Gene Therapy Approaches for Lung Cancer

  • Jack A. Roth
Part of the Molecular Pathology Library book series (MPLB, volume 1)


Lung cancers exhibit multiple genetic lesions that can be detected even in histologically normal bronchial mucosa from individuals with a smoking history. These genetic abnormalities provide an array of targets for therapy. Tobacco smoke has over 100 carcinogenic agents, and the specific interactions of specific carcinogens with genes that suppress tumors and repair DNA have been identified.1 Dysfunctional tumor suppressor genes are the most common genetic lesions identified to date in human lung cancers. Functional copies of tumor suppressor genes can be introduced into cancer cells by gene transfer.


Human Lung Cancer Merkel Cell Carcinoma Gene Therapy Approach Normal Bronchial Mucosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Denissenko MF, Pao A, Tang M, et al. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in p53. Science 1996;274(5286):430–432.CrossRefPubMedGoogle Scholar
  2. 2.
    Burns T, El-Deiry W. The p53 pathway and apoptosis. J Cell Physiol 1999;181:231–239.CrossRefPubMedGoogle Scholar
  3. 3.
    Fujiwara T, Grimm EA, Mukhopadhyay T, et al. A retroviral wild-type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Res 1993;53(18):4129–4133.PubMedGoogle Scholar
  4. 4.
    Raycroft L, Wu H, Lozano G. Transcriptional activation by wild-type but not transforming mutants of the p53 antioncogene. Science 1990;249:1049–1051.CrossRefPubMedGoogle Scholar
  5. 5.
    Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998;281(5381):1322–1326.CrossRefPubMedGoogle Scholar
  6. 6.
    Kamijo T, Zindy F, Roussel MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997;91(5):649–659.CrossRefPubMedGoogle Scholar
  7. 7.
    Isobe T, Hiyama K, Yoshida Y, et al. Prognostic significance of p53 and ras gene abnormalities in lung adenocarcinoma patients with stage I disease after curative resection. Jpn J Cancer Res 1994;85:1240–1246.PubMedGoogle Scholar
  8. 8.
    Quinlan DC, Davidson AG, Summers CL, et al. Accumulation of p53 protein correlates with a poor prognosis in human lung cancer. Cancer Res 1992;52:4828–4831.PubMedGoogle Scholar
  9. 9.
    Martin HM, Filipe MI, Morris RW, et al. p53 expression and prognosis in gastric carcinoma. Int J Cancer 1992;50(6):859–862.CrossRefPubMedGoogle Scholar
  10. 10.
    Cai DW, Mukhopadhyay T, Roth JA. A novel ribozyme for modification of mutated p53 pre-mRNA in non-small cell lung cancer cell lines. 3rd Antisense Workshop, November 13, 1993.Google Scholar
  11. 11.
    Zhang WW, Fang X, Mazur W, et al. High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther 1994;1(1):5–13.PubMedGoogle Scholar
  12. 12.
    Fujiwara T, Cai DW, Georges RN, et al. Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model [commentary]. J Natl Cancer Inst 1994;86(19):1437–1438.CrossRefGoogle Scholar
  13. 13.
    Wang JX, Bucana CD, Roth JA, et al. Apoptosis induced in human osteosarcoma cells is one of the mechanisms for the cytocidal effect of Ad5CMV-p53. Cancer Gene Ther 1995;2(1):9–17.PubMedGoogle Scholar
  14. 14.
    Georges RN, Mukhopadhyay T, Zhang Y, et al. Prevention of orthotopic human lung cancer growth by intratracheal instillation of a retroviral antisense K-ras construct. Cancer Res 1993;53(8):1743–1746.PubMedGoogle Scholar
  15. 15.
    Spitz FR, Nguyen D, Skibber J, et al. Adenoviral mediated p53 gene therapy enhances radiation sensitivity of colorectal cancer cell lines. Proc Am Assoc Cancer Res 1996;37:347.Google Scholar
  16. 16.
    Nielsen LL, Dell J, Maxwell E, et al. Efficacy of p53 adenovirus-mediated gene therapy against human breast cancer xenografts. Cancer Gene Ther 1997;4(2):129–138.PubMedGoogle Scholar
  17. 17.
    Bouvet M, Fang B, Ekmekcioglu S, et al. Suppression of the immune response to an adenovirus vector and enhancement of intratumoral transgene expression by low-dose etoposide. Gene Ther 1998;5:189–195.CrossRefPubMedGoogle Scholar
  18. 18.
