Advertisement

Antimicrobial Resistance of Anaerobic Bacteria

  • Ellie J. C. Goldstein
  • Diane M. Citron
  • David W. Hecht
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

Keywords

Anaerobic Bacterium Clin Infect Antimicrob Agent Bacteroides Fragilis Group Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, G., Degner, A., Cohen. S.H., Silva, J., Jr and Rodloff, A.C., (2003), Prevalence and association of macrolide–lincosamide–streptogramin B (MLS(B)) resistance with resistance to moxifloxacin in Clostridium difficile. J Antimicrob Chemother 51, 599–603.PubMedCrossRefGoogle Scholar
  2. Aldridge, K.E., Ashcraft, D., Cambre, K., Pierson, C.L., Jenkins, S.G. and Rosenblatt, J.E., (2001), Multicenter survey of the changing in vitro antimicrobial susceptibilities of clinical isolates of Bacteroides fragilis group, Prevotella, Fusobacterium, Porphyromonas, and Peptostreptococcus species. Antimicrob Agents Chemother, 45, 1238–1243.PubMedCrossRefGoogle Scholar
  3. Aldridge, K.E. and Schiro, D.D., (1994), Major methodology-dependent discordant susceptibility results for Bacteroides fragilis group isolates but not other anaerobes. Diagn Microbil Infect Dis, 20, 135–142.CrossRefGoogle Scholar
  4. Appelbaum, P.C., Spangler, S.K., Pankuch, G.A., Philippon, A., Jacobs, M.R., Goldstein, E.J.C. and Citron, D.M., (1994), Characterization of a beta-lactamase from Clostridium clostridioforme. J Antimicrob Chemother, 33, 33–40.PubMedCrossRefGoogle Scholar
  5. Baron, E.J., Ropers, G., Summanen. P. and Courcol, R.J., (1993), Bactericidal activity of selected antimicrobial agents against Bilophila wadsworthia and Bacteroides gracilis. Clin Infect Dis, 16, S339–S343.PubMedGoogle Scholar
  6. Behra-Miellet, J., Calvet, L. and Dubreuil, L., (2003a), Activity of linezolid against anaerobic bacteria. Int J Antimicrob Agents, 22, 28–34.CrossRefGoogle Scholar
  7. Behra-Miellet, J., Dubreuil, L. and Jumas-Bilak, E., (2003b), Antianaerobic activity of moxifloxacin compared with that of ofloxacin, ciprofloxacin, clindamycin, metronidazole and beta-lactams. Int J Antimicrob Agents, 20, 366–374.CrossRefGoogle Scholar
  8. Betriu, C., Culebras, E., Gomez, M., Rodriguez-Avial, I. and Picazo, J.J., (2005), In vitro activity of tigecycline against Bacteroides species. J Antimicrob Chemother, 56, 349–352.PubMedCrossRefGoogle Scholar
  9. Breuil, J., Dublanchet, A., Truffaut, N. and Sebald, M., (1989), Transferable 5-nitroimidazole resistance in the Bacteroides fragilis group. Plasmid, 21, 151–154.PubMedCrossRefGoogle Scholar
  10. Britz, M.L. and Wilkinson, R.G., (1978), Chloramphenicol acetyltransferase of Bacteroides fragilis. Antimicrob Agents Chemother, 14, 105–111.PubMedGoogle Scholar
  11. Bryan, L.E., Kowand, S.K. and Van Den Elzen, H.M., (1979), Mechanism of aminoglycoside antibiotic resistance in anaerobic bacteria: Clostridium perfringens and Bacteroides fragilis. Antimicrob Agents Chemother, 15, 7–13.PubMedGoogle Scholar
  12. Carlier, J.P., Sellier, N., Rager, M.N. and Reysset, G., (1997), Metabolism of a 5-nitroimidazole in susceptible and resistant isogenic strains of Bacteroides fragilis. Antimicrob Agents Chemother, 41, 1495–1499.PubMedGoogle Scholar
  13. Citron, D.M. and Hecht, D.W., (2003), Susceptibility test methods: anaerobic bacteria. In P.R. Murray, E.J. Baron, J.H. Jorgensen, M.A. Pfaller and R.H. Yolken, editors, 8th edition. Washington, D.C., ASM Press, pp. 1141–1148.Google Scholar
