Lung Cancer Stem Cells

  • Timothy Craig Allen
  • Philip T. Cagle
Part of the Molecular Pathology Library book series (MPLB, volume 1)


Germinal, embryonic, and somatic stem cells arise normally in human beings.1 Adult germinal stem cells provide for the production of sperm and eggs.1 Embryonic stem cells are self-renewing totipotent cells, derived from blastocysts, that can indefinitely propagate as undifferentiated cells and differentiate into most cell types under appropriate conditions in vitro and can differentiate into all cell lineages in vivo.1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Embryonic stem cells have been isolated from human beings, but for ethical and other reasons their future use for research and treatment is uncertain.1,3,5,12, 13, 14


Stem Cell Embryonic Stem Cell Cancer Stem Cell Neural Stem Cell Adult Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Soltysova A, Altanerova V, Altaner C. Cancer stem cells. Minireview. Neoplasma 2005;52:435–440.PubMedGoogle Scholar
  2. 2.
    Pathak S, Multani AS. Aneuploidy, stem cells and cancer. In Bignoid LP, ed. Cancer: Cell Structures, Carcinogens, and Genomic Instability. Switzerland: Birkhauser Verlag; 2006:49–64.CrossRefGoogle Scholar
  3. 3.
    Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal marrow mesodermal progenitor cells. Blood 2001;98:2615–2625.CrossRefPubMedGoogle Scholar
  4. 4.
    Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78:7634–7638.CrossRefPubMedGoogle Scholar
  5. 5.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282;114–117.CrossRefGoogle Scholar
  6. 6.
    Shamblott M, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 1998;95:1326–1331.CrossRefGoogle Scholar
  7. 7.
    Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000;287:399–404.Google Scholar
  8. 8.
    Guo W, Lasky JL, Wu H. Cancer stem cells. Pediatr Res 2006;59:59R–56R.CrossRefPubMedGoogle Scholar
  9. 9.
    Dewey MJ, Martin DW, Martin GR, Mintz B. Mosaic mice with teratocarcinoma-derived mutant cells deficient in hypoxanthine phosphoribosyltransferase. Proc Natl Acad Sci USA 1977;74:5564–5568.CrossRefPubMedGoogle Scholar
  10. 10.
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–156.CrossRefPubMedGoogle Scholar
  11. 11.
    Martin GR. Teratocarcinomas as a model system or the study of embryogenesis and neoplasia. Cell 1975;5(3):229–243.CrossRefPubMedGoogle Scholar
  12. 12.
    Frankel MS. In search of stem cell policy. Science 2000;287:1433–1438.CrossRefGoogle Scholar
  13. 13.
    Snyder EY, Hinman LM, Kalichman MW. Can science resolve the ethical impasse in stem cell research? Nat Biotechnol 2006;24:397–400.CrossRefPubMedGoogle Scholar
  14. 14.
    Vogel G. International standards proposed for stem cell work. Science 2006;313:26.CrossRefPubMedGoogle Scholar
  15. 15.
    Pathak S. Telomeres in human cancer research. 10th All India Congress of Cytology and Genetics Award Lecture. Perspect Cytol Genet 2001;10:13–22.Google Scholar
  16. 16.
    Sherley JL. Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture. Stem Cells 2002;20:561–572.CrossRefPubMedGoogle Scholar
  17. 17.
    Potten CS. Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos Trans R Soc Lond B Biol Sci 1998;353:821–830.CrossRefPubMedGoogle Scholar
  18. 18.
    Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147.CrossRefPubMedGoogle Scholar
  19. 19.
    Gage FH. Mammalian neural stem cells. Science 2000;287:1433–1438.CrossRefPubMedGoogle Scholar
  20. 20.
    Alison M, Sarraf C. Hepatic stem cells. J Hepatol 1998;29:676–682.CrossRefPubMedGoogle Scholar
  21. 21.
    Romano G. The role of adult stem cells in carcinogenesis. Drug News Perspect 2005;18:555–559.CrossRefPubMedGoogle Scholar
  22. 22.
    Romano G. Stem cell transplantation therapy: controversy over ethical issues and clinical relevance. Drug news Perspect 2004;17:637–645.CrossRefPubMedGoogle Scholar
  23. 23.
    Meuwissen R, Berns A. Mouse models for human lung cancer. Genes Dev 2005;19:643–664.CrossRefPubMedGoogle Scholar
  24. 24.
    Engelhardt JF. Stem cell niches in the mouse airway. Am J Respir Cell Mol Biol 2001;24:649–652.PubMedGoogle Scholar
  25. 25.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730–737.CrossRefPubMedGoogle Scholar
  26. 26.
