169.
    Chung YM, Kim GB, Park CS, et al. Increased expression of ICAM3 is associated with radiation resistance in cervical cancer. Int J Cancer 2005;117:194–201.PubMedCrossRefGoogle Scholar
  171. 170.
    Yasuda M, Tanaka Y, Tamura M, et al. Stimulation of β1 integrin down-regulates ICAM-1 expression and ICAM-1-dependent adhesion of lung cancer cells through focal adhesion kinase. Cancer Res 2001;61:2022–2030.PubMedGoogle Scholar
  172. 171.
    Schwartz RH. Models of T cell anergy: is there a common molecular mechanism? J Exp Med 1996;184:1–8.PubMedCrossRefGoogle Scholar
  173. 172.
    Shen J, Devery JM, King NJ. Adherence status regulates the primary cellular activation responses to the Flavivirus West Nile. Immunology 1995;84:254–264.PubMedGoogle Scholar
  174. 173.
    Mukai S, Kagamu H, Shu S, Plautz GE. Critical role of CD11a (LFA-1) in therapeutic efficacy of systemically transferred antitumor effector T cells. Cell Immunol 1999;192:122–132.PubMedCrossRefGoogle Scholar
  175. 174.
    Konishi J, Yamazaki K, Yokouchi H, et al. The characteristics of human NKT cells in lung cancer—CD1d independent cytotoxicity against lung cancer cells by NKT cells and decreased human NKT cell response in lung cancer patients. Hum Immunol 2004;65:1377–1388.PubMedCrossRefGoogle Scholar
  176. 175.
    Zhang HW, Zhang L, Chen JH, Du JJ. The clinical significance of vascular endothelial growth factor and intercellular adhesion molecule-1 expression in non-small cell lung cancer. Zhonghua Wai Ke Za Zhi 2005;43:354–357.PubMedGoogle Scholar
  177. 176.
    Shin HS, Jung CH, Park HD, Lee SS. The relationship between the serum intercellular adhesion molecule-1 level and the prognosis of the disease in lung cancer. Korean J Intern Med 2004;19:48.PubMedGoogle Scholar
  178. 177.
    Osaki T, Mitsudomi T, Yoshida Y, et al. Increased levels of serum intercellular adhesion molecule-1 (ICAM-1) in patients with non-small cell lung cancer. Surg Oncol 1996;5:107–113.PubMedCrossRefGoogle Scholar
  179. 178.
    Dabrowska M, Grubek-Jaworska H, Hoser G, et al. Effect of IFN-gamma stimulation on expression of intercellular adhesion molecule-1 (ICAM-1) on alveolar macrophages in patients with non-small cell lung cancer. J Interferon Cytokine Res 2006;26:190–195.PubMedCrossRefGoogle Scholar
  180. 179.
    Liu YJ, Yan PS, Li J, Jia JF. Expression and significance of CD44s, CD44v6, and nm23 mRNA in human cancer. World J Gastroenterol 2005;11:6601–6606.PubMedGoogle Scholar
  181. 180.
    Yasuda M, Nakano K, Yasumoto k, Tanaka Y. CD44: functional relevance to inflammation and malignancy. Histol Histopathol 2002;17:945–950.PubMedGoogle Scholar
  182. 181.
    Guo, YJ, Liu G, Wang X, et al. Potential use of soluble CD44 in serum as indicator of tumor burden and metastasis in patients with gastric or colon cancer. Cancer Res 1994;54:422–426.PubMedGoogle Scholar
  183. 182.
    Wielenga VJM, Heider KH, Offerhaus JA, et al. Expression of cD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res 1993;53:4754–4756.PubMedGoogle Scholar
  184. 183.
    Backhus LM, Sievers E, Lin GY, et al. Perioperative cyclooxygenase 2 inhibition to reduce tumor cell adhesion and metastatic potential of circulating tumor cells in non-small cell lung cancer. J Thorac Cardiovasc Surg 2006;132:297–303.PubMedCrossRefGoogle Scholar
  185. 184.
    Lee LN, Kuo SH, Lee YC, et al. CD44 splicing pattern is associated with disease progression in pulmonary adenocarcinoma. J Formos Med Assoc 2005;104:541–548.PubMedGoogle Scholar
  186. 185.
    Yasuda M, Tanaka Y, Fujii k, Yasumoto K. CD44 stimulation down-regulates Fas expression and Fas-mediated apoptosis of lung cancer cells. Intern Immunol 2001;13:1309–1319.CrossRefGoogle Scholar
  187. 186.
    Sneath RJ, Mangham DC. The normal structure and function of CD44 and its role in neoplasia. Mod Pathol 1998;51:191.CrossRefGoogle Scholar
  188. 187.
    Suzuki H, Yamashiro K. Reduced expression of CD44 v3 and v6 is related to invasion in lung adenocarcinoma. Lung Cancer 2002;38:137–141.PubMedCrossRefGoogle Scholar
  189. 188.
    Takahashi K, Takahashi F, Hirama M, Tanabe KK, Fukuchi Y. Restoration of CD44S in non-small cell lung cancer cells enhanced their susceptibility to the macrophage cytotoxicity. Lung Cancer 2003;41:145–153.PubMedCrossRefGoogle Scholar
  190. 189.
    Li M, Amizuka N, Takeuchi K, et al. Histochemical evidence of osteoclastic degradation of extracellular matrix in osteolytic metastasis originating from human lung small carcinoma (SBC-50) cells. Micro Res Tech 2006;69:73–83.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Timothy Craig Allen
    • 1
  • Philip T. Cagle
    • 2
    • 3
  1. 1.Department of PathologyUniversity of Texas Health Center at TylerTylerUSA
  2. 2.Pathology and Laboratory MedicineWeill Medical College of Cornell UniversityNew York
  3. 3.The Methodist HospitalHoustonUSA

Personalised recommendations