  14. Citron, D.M., Merriam, C.V., Tyrrell, K.L., Warren, Y.A., Fernandez, H. and Goldstein, E.J.C., (2003), In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria. Antimicrob Agents Chemother, 47, 2334–2338.PubMedCrossRefGoogle Scholar
  15. Citron, D.M., Ostovari, M.I., Karlsson, A. and Goldstein, E.J.C., (1991), Evaluation of the E test for susceptibility testing of anaerobic bacteria. J Clin Microbiol, 29, 2197–2203.PubMedGoogle Scholar
  16. Clinical and Laboratory Standards Institute (CLSI)/National Committee for Clinical Laboratory Standards (NCCLS), (2004), Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard M11-A6. Wayne, PA, Clinical and Laboratory Standards Institute.Google Scholar
  17. Clinical and Laboratory Standards Institute (CLSI)/National Committee for Clinical Laboratory Standards (NCCLS), (2007), Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard M11-A7. Wayne, PA, Clinical and Laboratory Standards Institute.Google Scholar
  18. Conrads, G., Citron, D.M. and Goldstein, E.J.C., (2005), Genetic determinant of intrinsic quinolone resistance in Fusobacterium canifelinum. Antimicrob Agents Chemother, 49, 434–437.PubMedCrossRefGoogle Scholar
  19. Cormican, M.G., Erwin, M.E. and Jones, R.N., (1996), False resistance to metronidazole by E-test among anaerobic bacteria investigations of contributing test conditions and medium quality. Diagn Microbiol Infect Dis, 24, 117–119.PubMedCrossRefGoogle Scholar
  20. Credito, K.L. and Appelbaum, P.C., (2004), Activity of OPT-80, a novel macrocycle, compared with those of eight other agents against selected anaerobic species. Antimicrob Agents Chemother, 48, 4430–4434.PubMedCrossRefGoogle Scholar
  21. Dalmau, D., Cayouette, M., Lamothe, F., Vincelette, J., Lachance, N., Bourgault, A.M., Gaudreau, C. and Turgeon, P.L., (1997), Clindamycin resistance in the Bacteroides fragilis group: association with hospital-acquired infections. Clin Infect Dis, 24, 874–877.PubMedGoogle Scholar
  22. Edmiston, C.E., Krepel, C.J., Seabrook, G., Somberg, L.R., Nakeeb, A., Cambria, R.A. and Town, J.B., (2004), In vitro activities of moxifloxacin against 900 aerobic and anaerobic surgical isolates from patients with intra-abdominal and diabetic foot infections. Antimicrob Agents Chemother, 48, 1012–1016.PubMedCrossRefGoogle Scholar
  23. Ednie, L.M., Jacobs, M.R. and Appelbaum, P.C., (1998), Activities of gatifloxacin compared to those of seven other agents against anaerobic organisms. Antimicrob Agents Chemother, 42, 2459–2462.PubMedGoogle Scholar
  24. Edwards, R. and Read, P.N., (2000), Expression of the carbapenemase gene (cfiA) in Bacteroides fragilis. J Antimicrob Chemother, 46, 1009–1012.PubMedCrossRefGoogle Scholar
  25. Fang, H., Edlund, C., Nord, C.E. and Hedberg, M., (2002), Selection of cefoxitin-resistant Bacteroides thetaiotaomicron mutants and mechanisms involved in beta-lactam resistance. Clin Infect Dis, 35, S47–S53.PubMedCrossRefGoogle Scholar
  26. Finegold, S.M., (1994), Review of early research in anaerobes. Clin Infect Dis, 18, (Suppl. 4), S248–S249.PubMedGoogle Scholar
  27. Gal, M. and Brazier, J.S., (2004), Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole-resistant mutants. J Antimicrob Chemother, 54, 109–116.PubMedCrossRefGoogle Scholar
  28. Golan, Y., McDermott, L.A., Jacobus, N.V., Goldstein, E.J.C., Finegold, S.M., Harrell, L.J., Hecht, D.W., Jenkins, S.G., Pierson, C., Venezia, R., Rihs, J., Iannini, P., Gorbach, S.L. and Snydman, D.R., (2003), Emergence of fluoroquinolone resistance among Bacteroides species. J Antimicrob Chemother, 52, 208–213.PubMedCrossRefGoogle Scholar
