In Situ Hybridization: Principles and Applications for Pulmonary Medicine

  • Kevin C. Halling
  • Amy J. Wendel
Part of the Molecular Pathology Library book series (MPLB, volume 1)


In situ hybridization is a technique that utilizes nucleic acid (DNA or RNA) probes to assess intact cells for various types of genetic alterations. In situ hybridization has become an extremely useful tool for the clinical pathology laboratory to aid oncologists, geneticists, and infectious disease specialists in the diagnosis and treatment of their patients. Common applications of in situ hybridization include its use to detect cancer cells in cytologic specimens, chromosomal alterations in resected tumor specimens that predict prognosis, and response to therapy of certain cancer types and microorganisms in various specimen types.


Comparative Genomic Hybridization Epidermal Growth Factor Receptor Gene Small Cell Lung Carcinoma Chromosomal Paint HER2 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beltz GA, Jacobs KA, Eickbush TH, et al. Isolation of multigene families and determination of homologies by filter hybridization methods. Methods Enzymol 1983;100:266–285.CrossRefPubMedGoogle Scholar
  2. 2.
    Lee C, Wevrick R, Fisher RB, et al. Human Centromeric DNA’s. Hum Genet 1997;100:291–304.CrossRefPubMedGoogle Scholar
  3. 3.
    Knight SJ, Flint J. Perfect endings: a review of subtelomeric probes and their use in clinical diagnosis. J Med Genet 2000;37:401–409.CrossRefPubMedGoogle Scholar
  4. 4.
    Moog U, Arens YH, van Lent-Albrechts JC, et al. Subtelomeric chromosome aberrations: still a lot to learn. Clin Genet 2005;68:397–407.CrossRefPubMedGoogle Scholar
  5. 5.
    Morrison LE, Ramakrishnan R, Ruffalo TM, et al. Labeling fluorescence in situ hybridization probes for genomic targets. In Fan Y-S, ed. Molecular Cytogenetics: Protocols and Applications, vol 204. Totowa, NJ: Humana Press; 2002:21–40.Google Scholar
  6. 6.
    Wiktor AE, Van Dyke DL, Stupca PJ, et al. Preclinical validation of fluorescence in situ hybridization assays for clinical practice. Genet Med 2006;8:16–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Petersen BL, Sorensen MC, Pedersen S, et al. Fluorescence in situ hybridization on formalin-fixed and paraffinembedded tissue: optimizing the method. Applied Immunohistochemistry Mol Morphol 2004;12:259–265.CrossRefGoogle Scholar
  8. 8.
    Schurter MJ, LeBrun DP, Harrison KJ. Improved technique for fluorescence in situ hybridisation analysis of isolated nuclei from archival, B5 or formalin fixed, paraffin wax embedded tissue. Mol Pathol 2002;55:121–124.CrossRefPubMedGoogle Scholar
  9. 9.
    Tubbs RR, Hsi ED, Hicks D, et al. Molecular pathology testing of tissues fixed in prefer solution. Am J Surg Pathol 2004;28:417–419.PubMedGoogle Scholar
  10. 10.
    Van Stedum S, King W. Basic FISH techniques and troubleshooting. In Fan Y-S, ed. Molecular Cytogenetics: Protocols and Applications, vol 204. Totowa, NJ: Humana Press; 2002:51–63.Google Scholar
  11. 11.
    Solovei I, Walter J, Cremer C, et al. FISH on three-dimensionally preserved nuclei. In Beatty B, Mai S, Squire J, eds. FISH: A Practical Approach. Oxford: Oxford University Press; 2002:119–158.Google Scholar
  12. 12.
    McNicol AM, Farquharson MA. In situ hybridization and its diagnostic applications in pathology. J Pathol 1997;182:250–261.CrossRefPubMedGoogle Scholar
  13. 13.
    Florijn RJ, Bonnet J, Vrolijk H, et al. Effect of chromatic errors in microscopy on the visualization of multi-color fluorescence in situ hybridization. Cytometry 1996;23:8–14.CrossRefPubMedGoogle Scholar
  14. 14.
    Tanke HJ. Fluorescence microscopy for quantitative fluorescence in situ hybridization analysis. In: Andreeff M, Pinkel D, eds. Introduction to Fluorescence In Situ Hybridization: Principles and Clinical Applications. New York: Wiley-Liss, 1999:33–52.Google Scholar
  15. 15.
    Downs-Kelly E, Pettay J, Hicks D, et al. Analytical validation and interobserver reproducibility of EnzMet GenePro: a second-generation bright-field metallography assay for concomitant detection of HER2 gene status and protein expression in invasive carcinoma of the breast. Am J Surg Pathol 2005;29:1505–1511.CrossRefPubMedGoogle Scholar
  16. 16.
    Sokolova IA, Halling KC, Jenkins RB, et al. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J Mol Diagn 2000;2:116–123.PubMedGoogle Scholar
  17. 17.
    Lapierre JM, Tachdjian G. Detection of chromosomal abnormalities by comparative genomic hybridization. Curr Opin Obstet Gynecol 2005;17:171–177.CrossRefPubMedGoogle Scholar
  18. 18.
    Kallioniemi OP, Kallioniemi A, Sudar D, et al. Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin Cancer Biol 1993;4:41–46.PubMedGoogle Scholar
  19. 19.
    Vissers LE, Veltman JA, van Kessel AG, et al. Identification of disease genes by whole genome CGH arrays. Hum Mol Genet 2005;14(Spec Issue 2):R215–R223.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim TM, Yim SH, Lee JS, et al. Genome-wide screening of genomic alterations and their clinicopathologic implications in non-small cell lung cancers. Clin Cancer Res 2005;11:8235–8242.CrossRefPubMedGoogle Scholar
  21. 21.
    Peng WX, Shibata T, Katoh H, et al. Array-based comparative genomic hybridization analysis of high-grade neuroendocrine tumors of the lung. Cancer Sci 2005;96:661–667.CrossRefPubMedGoogle Scholar
  22. 22.
    Shibata T, Uryu S, Kokubu A, et al. Genetic classification of lung adenocarcinoma based on array-based comparative genomic hybridization analysis: its association with clinicopathologic features. Clin Cancer Res 2005;11:6177–6185.CrossRefPubMedGoogle Scholar
  23. 23.
    Tonon G, Wong KK, Maulik G, et al. High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci USA 2005;102 9625–9630.CrossRefPubMedGoogle Scholar
  24. 24.
    Petersen I. Comparative genomic hybridization of human lung cancer. Methods Mol Med 2003;75:209–237.PubMedGoogle Scholar
  25. 25.
    Ashman JN, Brigham J, Cowen ME, et al. Chromosomal alterations in small cell lung cancer revealed by multicolour fluorescence in situ hybridization. Int J Cancer 2002;102:230–236.CrossRefPubMedGoogle Scholar
  26. 26.
    Chujo M, Noguchi T, Miura T, et al. Comparative genomic hybridization analysis detected frequent overrepresentation of chromosome 3q in squamous cell carcinoma of the lung. Lung Cancer 2002;38:23–29.CrossRefPubMedGoogle Scholar
  27. 27.
    Massion PP, Kuo WL, Stokoe D, et al. Genomic copy number analysis of non-small cell lung cancer using array comparative genomic hybridization: implications of the phosphatidylinositol 3-kinase pathway. Cancer Res 2002;62:3636–3640.PubMedGoogle Scholar
  28. 28.
    Lindstrom I, Nordling S, Nissen AM, et al. DNA copy number changes in lung adenocarcinoma in younger patients. Mod Pathol 2002;15:372–378.CrossRefPubMedGoogle Scholar
  29. 29.
    Goeze A, Schluns K, Wolf G, et al. Chromosomal imbalances of primary and metastatic lung adenocarcinomas. J Pathol 2002;196:8–16.CrossRefPubMedGoogle Scholar
  30. 30.
    Pei J, Balsara BR, Li W, et al. Genomic imbalances in human lung adenocarcinomas and squamous cell carcinomas. Genes Chromosomes Cancer 2001;31:282–287.CrossRefPubMedGoogle Scholar
  31. 31.
    Petersen I, Bujard M, Petersen S, et al. Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. Cancer Res 1997;57:2331–2335.PubMedGoogle Scholar
  32. 32.
    Balsara BR, Sonoda G, du Manoir S, et al. Comparative genomic hybridization analysis detects frequent, often highlevel, overrepresentation of DNA sequences at 3q, 5p, 7p, and 8q in human non-small cell lung carcinomas. Cancer Res 1997;57:2116–2120.PubMedGoogle Scholar
  33. 33.
    Petersen I, Langreck H, Wolf G, et al. Small-cell lung cancer is characterized by a high incidence of deletions on chromosomes 3p, 4q, 5q, 10q, 13q and 17p. Br J Cancer 1997;75:79–86.PubMedGoogle Scholar
  34. 34.
    Levin NA, Brzoska PM, Warnock ML, et al. Identification of novel regions of altered DNA copy number in small cell lung tumors. Genes Chromosomes Cancer 1995;13:175–185.CrossRefPubMedGoogle Scholar
  35. 35.
    Levin NA, Brzoska P, Gupta N, et al. Identification of frequent novel genetic alterations in small cell lung carcinoma. Cancer Res 1994;54:5086–5091.PubMedGoogle Scholar
  36. 36.
    Ried T, Petersen I, Holtgreve-Grez H, et al. Mapping of multiple DNA gains and losses in primary small cell lung carcinomas by comparative genomic hybridization. Cancer Res 1994;54:1801–1806.PubMedGoogle Scholar
  37. 37.
    Schrock E, du Manoir S, Veldman T, et al. Multicolor spectral karyotyping of human chromosomes. Science 1996;273:494–497.CrossRefPubMedGoogle Scholar
  38. 38.
    Speicher MR, Gwyn Ballard S, Ward DC. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 1996;12:368–375.CrossRefPubMedGoogle Scholar
  39. 39.
    Skacel M, Fahmy M, Brainard JA, et al. Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J Urol 2003;169:2101–2105.CrossRefPubMedGoogle Scholar
  40. 40.
    Halling KC, King W, Sokolova IA, et al. A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J Urol 2000;164:1768–1775.CrossRefPubMedGoogle Scholar
  41. 41.
    Kipp BR, Stadheim LM, Halling SA, et al. A comparison of routine cytology and fluorescence in situ hybridization for the detection of malignant bile duct strictures. Am J Gastroenterol 2004;99:1675–1681.CrossRefPubMedGoogle Scholar
  42. 42.
    Bubendorf L, Muller P, Joos L, et al. Multitarget FISH analysis in the diagnosis of lung cancer. Am J Clin Pathol 2005;123:516–523.CrossRefPubMedGoogle Scholar
  43. 43.
    Varella-Garcia M, Kittelson J, Schulte AP, et al. Multitarget interphase fluorescence in situ hybridization assay increases sensitivity of sputum cytology as a predictor of lung cancer. Cancer Detect Prev 2004;28:244–251.CrossRefPubMedGoogle Scholar
  44. 44.
    Romeo MS, Sokolova IA, Morrison LE, et al. Chromosomal abnormalities in non-small cell lung carcinomas and in bronchial epithelia of high-risk smokers detected by multi-target interphase fluorescence in situ hybridization. J Mol Diagn 2003;5:103–112.PubMedGoogle Scholar
  45. 45.
    Halling KC, Rickman OB, Kipp BR, et al. A comparison of cytology and fluorescence in situ hybridization for the detection of lung cancer in bronchoscopic specimens. Chest 2006;130:694–701.CrossRefPubMedGoogle Scholar
  46. 46.
    Kearney L, Horsley SW. Molecular cytogenetics in haematological malignancy: current technology and future prospects. Chromosoma 2005;114:286–294.CrossRefPubMedGoogle Scholar
  47. 47.
    Frohling S, Scholl C, Gilliland DG, et al. Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 2005;23:6285–6295.CrossRefPubMedGoogle Scholar
  48. 48.
    Bennicelli JL, Barr FG. Chromosomal translocations and sarcomas. Curr Opin Oncol 2002;14:412–419.CrossRefPubMedGoogle Scholar
  49. 49.
    Press MF, Bernstein L, Thomas PA, et al. HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol 1997;115:2894–2904.Google Scholar
  50. 50.
    Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002;20:719–726.CrossRefPubMedGoogle Scholar
  51. 51.
    Hicks DG, Tubbs RR. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum Pathol 2005;36:250–261.CrossRefPubMedGoogle Scholar
  52. 52.
    Cappuzzo F, Toschi L, Domenichini I, et al. HER3 genomic gain and sensitivity to gefitinib in advanced non-small-cell lung cancer patients. Br J Cancer 2005;93:1334–1340.CrossRefPubMedGoogle Scholar
  53. 53.
    Hirsch FR, Varella-Garcia M, McCoy J, et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study [see comment]. J Clin Oncol 2005;23:6838–6845.CrossRefPubMedGoogle Scholar
  54. 54.
    Cappuzzo F, Varella-Garcia M, Shigematsu H, et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol 2005;23:5007–5018.CrossRefPubMedGoogle Scholar
  55. 55.
    Suzuki S, Dobashi Y, Sakurai H, et al. Protein overexpression and gene amplification of epidermal growth factor receptor in nonsmall cell lung carcinomas. An immunohistochemical and fluorescence in situ hybridization study. Cancer 2005;103:1265–1273.CrossRefPubMedGoogle Scholar
  56. 56.
    Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 2005;97:643–655.PubMedCrossRefGoogle Scholar
  57. 57.
    Kluwe L, Siebert R, Gesk S, et al. Screening 500 unselected neurofibromatosis 1 patients for deletions of the NF1 gene. Hum Mutat 2004;123:111–116.CrossRefGoogle Scholar
  58. 58.
    Riva P, Corrado L, Natacci F, et al. NF1 microdeletion syndrome: refined FISH characterization of sporadic and familial deletions with locus-specific probes. Am J Hum Genet 2000;66:100–109.CrossRefPubMedGoogle Scholar
  59. 59.
    Xu J, Chen Z. Advances in molecular cytogenetics for the evaluation of mental retardation. Am J Med Genet Part C Semin Med Genet 2003;117:15–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Kevin C. Halling
    • 1
  • Amy J. Wendel
    • 1
  1. 1.Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA

Personalised recommendations