    Xu M, Kumar D, Srinivas S, et al. Parenteral gene therapy with p53 inhibits human breast tumors in vivo through a bystander mechanism without evidence of toxicity. Hum Gene Ther 1997;8:177–185.CrossRefPubMedGoogle Scholar
  19. 19.
    Cusack JC, Spitz FR, Nguyen D, et al. High levels of gene transduction in human lung tumors following intralesional injection of recombinant adenovirus. Cancer Gene Ther 1996;3(4):245–249.PubMedGoogle Scholar
  20. 20.
    Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of human bax gene. Cell 1995;80(2):293–299.CrossRefPubMedGoogle Scholar
  21. 21.
    Dameron KM, Volpert OV, Tainsky MA, et al. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994;265:1582–1584.CrossRefPubMedGoogle Scholar
  22. 22.
    Molinier-Frenkel V, Le Boulaire C, Le Gal FA, et al. Longitudinal follow-up of cellular and humoral immunity induced by recombinant adenovirus-mediated gene therapy in cancer patients. Human Gene Ther 2000;11(13):1911–1920.CrossRefGoogle Scholar
  23. 23.
    Yen N, Ioannides CG, Xu K, et al. Cellular and humoral immune responses to adenovirus and p53 protein antigens in patients following intratumor injection of an adenovirus vector expressing wild-type p53 (Ad-p53). Cancer Gene Ther 2000;7(4):530–536.CrossRefPubMedGoogle Scholar
  24. 24.
    Carroll JL, Nielsen LL, Pruett SB, et al. The role of natural killer cells in adenovirus-mediated p53 gene therapy. Mol Cancer Ther 2001;1:49–60.PubMedGoogle Scholar
  25. 25.
    Owen-Schaub LB, Zhang W, Cusack JC, et al. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 1995;15(6):3032–3040.PubMedGoogle Scholar
  26. 26.
    Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 1996;2(9):985–991.CrossRefPubMedGoogle Scholar
  27. 27.
    Roth JA. Clinical Protocol: Modification of mutant K-ras gene expression in non-small cell lung cancer (NSCLC). Hum Gene Ther 1996;7(7):875–889.CrossRefPubMedGoogle Scholar
  28. 28.
    Roth JA. Clinical Protocol: Modification of tumor suppressor gene expression and induction of apoptosis in non-small cell lung cancer (NSCLC) with an adenovirus vector expressing wildtype p53 and cisplatin. Hum Gene Ther 1996;7(8):1013–1030.CrossRefPubMedGoogle Scholar
  29. 29.
    Swisher SG, Roth JA, Nemunaitis J, et al. Adenovirus-mediated p53 gene transfer in advanced non-small cell lung cancer. J Natl Cancer Inst 1999;91(9):763–771.CrossRefPubMedGoogle Scholar
  30. 30.
    Yver A, Dreiling LK, Mohanty S, et al. Tolerance and safety of RPR/INGN 201, an adeno-viral vector containing a p53 gene, administered intratumorally in 309 patients with advanced cancer enrolled in phase I and II studies worldwide. Proc Am Soc Clin Oncol 1999;19:460a.Google Scholar
  31. 31.
    Yonish-Rouach E, Resnitzky D, Lotem J, et al. Wildtype p53 induces apoptosis of myeloid leukemic cells that is inhibited by interleukin-6. Nature 1991;352(6333):345–347.CrossRefPubMedGoogle Scholar
  32. 32.
    Ramqvist T, Magnusson KP, Wang Y, et al. Wild-type p53 induces apoptosis in a Burkitt lymphoma (BL) line that carries mutant p53. Oncogene 1993;8:1495–1500.PubMedGoogle Scholar
  33. 33.
    Shaw P, Bovey R, Tardy S, et al. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci USA 1992;89(10):4495–4499.CrossRefPubMedGoogle Scholar
  34. 34.
    Dewey WC, Ling CC, Meyn RE. Radiation induced apoptosis: relevance to radiotherapy. Int J Radiat Oncol Biol Phys 1995;33:781–796.PubMedGoogle Scholar
  35. 35.
    Roth JA. Review: Clinical protocol for modification of tumor suppressor gene expression and induction of apoptosis in non-small cell lung cancer (NSCLC) with an adenovirus vector expressing wildtype p53 and cisplatin. Hum Gene Ther 1995;6(2):252–255.Google Scholar
  36. 36.
    Meyn RE, Stephens LC, Hunter NR, et al. Apoptosis in murine tumors treated with chemotherapy agents. Anticancer Drugs 1997;6:443–450.CrossRefGoogle Scholar
  37. 37.