  29. Goldstein, E.J.C., (1995), Anaerobes under assault: from a cottage industry to the industrial revolution of medicine & microbiology. Clin Infect Dis 20 (Suppl. 2),112–116.Google Scholar
  30. Goldstein, E.J.C, Citron, D.M., Cole, R.E., Rangel, D.M., Seid, A.S. and Ostovari, M.I., (1990), Cefoxitin in the treatment of aerobic/anaerobic infections: prospective correlation of in vitro susceptibility methods with clinical outcome. Hospital Practice, Symposium Supplement, 25 (Suppl. 4), 38–45.Google Scholar
  31. Goldstein, E.J.C., Citron, D.M. and Goldman, R.J., (1992), National hospital survey of anaerobic culture and susceptibility testing methods: results and recommendations for improvement. J Clin Microbiol, 30, 1529–1534.PubMedGoogle Scholar
  32. Goldstein, E.J.C., Citron, D.M., Goldman, R.J., Claros, M.C. and Hunt-Gerardo, S., (1995a), United States national hospital survey of anaerobic culture and susceptibility methods. Anaerobe, 1, 309–314.CrossRefGoogle Scholar
  33. Goldstein, E.J.C., Summanen, P.H., Citron, D.M., Rosove, M.H. and Finegold. S.M., (1995b), Fatal sepsis due to a beta-lactamase-producing strain of Fusobacterium nucleatum subspecies polymorphum. Clin Infect Dis, 20, 797–800.Google Scholar
  34. Goldstein, E.J.C., Citron, D.M., Merriam, C.V., Warren, Y. and Tyrrell, K.L., (2000), Comparative In vitro activities of ertapenem (MK-0826) against 1,001 anaerobes isolated from human intra-abdominal infections. Antimicrob Agents Chemother, 44, 2389–2394.PubMedCrossRefGoogle Scholar
  35. Goldstein, E.J.C., Citron, D.M., Merriam, C.V., Warren, Y., Tyrrell, K. and Fernandez, H.T., (2003a), In vitro activities of dalbavancin and nine comparator agents against anaerobic gram-positive species and corynebacteria. Antimicrob Agents Chemother, 47, 1968–1971.CrossRefGoogle Scholar
  36. Goldstein, E.J.C., Citron, D.M., Merriam, C.V., Warren, Y.A., Tyrrell, K.L. and Fernandez, H.T., (2003b), In vitro activities of daptomycin, vancomycin, quinupristin–dalfopristin, linezolid, and five other antimicrobials against 307 gram-positive anaerobic and 31 Corynebacterium clinical isolates. Antimicrob Agents Chemother, 47, 337–341.CrossRefGoogle Scholar
  37. Goldstein, E.J.C., Citron, D.M., Merriam, C.V., Warren, Y.A,, Tyrrell, K.L. and Fernandez, H.T., (2004), In vitro activities of the new semisynthetic glycopeptide telavancin (TD-6424), vancomycin, daptomycin, linezolid, and four comparator agents against anaerobic gram-positive species and Corynebacterium spp. Antimicrob Agents Chemother, 48, 2149–2152.PubMedCrossRefGoogle Scholar
  38. Goldstein, E.J.C., Citron, D.M., Warren, Y.A., Merriam, C.V. and Fernandez, H., (2006a), In vitro activity of moxifloxacin against 923 anaerobes isolated from human intra-abdominal infections. Antimicrob Agents Chemother, 50, 148–155.CrossRefGoogle Scholar
  39. Goldstein, E.J.C., Citron, D.M., Warren, Y.A., Tyrrell, K.L., Merriam, C.V. and Fernandez, H.T., (2006b), The comparative in vitro susceptibilities of 396 unusual anaerobic strains to tigecycline and eight other antimicrobial agents. Antimicrob Agents Chemother, 50, 3507–3513.CrossRefGoogle Scholar
  40. Goldstein, E.J.C., Citron, D.M., Vaidya, S.A., Warren, Y.A., Tyrrell, K.L., Merriam, C.V. and Fernandez, H., (2006c), In vitro activity of 11 antibiotics against 74 anaerobes isolated from pediatric intra-abdominal infections. Anaerobe, 12, 63–66.CrossRefGoogle Scholar
  41. Haggoud, A., Reysset, G., Azeddoug, H. and Sebald, M., (1994), Nucleotide sequence analysis of two 5-nitroimidazole resistance determinants from Bacteroides strains and of a new insertion sequence upstream of the two genes. Antimicrob Agents Chemother, 38, 1047–1051.PubMedGoogle Scholar
  42. Hecht, D.W., (2002), Evolution of anaerobe susceptibility testing in the United States. Clin Infect Dis, 35, S28–S35.PubMedCrossRefGoogle Scholar
  43. Hecht, D.W., (2004), Prevalence of antibiotic resistance in anaerobic bacteria: worrisome developments. Clin Infect Dis, 39, 92–97.PubMedCrossRefGoogle Scholar
  44. Hecht, D.W., (2006), Anaerobes: antibiotic resistance, clinical significance, and the role of susceptibility testing. Anaerobe, 12, 115–121.PubMedCrossRefGoogle Scholar
  45. Hecht, D.W. and Osmolski, J.R., (2003), Activities of garenoxacin (BMS-284756) and other agents against anaerobic clinical isolates. Antimicrob Agents Chemother 47, 910–916.PubMedCrossRefGoogle Scholar
  46. Hecht, D.W., Osmolski, J.R. and O’Keefe, J.P., (1993), Variation in the susceptibility of Bacteroides fragilis group isolates from six Chicago hospitals. Clin Infect Dis, 16 (Suppl 4), S357–S360.PubMedGoogle Scholar
  47. Hecht, D.W. and Vedantam, G., (1999), Anaerobe resistance among anaerobes: what now? Anaerobe, 5, 421–429.CrossRefGoogle Scholar
  48. Hedberg, .M. and Nord, C.E., (2003), Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe. Clin Microbiol Infect, 9, 475–488.PubMedCrossRefGoogle Scholar
  49. Heseltine, P.N., Yellin, A.E., Applaman, M.D., Gill, M.A., Chenella, F.C., Kern, J.W. and Berne, T.V., (1983), Perforated and gangenrous appendicitis: an analysis of antibiotic failures. J Infect Dis, 148, 322–329.PubMedGoogle Scholar
  50. Hoellman, D.B., Kelly, L.M., Jacobs, M.R. and Appelbaum, P.C., (2001), Comparative antianaerobic activity of BMS 284756. Antimicrob Agents Chemother, 45, 589–592.PubMedCrossRefGoogle Scholar
  51. Jacobus, N.V., McDermott, L.A., Ruthazer, R. and Snydman, D.R., (2004), In vitro activities of tigecycline against the Bacteroides fragilis group. Antimicrob Agents Chemother, 48, 1034–1036.PubMedCrossRefGoogle Scholar
  52. Jimenez-Diaz, A., Reig, M., Baquero, F. and Ballesta, J.P., (1992), Antibiotic sensitivity of ribosomes from wild-type and clindamycin resistant Bacteroides vulgatus strains. J Antimicrob Chemother, 30, 295–301.PubMedCrossRefGoogle Scholar
  53. Katsandri, A., Paparaskevas, J., Pantazatou, A., Petrikkos, G.L., Thomopoulos, G., Houhoula, D.P. and Avlamis, A., (2006), Two cases of infections due to multidrug-resistant Bacteroides fragilis group strains. J Clin Microbiol, 44, 3465–3467.PubMedCrossRefGoogle Scholar
  54. Koeth, L.M., Good, C.E., Appelbaum, P.C., Goldstein, E.J.C, Rodloff, A.C., Claros, M. and Dubreuil, L.J., (2004), Surveillance of susceptibility patterns in 1297 European and US anaerobic and capnophilic isolates to co-amoxiclav and five other antimicrobial agents. J Antimicrob Chemother, 53, 1039–1044.PubMedCrossRefGoogle Scholar
  55. Matto, J., Asikainen, S., Vaisanen, M.L., Von Troil-Linden, B., Kononen, E., Saarela, M., Salminen, K., Finegold, S.M and Jousimies-Somer, H., (1999), Beta-lactamase production in Prevotella intermedia, Prevotella nigrescens, and Prevotella pallens genotypes and in vitro susceptibilities to selected antimicrobial agents. Antimicrob Agents Chemother, 43, 2383–2388.PubMedGoogle Scholar
  56. Molitoris, E., Wexler, H.M. and Finegold, S.M., (1997), Sources and antimicrobial susceptibilities of Campylobacter gracilis and Sutterella wadsworthensis. Clin Infect Dis, 25, S264–S265.PubMedCrossRefGoogle Scholar
  57. National Committee for Clinical Laboratory Standards (NCCLS), (1993), Methods for antimicrobial susceptibility testing of anaerobic bacteria, 3rd edition. Approved standard M11-A3. Villanova, PA, National Committee for Clinical Laboratory Standards.Google Scholar
  58. National Committee for Clinical Laboratory Standards (NCCLS), (1997), Methods for antimicrobial susceptibility testing of anaerobic bacteria, 4th edition. M11-A4. Villanova, PA, NCCLS.Google Scholar
  59. National Committee for Clinical Laboratory Standards (NCCLS), (2001), Methods for antimicrobial susceptibility testing of anaerobic bacteria, 5th edition. Approved standard M11-A5. Wayne, PA, National Committee for Clinical Laboratory Standards.Google Scholar
  60. Nguyen, M.H., Yu, V.L., Morris, A.J. McDermott, L., Wagener, M.W., Harrell, L. and Snydman, D.R., (2000), Antimicrobial resistance and clinical outcome of Bacteroides bacteremia: findings of a multicenter prospective observational trial. Clin Infect Dis, 30, 870–876.PubMedCrossRefGoogle Scholar
  61. Nikolich, M.P., Shoemaker, N.B. and Salyers, A.A., (1992), A Bacteroides tetracycline resistance gene represents a new class of ribosome protection tetracycline resistance. Antimicrob Agents Chemother 36, 1005–1012.PubMedGoogle Scholar
  62. Nord, C.E. and Oprica, C., (2006), Antibiotic resistance in Propionibacterium acnes, microbiological and clinical aspects. Anaerobe, 12, 207–210.PubMedCrossRefGoogle Scholar
  63. Nyfors, S., Kononen, E., Syrjanen, R., Komulainen, E. and Jousimies-Somer. H., (2003), Emergence of penicillin resistance among Fusobacterium nucleatum populations of commensal oral flora during early childhood. J Antimicrob Chemother, 51, 107–112.PubMedCrossRefGoogle Scholar
  64. Oh, H., Hedberg, M. and Edlund, C., (2002), Efflux-mediated fluoroquinolone resistance in the Bacteroides fragilis group. Anaerobe, 8, 277–282.CrossRefGoogle Scholar
  65. Onodera, Y. and Sato, K., (1999), Molecular cloning of the gyrA and gyrB genes of Bacteroides fragilis encoding DNA gyrase. Antimicrob Agents Chemother, 43, 2423–2429.PubMedGoogle Scholar
  66. Pelak, B.A., Citron, D.M., Motyl, M., Goldstein, E.J.C., Woods, G.L. and Teppler, H., (2002), Comparative in vitro activities of ertapenem against bacterial pathogens from patients with acute pelvic infection. J Antimicrob Chemother, 50, 735–741.PubMedCrossRefGoogle Scholar
  67. Polglajen, I., Breuil, J. and Collatz, E., (1994), Insertion of a novel DNA sequence, 1S1186, upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis. Mol Microbiol, 12, 105–114.CrossRefGoogle Scholar
  68. Privitera, G., Dublanchet, A. and Sebald, M., (1979), Transfer of multiple antibiotic resistance between subspecies of Bacteroides fragilis. J Infect Dis, 139, 97–101.PubMedGoogle Scholar
  69. Pumbwe, L., Chang, A., Smith, R.L. and Wexler, H.M., (2006), Clinical significance of overexpression of multiple RND-family efflux pumps in Bacteroides fragilis isolates. J Antimicrob Chemother, 58, 543–548.PubMedCrossRefGoogle Scholar
  70. Rasmussen, B.A., Bush, K. and Tally, F.P., (1997), Antimicrobial resistance in anaerobes. Clin Infect Dis, 24 (Suppl 1), S110–S120.PubMedGoogle Scholar
  71. Ricci, V. and Piddock, L., (2003), Accumulation of garenoxacin by Bacteroides fragilis compared with that of five fluoroquinolones. J Antimicrob Chemother, 52, 605–609.PubMedCrossRefGoogle Scholar
  72. Roberts, M.C., Sutcliffe, J., Courvalin, P., Jensen, L.B., Rood, J. and Seppala, H., (1999), Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother, 43, 2823–2830.PubMedGoogle Scholar
  73. Roe, D.E., Finegold, S.M., Citron, D.M., Goldstein, E.J.C., Wexler, H.M., Rosenblatt, J.E., Cox, M.E., Jenkins, S.G. and Hecht D.W., (2002a), Multilaboratory comparison of anaerobe susceptibility results using 3 different agar media. Clin Infect Dis, 35, S40–S46.CrossRefGoogle Scholar
  74. Roe, D.E., Finegold, S.M., Citron, D.M. Goldstein, E.J.C., Wexler, H.M., Rosenblatt, J.E., Cox, M.E., Jenkins, S.G. and Hecht D.W., (2002b), Multilaboratory comparison of growth characteristics for anaerobes, using 5 different agar media. Clin Infect Dis, 35, S36–S39.CrossRefGoogle Scholar
  75. Rogers, M.B., Parker, A.C. and Smith, C.J., (1993), Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A beta-lactamases. Antimicrob Agents Chemother, 37, 2391–2400.PubMedGoogle Scholar
  76. Rosenblatt, J.E. and Gustafson, D.R., (1995), Evaluation of the Etest for susceptibility testing of anaerobic bacteria. Diagn Microbiol Infect Dis, 22, 279–284.PubMedCrossRefGoogle Scholar
  77. Schapiro, J.M., Gupta, R. Stefanson, E., Fang, F.C. and Limaye, A.P., (2004), Isolation of metronidazole-resistant Bacteroides fragilis carrying the nimA nitroreductase gene from a patient in Washington State. J Clin Microbiol, 42, 4127–4129.PubMedCrossRefGoogle Scholar
  78. Snydman, D.R., Cuchural, G.J., Jr, McDermott, L. and Gill, M., (1992), Correlation of various in vitro testing methods with clinical outcomes in patients with Bacteroides fragilis group infections treated with cefoxitin: a retrospective analysis. Antimicrob Agents Chemother, 36, 540–544.PubMedGoogle Scholar
  79. Snydman, D.R., Jacobus, N.V., McDermott, L.A., Ruthazer, R., Goldstein, E.J.C., Finegold, S.M., Harrell, L.J., Hecht, D.W. Jenkins, S.G., Pierson, C., Venezia, R., Rihs, J. and Gorbach, S.L., (2002a), National survey on the susceptibility of Bacteroides fragilis Group: report and analysis of trends for 1997–2000. Clin Infect Dis, 35, S126–S134.CrossRefGoogle Scholar
  80. Snydman, D.R., Jacobus, N.V., McDermott, L.A., Ruthazer, R., Goldstein, E.J.C., Finegold, S.M., Harrell, L., Hecht, D.W., Jenkins, S., Pierson, C., Venezia, R., Rihs, J. and Gorbach, S.L., (2002b), In vitro activities of newer quinolones against Bacteroides group organisms. Antimicrob Agents Chemother, 46, 3276–3279.CrossRefGoogle Scholar
  81. Snydman, D.R., Jacobus, N.V., McDermott, L.A., Ruthazer, R., Goldstein, E.J.C., Finegold, S.M., Harrell, L., Hecht, D.W., Jenkins, S., Pierson, C., Venezia, R., Rihs, J. and Gorbach, S.L., (2007), National survey on the susceptibility of Bacteroides fragilis Group: report and analysis of trends for 1997–2004, a US Survey. Antimicrob Agents Chemother, 51, 1649–1655.PubMedCrossRefGoogle Scholar
  82. Snydman, D.R., Jacobus, N.V., McDermott, L.A., Supran, S., Cucheral, G.J., Jr, Finegold, S.M., Harrell, L.J., Hecht, D.W., Iannini, P., Jenkins, S.G., Pierson, C., Rihs, J. and Gorbach, S.L., (1999), Multicenter study of in vitro susceptibility of the Bacteroides fragilis group, 1995 to 1996, with comparison of resistance trends from 1990 to 1996. Antimicrob Agents Chemother, 43, 2417–2422.PubMedGoogle Scholar
  83. Soki, J., Fodor, E., Hecht, D.W., Edwards, R., Rotimi, V.O., Kerkes, I., Urban, E. and Nagy, E., (2004), Molecular characterization of imipenem-resistant, cifA-positive Bacteroides isolates from the USA, Hungary and Kuwait. J Med Microbiol, 53, 413–419.PubMedCrossRefGoogle Scholar
  84. Solomkin, J.S., Mazuski, J.E., Baron, E.J., Sawyer, R.G., Nathens, A.B., DiPiro, J.T., Buchman, T., Dellinger, E.P., Jernigan, J., Gorbach, S., Chow, A.W., Bartlett, J. and the Infectious Diseases Society of America. (2003)Guidelines for the selection of anti-infective agents for complicated intra-abdominal infections. Clin Infect Dis, 37, 997–1005.Google Scholar
  85. Tally, F.P., Snydman, D.R., Gorbach, S.L. and Malamy, M.H., (1979), Plasmid-mediated, transferable resistance to clindamycin and erythromycin in Bacteroides fragilis. J Infect Dis, 139, 83–88.PubMedGoogle Scholar
  86. Tanaka, K., Kawamura, C., Fukui, K., Kato, H., Kato, N., Nakamura, T., Watanabe, K. and Ueno, K., (1999), Antimicrobial Susceptibility and [beta]-lactamase production of Prevotella spp. and Porphyromonas spp. Anaerobe, 5, 461–463CrossRefGoogle Scholar
  87. Teng, L.J., Hsueh, P.R., Tsai, J.C., Liaw, S.J., Ho, S.W. and Luh, K.T.(2002) High incidence of cefoxitin and clindamycin resistance among anaerobes in Taiwan. Antimicrob Agents Chemother, 46, 2908–2913.Google Scholar
  88. Trinh, S., Haggoud, A., Reysset, G. and Sebald, M. (1995) Plasmids pIP419 and pIP421 from Bacteroides: 5-nitroimidazole resistance genes and their upstream insertion sequence elements. Microbiology, 141 (Pt 4), 927–935.Google Scholar
  89. Turner, P., Edwards, R., Weston, V., Gazis, A., Ispahani, P. and Greenwood, D. (1995) Simultaneous resistance to metronidazole, co-amoxiclav, and imipenem in clinical isolate of Bacteroides fragilis. Lancet, 345, 1275–1277.PubMedCrossRefGoogle Scholar
  90. Urban, E., Soki, J., Brazier, J. S., Nagy, E. and Duerden, B. I., (2002), Prevalence and characterization of nim gnes of Bacteroides sp. isolated in Hungary. Anaerobe, 8, 175–179.CrossRefGoogle Scholar
  91. van der Wouden, E.J., Thijs, J.C., Kusters, J.G., van Zwet, A.A. and Kleibeuker, J.H. (2001) Mechanism and clinical significance of metronidazole resistance in Helicobacter pylori. Scand J Gastroenterol (Suppl.), 234, 10–14.CrossRefGoogle Scholar
  92. Wareham, D.W., Wilks, M., Ahmed, D., Brazier, J.S. and Miller, M. (2005) Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: Microbiological cure and clinical response with linezolid therapy. Clin Infect Dis, 40 e67–40e68.Google Scholar
  93. Welch, R.A., Jones, K.R. and Macrina, F.L., (1979), Transferable lincosamide-macrolide resistance in Bacteroides. Plasmid, 2, 261–268.PubMedCrossRefGoogle Scholar
  94. Wexler, H.M., (2002), Outer-membrane pore-forming proteins in gram-negative anaerobic bacteria. Clin Infect Dis, 35, S65–S71.PubMedCrossRefGoogle Scholar
  95. Wexler, H.M. and Halebian, S., (1990), Alterations to the penicillin-binding proteins in the Bacteroides fragilis group: a mechanism for non-β-lactamase mediated cefoxitin resistance. J Antimicrob Chemother, 26, 7–20.PubMedCrossRefGoogle Scholar
  96. Wexler, H.M., Molitoris, E., Molitoris, D. and Finegold, S.M., (2000), In vitro activity of moxifloxacin against 179 strains of anaerobic bacteria found in pulmonary infections. Anaerobe, 6,227–231.CrossRefGoogle Scholar
  97. Whittle, G., Shoemaker, N.B. and Salyers, A.A., (2002), The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell Mol Life Sci, 59, 2044–2054.PubMedCrossRefGoogle Scholar
  98. Yang, Y., Rasmussen, B.A. and Bush, K., (1992), Biochemical characterization of the metallo-beta-lactamase CcrA from Bacteroides fragilis TAL3636. Antimicrob Agents Chemother, 36, 1155–1157.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ellie J. C. Goldstein
  • Diane M. Citron
  • David W. Hecht

There are no affiliations available

Personalised recommendations