    Jaiswal S, Traver D, Miyamoto T, et al. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci USA 2003;100:10002–10007.CrossRefPubMedGoogle Scholar
  27. 27.
    Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 1994;367:645–648.CrossRefPubMedGoogle Scholar
  28. 28.
    Reya T, Morrison S, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105–111.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang JCY, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol 2005;15:494–501.CrossRefPubMedGoogle Scholar
  30. 30.
    Galmozzi E, Facchetti F, La Porta CA. Cancer stem cells and therapeutic perspectives. Curr Med Chem 2006;13:603–607.CrossRefPubMedGoogle Scholar
  31. 31.
    Guan Y, Gerhard B, Hogge DE. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 2003;101:3142–3149.CrossRefPubMedGoogle Scholar
  32. 32.
    Holyoake T, Jiang X, Eaves C, Eaves A. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 1999;2056–2064.Google Scholar
  33. 33.
    Berns A. Stem cells for lung cancer? Cell 2005;121:811–817.CrossRefPubMedGoogle Scholar
  34. 34.
    Yuasa H, Oike Y, Iwama A, et al. Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J 2005;24:1976–1987.CrossRefPubMedGoogle Scholar
  35. 35.
    Singh SK, Clarke ID, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene 2004;23:7267–7273.CrossRefPubMedGoogle Scholar
  36. 36.
    Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature 2004;432:396–401.CrossRefPubMedGoogle Scholar
  37. 37.
    Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells. Science 2004;306:1568–1571.CrossRefPubMedGoogle Scholar
  38. 38.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983–3988.CrossRefPubMedGoogle Scholar
  39. 39.
    Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003;3:895–902.CrossRefPubMedGoogle Scholar
  40. 40.
    Causinus E, Gonzalez C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 2005;37:1027–1029.CrossRefGoogle Scholar
  41. 41.
    Nakagawara A, Ohira M. Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Lett 2004;204:213–224.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the sidepopulation phenotype. Nat Med 2001;7:1028–1034.CrossRefPubMedGoogle Scholar
  43. 43.
    Tu SM, Lin SH, Logothetis CJ. Stem-cell origin of metastasis and heterogeneity of solid tumours. Lancet Oncol 2002;3:508–513.CrossRefPubMedGoogle Scholar
  44. 44.
    Miller SJ, Lavker RM, Sun TT. Interpreting epithelial cancer biology in the context of stem cells: tumor properties and therapeutic implications. Biochem Biophys Acta 2005;1756:25–52.PubMedGoogle Scholar
  45. 45.
    Woodward WA, Chen MS, Behbod F, Rosen JM. On mammary stem cells. J Cell Sci 2005;118:3585–3594.CrossRefPubMedGoogle Scholar
  46. 46.
    Brickman JM, Burdon TG. Pluripotency and tumorigenicity. Nat Genet 2002;32:557–558.CrossRefPubMedGoogle Scholar
  47. 47.
    Reya T, Clevers H. Wnt signaling in stem cells and cancer. Nature 2005;434:843–850.CrossRefPubMedGoogle Scholar
  48. 48.
    Gregorieff A, Clevers H. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 2005;19:877–890.CrossRefPubMedGoogle Scholar
  49. 49.
    Fukushima H, Yamamoto H, Itoh F, et al. Frequent alterations of the beta-catenin and TCF-4 genes, but not of the APC gene, in colon cancers with high-frequency microsatellite instability. J Exp Clin Cancer Res 2001;20:553–559.PubMedGoogle Scholar
  50. 50.
    Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004;432:324–331.CrossRefPubMedGoogle Scholar
  51. 51.
    Tai MH, Chang CC, Kiupel M, et al. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 2005;26:495–502.CrossRefPubMedGoogle Scholar
  52. 52.
    Lahad JP, Mills GB, Coombes KR. Stem cell-ness: a “magic marker” for cancer. J Clin Invest 2005;115:1463–1467.CrossRefPubMedGoogle Scholar
  53. 53.
    Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identified a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005;115:1503–1521.CrossRefPubMedGoogle Scholar
  54. 54.
    Austin TW, Solar GP, Ziegler FC, et al. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 1997;89:3624–3635.PubMedGoogle Scholar
  55. 55.
    Bhardwaj G, Murdoch B, Wu D, et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2001;2:172–180.CrossRefPubMedGoogle Scholar
  56. 56.
    Spink KE, Polaski P, Weis WI. Structural basis of the Axin-adenomatous polyposis coli interaction. EMBO J 2000;19:2270–2279.CrossRefPubMedGoogle Scholar
  57. 57.
    Taipale J, Beachy PA. The hedgehog and Wnt signaling pathways in cancer. Nature 2001;411:349–354.CrossRefPubMedGoogle Scholar
  58. 58.
    Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003;432:448–452.CrossRefGoogle Scholar
  59. 59.
    Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev Cell 2002;2:643–653.CrossRefPubMedGoogle Scholar
  60. 60.
    Jamora C, Dasgupta R, Kocieniewski P, Fuchs E. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 2003;422:317–322.CrossRefPubMedGoogle Scholar
  61. 61.
    Donovan PJ. High Oct-ane fuel powers the stem cell. Nat Genet 2001;29:246–47.CrossRefPubMedGoogle Scholar
  62. 62.
    Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998;95:379–91.CrossRefPubMedGoogle Scholar
  63. 63.
    Hochedlinger K, Yamada Y, Beard C, Jaenisch R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 2005;121:465–477.CrossRefPubMedGoogle Scholar
  64. 64.
    Valk-Lingbeek ME, Bruggerman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell 2004;118:409–418.CrossRefPubMedGoogle Scholar
  65. 65.
    Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003;425:962–967.CrossRefPubMedGoogle Scholar
  66. 66.
    Molofsky AV, Pardal R, Iwashita T, et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003;425:962–967.CrossRefPubMedGoogle Scholar
  67. 67.
    Perkins AS, Mercer JA, Jenkins NA, Copeland NG. Patterns of Evi-1 expression in embryonic and adult tissues suggest that Ev-1 plays an important regulatory role in mouse development. Development 1991;111:479–487.PubMedGoogle Scholar
  68. 68.
    Park LK, He Y, Lin F, et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 2002;99:488–498.CrossRefPubMedGoogle Scholar
  69. 69.
    Phillips RL, Ernst RE, Brunk B, et al. The genetic program of hematopoietic stem cells. Science 2000;288:1635–1640.CrossRefPubMedGoogle Scholar
  70. 70.
    Shimizu S, Nagasawa T, Katoh O, et al. EVI1 is expressed in megakaryocyte cell lineage and enforced expression of EVI1 in UT-7/GM cells induces megakaryocyte differentiation. Biochem Biophys Res Commun 2002;292:609–616.CrossRefPubMedGoogle Scholar
  71. 71.
    Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocytemacrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004;351:657–667.CrossRefPubMedGoogle Scholar
  72. 72.
    Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003;423:255–260.CrossRefPubMedGoogle Scholar
  73. 73.
    Molofsky AV, He S, Bydon M, et al. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 2005;19:1432–1437.CrossRefPubMedGoogle Scholar
  74. 74.
    Reya T, Duncan AW, Ailles L, et al. A role for Wnt signaling in self-renewal from progenitor proliferation. Nature 2003;423:409–414.CrossRefPubMedGoogle Scholar
  75. 75.
    Brabletz T, Jung A, Reu S, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 2001;98:10356–10361.CrossRefPubMedGoogle Scholar
  76. 76.
    Brabletz T, Jung A, Spaderna S, et al. Opinion: migrating cancer stem cells-an integrated concept of malignant tumour progression. Nat Res Cancer 2005;5:744–749.CrossRefGoogle Scholar
  77. 77.
    Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 2004;101:781–786.CrossRefPubMedGoogle Scholar
  78. 78.
    Demirkazik A, Kessinger A, Lynch J, et al. Effect of prior therapy and bone marrow metastases on progenitor cell content of blood stem cell harvests in breast cancer patients. Biol Blood Marrow Transplant 2002;8:268–272.CrossRefPubMedGoogle Scholar
  79. 79.
    Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci USA 2003;100:3547–3549.CrossRefPubMedGoogle Scholar
  80. 80.
    Pecora AL, Lazarus HM, Jennis AA, et al. Breast cancer cell contamination of blood stem cell products in patients with metastatic breast cancer: predictors and clinical relevance. Biol Blood marrow Transplant 2002;8:536–543.CrossRefPubMedGoogle Scholar
  81. 81.
    Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003;100:15178–15183.CrossRefPubMedGoogle Scholar
  82. 82.
    Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005;121:823–835.CrossRefPubMedGoogle Scholar
  83. 83.
    Singh SK, Clark ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821–5828.PubMedGoogle Scholar
  84. 84.
    Ten Have-Opbroek AA, Benfield JR, Hammond WG, Dijkman JH. Alveolar stem cells in canine bronchial carcinogenesis. Cancer Lett 1996;101:211–217.CrossRefPubMedGoogle Scholar
  85. 85.
    Pitt BR, Ortiz LA. Stem cells in lung biology. Am J Physiol Lung Cell Mol Physiol 2004;286:L621–L623.CrossRefPubMedGoogle Scholar
  86. 86.
    Haura EB. Is repetitive wounding and bone marrowderived stem cell mediated-repair an etiology of lung cancer development and dissemination? Med Hypothesis 2006;67:951–956.CrossRefGoogle Scholar
  87. 87.
    Thun MJ, Lally CA, Flannery JT, et al. Cigarette smoking and changes in the histopathology of lung cancer. J Natl Cancer Inst 1997;89:1580–1586.CrossRefPubMedGoogle Scholar
  88. 88.
    Cockburn MG, Wu AH, Bernstein L. Etiologic clues from the similarity of histology-specific trends in esophageal and lung cancers. Cancer Causes Contr 2005;16:1065–1074.CrossRefGoogle Scholar
  89. 89.
    Wingo PA, Ries LAG, Giovino GA, et al. Annual report to the nation on the status of cancer, 1973–1996, with a special section on lung cancer and tobacco smoking. J Natl Cancer Inst 1999;91:675–690.CrossRefPubMedGoogle Scholar
  90. 90.
    Levi F, Franceschi S, La Vecchia C, et al. Lung carcinoma trends by histologic type in Vaud and Neuchatel, Switzerland, 1974–1994. Cancer 1997;79:906–914.CrossRefPubMedGoogle Scholar
  91. 91.
    National Cancer Institute. The FTC cigarette test method for determining tar, nicotine, and carbon monoxide yields of U.S. cigarettes. Report of the NCI expert committee. Smoking and Tobacco Control Monograph No. 7. Bethesda: U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute; NIH Publ No. 96-4028;1996.Google Scholar
  92. 92.
    Brooks DR, Austin JHM, Heelan RT, et al. Influence of type of cigarette on peripheral versus central lung cancer. Cancer Epidemiol Biomarkers Prev 2005;14:576–581.CrossRefPubMedGoogle Scholar
  93. 93.
    Popper HH. Bronchiolitis, an update. Virchows Arch 2000;437:471–481.CrossRefPubMedGoogle Scholar
  94. 94.
    Stellman SD, Muscat JE, Thompson S, et al. Risk of squamous cell carcinoma and adenocarcinoma of the lung in relation to lifetime filter cigarette smoking. Cancer 1997;80:382–388.CrossRefPubMedGoogle Scholar
  95. 95.
    Ullmann R, Bongiovanni M, Halbwedl I, et al. Bronchiolar columnar cell dysplasia-genetic analysis of a novel preneoplastic lesion of peripheral lung. Virchows Arch 2003;442:429–436.PubMedGoogle Scholar
  96. 96.
    Ullmann R, Bongiovanni M, Halbwedl I, et al. Is highgrade adenomatous hyperplasia an early bronchioloalveolar adenocarcinoma? J Pathol 2003;201:371–376.CrossRefPubMedGoogle Scholar
  97. 97.
    Aoyagi Y, Yokose T, Minami Y, et al. Accumulation of losses of heterozygosity and multistep carcinogenesis in pulmonary adenocarcinoma. Cancer Res 2001;61:7950–7954.PubMedGoogle Scholar
  98. 98.
    Borczuk AC, Gorenstein L, Walter KL, et al. Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways. Am J Pathol 2003;163:1949–1960.PubMedGoogle Scholar
  99. 99.
    Copin MC, Buisine MP, Devisme L, et al. Normal respiratory mucosa, precursor lesions and lung carcinomas: differential expression of human mucin genes. Front Biosci 2001;6:D1264–D1275.CrossRefPubMedGoogle Scholar
  100. 100.
    Mori M, Rao SK, Popper HH, et al. Atypical adenomatous hyperplasia of the lung: a probable forerunner in the development of adenocarcinoma of the lung. Mod Pathol 2001;14:72–84.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Timothy Craig Allen
    • 1
  • Philip T. Cagle
    • 2
    • 3
  1. 1.Department of PathologyUniversity of Texas Health Center at TylerTylerUSA
  2. 2.Pathology and Laboratory MedicineWeill Medical College of Cornell UniversityNew York
  3. 3.The Methodist HospitalHoustonUSA

Personalised recommendations