    Fujiwara T, Grimm EA, Mukhopadhyay T, et al. Induction of chemosensitivity in human cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene. Surgical Forum 1994;45:524–526.Google Scholar
  38. 38.
    Nguyen DM, Spitz FR, Yen N, et al. Gene therapy for lung cancer: enhancement of tumor suppression by a combination of sequential systemic cisplatin and adenovirus-mediated p53 gene transfer. J Thorac Cardiovasc Surg 1996;112(5):1372–1377.CrossRefPubMedGoogle Scholar
  39. 39.
    Hamada M, Fujiwara T, Hizuta A, et al. The p53 gene is a potent determinant of chemosensitivity and radiosensitivity in gastric and colorectal cancers. J Cancer Res Clin Oncol 1996;122(6):360–365.CrossRefPubMedGoogle Scholar
  40. 40.
    Nguyen D, Spitz F, Kataoka M, et al. Enhancement of gene transduction in human carcinoma cells by DNA-damaging agents. Proc Am Assoc Cancer Res 1996;37:347.Google Scholar
  41. 41.
    Jasty R, Lu J, Irwin T, et al. Role of p53 in the regulation of irradiation-induced apoptosis in neuroblastoma cells. Mol Genet Metab 1998;65(2):155–164.CrossRefPubMedGoogle Scholar
  42. 42.
    Akimoto T, Hunter NR, Buchmiller L, et al. Inverse relationship between epidermal growth factor receptor expression and radiocurability of murine carcinomas. Clin Cancer Res 1999;5(10):2884–2890.PubMedGoogle Scholar
  43. 43.
    Feinmesser M, Halpern M, Fenig E, et al. Expression of the apoptosis-related oncogenes bcl-2, bax, and p53 in Merkel cell carcinoma: can they predict treatment response and clinical outcome? Hum Pathol 1994;30(11):1367–1372.CrossRefGoogle Scholar
  44. 44.
    Broaddus WC, Liu Y, Steele LL, et al. Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction. J Neurosurg 1999;91(6):997–1004.CrossRefPubMedGoogle Scholar
  45. 45.
    Sakakura C, Sweeney EA, Shirahama T, et al. Overexpression of bax sensitizes human breast cancer MCF-7 cells to radiation-induced apoptosis. Int J Cancer 1996;67(1):101–105.CrossRefPubMedGoogle Scholar
  46. 46.
    Brachman DG, Becket M, Graves D, et al. p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cells lines. Cancer Res 1993;53:3667–3669.PubMedGoogle Scholar
  47. 47.
    Slichenmyer WJ, Nelson WG, Slebos RJ, et al. Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res 1993;53:4164–4168.PubMedGoogle Scholar
  48. 48.
    Danielsen T, Smith-Sorensen B, Gronlund HA, et al. No association between radiosensitivity and TP53 status, G(1) arrest or protein levels of p53, myc, ras or raf in human melanoma lines. Int J Radiat Biol 1994;75(9):1149–1160.Google Scholar
  49. 49.
    Nemunaitis J, Swisher SG, Timmons T, et al. Adenovirusmediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J Clin Oncol 2000;18(3):609–622.PubMedGoogle Scholar
  50. 50.
    Schuler M, Herrmann R, De Greve JL, et al. Adenovirusmediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non-small-cell lung cancer: results of a multicenter phase II study. J Clin Oncol 2001;19(6):1750–1758.PubMedGoogle Scholar
  51. 51.
    Swisher S, Roth JA, Komaki R, et al. A phase II trial of adenoviral mediated p53 gene transfer (RPR/INGN 201) in conjunction with radiation therapy in patients with localized non-small cell lung cancer (NSCLC). Am Soc Clin Oncol 2000;19:461a.Google Scholar
  52. 52.
    Peng Z, Han D, Zhang S, et al. Clinical evaluation of safety and efficacy of intratumoral administration of a recombinant adenoviral-p53 anticancer agent (Genkaxin?). Mol Ther 2003;7:422–423.Google Scholar
  53. 53.
    Ito I, Ji L, Tanaka F, et al. Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo. Cancer Gene Ther 2004;11:733–739.CrossRefPubMedGoogle Scholar
  54. 54.
    Uno F, Sasaki J, Nishizaki M, et al. Myristoylation of the FUS1 protein is required for tumor suppression in human lung cancer cells. Cancer Res 2004;64(9):2969–2976.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Jack A. Roth
    • 1
  1. 1.Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular SurgeryUniversity of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations