Resistance of Gram-Negative Bacilli to Antimicrobials

  • Patricia A. Bradford
  • Charles R. Dean
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)


Pseudomonas Aeruginosa Antimicrob Agent Quinolone Resistance National Nosocomial Infection Surveillance Diagn Microbiol Infect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, E.P. and Chain, E., (1940), An enzyme from bacteria able to destroy penicillin. Nature, 146, 837.Google Scholar
  2. Acar, J.F. and Goldstein, F.W., (1997), Trends in bacterial resistance to fluoroquinolones. Clin Infect Dis, 24 (Suppl. 1), S67–73.PubMedGoogle Scholar
  3. Acosta, M.B., Ferreira, R.C., Padilla, G., Ferreira, L.C. and Costa, S.O., (2000), Altered expression of oligopeptide-binding protein (OppA) and aminoglycoside resistance in laboratory and clinical Escherichia coli strains. J Med Microbiol, 49, 409–413.PubMedGoogle Scholar
  4. Adams, D.E., Shekhtman, E.M., Zechiedrich, E.L., Schmid, M.B. and Cozzarelli, N.R., (1992), The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell, 71, 277–288.PubMedCrossRefGoogle Scholar
  5. Adewoye, L., Sutherland, A., Srikumar, R. and Poole, K., (2002), The mexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: characterization of mutations compromising activity. J Bacteriol, 184, 4308–4312.PubMedCrossRefGoogle Scholar
  6. Afzal-Shah, M., Villar, H.E. and Livermore, D.M., (1999), Biochemical characteristics of a carbapenemase from an Acinetobacter baumannii isolate collected in Buenos Aires, Argentina. J Antimicrob Chemother, 43, 127–131.PubMedCrossRefGoogle Scholar
  7. Ahmad, M., Urban, C., Mariano, N., Bradford, P.A., Calcagni, E., Projan, S.J., Bush, K. and Rahal, J.J., (1999), Clinical characteristics and molecular epidemiology associated with imipenem-resistant Klebsiella pneumoniae. Clin Infect Dis, 29, 352–355.PubMedGoogle Scholar
  8. Aires, J.R., Kohler, T., Nikaido, H. and Plesiat, P., (1999), Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother, 43, 2624–2628.PubMedGoogle Scholar
  9. Aires, J.R. and Nikaido, H., (2005), Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol, 187, 1923–1929.PubMedCrossRefGoogle Scholar
  10. Akama, H., Kanemaki, M., Yoshimura, M., Tsukihara, T., Kashiwagi, T., Yoneyama, H., Narita, S., Nakagawa, A. and Nakae, T., (2004a), Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end. J Biol Chem, 279, 52816–52819.CrossRefGoogle Scholar
  11. Akama, H., Matsuura, T., Kashiwagi, S., Yoneyama, H., Narita, S., Tsukihara, T., Nakagawa, A. and Nakae, T., (2004b), Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J Biol Chem, 279, 25939–25942.CrossRefGoogle Scholar
  12. Alekshun, M.N. and Levy, S.B., (1997), Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother, 41, 2067–2075.PubMedGoogle Scholar
  13. Allen, N.E., Alborn, W.E., Jr, Hobbs, J.N., Jr and Kirst, H.A., (1982), 7-Hydroxytropolone: an inhibitor of aminoglycoside-2”-O-adenylyltransferase. Antimicrob Agents Chemother, 22, 824–831.PubMedGoogle Scholar
  14. Ambler, R.P., (1980), The structure of β-lactamases. Philos Trans R Soc Lond [Biol], 289, 321–331.CrossRefGoogle Scholar
  15. Azucena, E. and Mobashery, S., (2001), Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist Updat, 4, 106–117.PubMedCrossRefGoogle Scholar
  16. Babinchak, T., Ellis-Grosse, E.J., Dartois, N., Rose, G.M. and Loh, E., (2005), The efficacy and safety of tigecycline in the treatment of complicated intra-abdominal infections: analysis of pooled clinical trial data. Clin Infect Dis, 41, S354–S367.PubMedCrossRefGoogle Scholar
  17. Bandoh, K., Watanabe, K., Muto, Y., Tanaka, Y., Kato, N. and Ueno, K., (1992), Conjugal transfer of imipenem resistance in Bacteroides fragilis. J Antibiot, 45, 542–547.PubMedGoogle Scholar
  18. Barclay, M.L. and Begg, E.J., (2001), Aminoglycoside adaptive resistance: importance for effective dosage regimens. Drugs, 61, 713–721.PubMedCrossRefGoogle Scholar
  19. Barclay, M.L., Begg, E.J. and Chambers, S.T., (1992), Adaptive resistance following single doses of gentamicin in a dynamic in vitro model. Antimicrob Agents Chemother, 36, 1951–1957.PubMedGoogle Scholar
  20. Barclay, M.L., Begg, E.J., Chambers, S.T., Thornley, P.E., Pattemore, P.K. and Grimwood, K., (1996), Adaptive resistance to tobramycin in Pseudomonas aeruginosa lung infection in cystic fibrosis. J Antimicrob Chemother, 37, 1155–1164.PubMedCrossRefGoogle Scholar
  21. Barnaud, G., Arlet, G., Verdet, C., Gaillot, O., Lagrange, P.H. and Philippon, A., (1998), Salmonella enteritidis: AmpC plasmid-mediated inducible β-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrob Agents Chemother, 42, 2352–2358.PubMedGoogle Scholar
  22. Bartlett, J.G., (2003), 20032004 Pocket Book of Infectious Disease Therapy. Baltimore MD, Lipinncott Williams and Wilkins.Google Scholar
  23. Bastida, T., Perez-Vazquez, M., Campos, J., Cortes-Lletget, M.C., Roman, F., Tubau, F., de la Campa, A.G. and Alonso-Tarres, C., (2003), Levofloxacin treatment failure in Haemophilus influenzae pneumonia. Emerg Infect Dis, 9, 1475–1478.PubMedGoogle Scholar
  24. Baucheron, S., Chaslus-Dancla, E. and Cloeckaert, A., (2004), Role of TolC and parC mutation in high-level fluoroquinolone resistance in Salmonella enterica serotype Typhimurium DT204. J Antimicrob Chemother, 53, 657–659.PubMedCrossRefGoogle Scholar
  25. Baucheron, S., Imberechts, H., Chaslus-Dancla, E. and Cloeckaert, A., (2002), The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204. Microb Drug Resist, 8, 281–289.PubMedCrossRefGoogle Scholar
  26. Bauer, G., Berens, C., Projan, S.J. and Hillen, W., (2004), Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA. J Antimicrob Chemother, 53, 592–599.PubMedCrossRefGoogle Scholar
  27. Bauernfeind, A., Casellas, J.M., Goldberg, M., Holley, M., Jungwirth, R., Mangold, P., Rohnisch, T., Schweighart, S. and Wilhelm, R., (1992), A new plasmidic cefotaximase from patients infected with Salmonella typhimurium. Infection, 20, 158–163.PubMedCrossRefGoogle Scholar
  28. Bauernfeind, A., Stemplinger, I., Jungwirth, R., Ernst, S. and Casellas, J.M., (1996a), Sequences of β-lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other β-lactamases. Antimicrob Agents Chemother, 40, 509–513.Google Scholar
  29. Bauernfeind, A., Schneider, I., Jungwirth, R., Sahly, H. and Ullmann, U., (1999), A novel type of AmpC β-lactamase, ACC-1 produced by a Klebsiella pneumoniae strain causing nosocomial pneumonia. Antimicrob Agents Chemother, 143, 1924–1931.Google Scholar
  30. Bauernfeind, A., Stemplinger, I., Jungwirth, R., Wilhelm, R. and Chong, Y., (1996b), Comparative characterization of the cephamycinase bla_CMY-1 gene and its relationship with other β-lactamase genes. Antimicrob Agents Chemother, 40, 1926–1930.Google Scholar
  31. Bayer, A.S., Norman, D.C. and Kim, K.S., (1987), Characterization of impermeability variants of Pseudomonas aeruginosa isolated during unsuccessful therapy of experimental endocarditis. Antimicrob Agents Chemother, 31, 70–75.PubMedGoogle Scholar
  32. Beauclerk, A.A. and Cundliffe, E., (1987), Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J Mol Biol, 193, 661–671.PubMedCrossRefGoogle Scholar
  33. Belland, R.J., Morrison, S.G., Ison, C. and Huang, W.M., (1994), Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol Microbiol, 14, 371–380.PubMedCrossRefGoogle Scholar
  34. Berens, G. and Hillen, W., (2003), Gene regulation by tetracyclines: Constraints of resistance regulation in bacteria shape TetR for applicatin in eukaryotes. Eur J Biochem, 270, 3109–3121.PubMedCrossRefGoogle Scholar
  35. Bergeron, J., Ammirati, M., Danley, D., James, L., Norcia, M., Retsema, J., Strick, C.A., Su, W.G., Sutcliffe, J. and Wondrack, L., (1996), Glycylcyclines bind to the high-affinity tetracycline ribosomal binding site and evade Tet(M)- and Tet(O)-mediated ribosomal protection. Antimicrob Agents Chemother, 40, 2226–2228.PubMedGoogle Scholar
  36. Bergogne-Berezin, E. and Towner, K.J., (1996), Acinetobacter spp. as nosocomial pathogens: microbiological clinical, and epidemiological features. Clin Microbiol Rev, 9, 148–165.PubMedGoogle Scholar
  37. Bermudes, H., Jude, F., Chaibi, E.B., Arpin, C., Bebear, C., Labia, R. and Quentin, C., (1999), Molecular characterization of TEM-59 (IRT-17), a novel inhibitor-resistant TEM-derived β-lactamase in a clinical isolate of Klebsiella oxytoca. Antimicrob Agents Chemother, 43, 1657–1661.PubMedGoogle Scholar
  38. Bert, F. and Lambert-Zechovsky, N., (1996), Comparative distribution of resistance patterns and serotypes in Pseudomonas aeruginosa isolates from intensive care units and other wards. J Antimicrob Chemother, 37, 809–813.PubMedCrossRefGoogle Scholar
  39. Bhavnani, S.M., Callen, W.A., Forrest, A., Gilliland, K.K., Collins, D.A., Paladino, J.A. and Schentag, J.J., (2003), Effect of fluoroquinolone expenditures on susceptibility of Pseudomonas aeruginosa to ciprofloxacin in U.S. hospitals. Am J Health Syst Pharm, 60, 1962–1970.PubMedGoogle Scholar
  40. Bonnet, R., Sampaio, J.L.M., Labia, R., Champs, C.D., Sirot, D., Chanel, C. and Sirot, J., (2000), A novel CTX-M β-lactamase (CTX-M-8) in cefotaxime-resistant Enterobacteriaceae isolated in Brazil. Antimicrob Agents Chemother, 44, 1936–1942.PubMedCrossRefGoogle Scholar
  41. Bonomo, R.A., Currie-McCumber, C. and Shlaes, D.M., (1992), OHIO-1 β-lactamase resistant to mechanism-based inactivators. FEMS Microbiol Lett, 71, 79–82.PubMedCrossRefGoogle Scholar
  42. Bonomo, R.A., Rudin, S.A. and Shlaes, D.M., (1997), Tazobactam is a potent inactivator of selected inhibitor-resistant class A β-lactamases. FEMS Microbiol Lett, 148, 59–62.PubMedCrossRefGoogle Scholar
  43. Bou, G., Oliver, A., Ljeda, M., Monzo’n, C. and Marti’nez-Beltra’n, J., (2000), Molecular characterization of FOX-4, a new AmpC-type plasmid-mediated β-lactamase from an Escherichia coli strain isolated in Spain. Antimicrob Agents Chemother, 44, 2549–2553.PubMedCrossRefGoogle Scholar
  44. Bradford, P.A., Bratu, S., Urban, C., Visalli, M., Mariano, N., Landman, D.L., Rahal, J.J., Brooks, S., Cebular, S. and Quale, J., (2004), Emergence of carbapenem-resistant Klebsiella spp. possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin Infect Dis. 39, 55–60PubMedCrossRefGoogle Scholar
  45. Bradford, P.A., Urban, C., Jaiswal, A., Mariano, N., Rasmussen, B.A., Projan, S.J., Rahal, J.J. and Bush, K., (1995), SHV-7, a novel cefotaxime-hydrolyzing β-lactamase, identified in Escherichia coli isolates from hospitalized nursing home patients. Antimicrob Agents Chemother, 39, 899–905.PubMedGoogle Scholar
  46. Bradford, P.A., Urban, C., Mariano, N., Projan, S.J., Rahal, J.J. and Bush, K., (1997), Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase and the loss of an outer membrane protein. Antimicrob Agents Chemother, 41, 563–569.PubMedGoogle Scholar
  47. Bradford, P.A., Weaver-Sands, D.T. and Petersen, P.J., (2005), In vitro activity of tigecycline against isolates from patients enrolled in phase 3 clinical trials for complicated skin and skin structure infections and complicated intra-abdominal infections. Clin Infect Dis, 41(Suppl. 5), S315–332.PubMedCrossRefGoogle Scholar
  48. Bradford, P.A., Yang, Y., Sahm, D., Grope, I., Gardovska, D. and Storch, G., (1998), CTX-M-5, a novel cefotaxime-hydrolyzing β-lactamase from an outbreak of Salmonella typhimurium in Latvia. Antimicrob Agents Chemother, 42, 1980–1984.PubMedGoogle Scholar
  49. Bratu, S., Landman, D.L., Alam, M., Tolentino, E. and Quale, J., (2005a), Detection of KPC carbapenemase-hydrolyzing enzymes in Enterobacter spp. from Brooklyn, New York. Antimicrob Agents Chemother, 49, 776–778.CrossRefGoogle Scholar
  50. Bratu, S., Landman, D.L., Haag, R., Recco, R., Eramo, A., Alam, M. and Quale, J., (2005b), Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City. Antimicrob Agents Chemother, 165, 1430–1435.Google Scholar
  51. Brazas, M.D. and Hancock, R.E., (2005), Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 49, 3222–3227.PubMedCrossRefGoogle Scholar
  52. Bret, L., Chanel, C., Sirot, D., Labia, R. and Sirot, J., (1996), Characterization of an inhibitor-resistant enzyme IRT-2 derived from TEM-2 β-lactamase produced by Proteus mirabilis strains. J. Antimicrob Chemother, 38, 183–191.PubMedCrossRefGoogle Scholar
  53. Brown, S.D. and Traczewski, M.M., (2005), Comparative in vitro antimicrobial activity of a new carbapenem, doripenem: tentative disc diffusion criteria and quality control. J Antimicrob Chemother, 55, 944–949.PubMedCrossRefGoogle Scholar
  54. Bryan, L.E., O’Hara, K. and Wong, S., (1984), Lipopolysaccharide changes in impermeability-type aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 26, 250–255.PubMedGoogle Scholar
  55. Buerra, B., Soto, S., Cal, S. and Mendoza, M.C., (2000), Antimicrobial resistance and spread of class 1 integrons among Salmonella serotypes. Antimicrob Agents Chemother, 44, 2166–2169.CrossRefGoogle Scholar
  56. Burdett, V., (1991), Tet(M)-promoted release of tetracylcine from ribosomes is GTP dependant. J. Bacteriol, 178, 3246–2351.Google Scholar
  57. Burk, D.L., Hon, W.C., Leung, A.K. and Berghuis, A.M., (2001), Structural analyses of nucleotide binding to an aminoglycoside phosphotransferase. Biochemistry, 40, 8756–8764.PubMedCrossRefGoogle Scholar
  58. Burns J.L., Van Dalfsen J.M., Shawar R.M., Otto K.L., Garber R.L., Quan J.M., Montgomery A.B., Albers G.M., Ramsey B.W. and Smith A.L., (1999), Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. J Infect Dis. 179(5):1190–6.PubMedCrossRefGoogle Scholar
  59. Bush, K., (1998), Metallo-β-lactamases: a class apart. Clin Infect Dis, 27(Suppl. 1), S46–S53.Google Scholar
  60. Bush, K., Jacoby, G.A. and Medeiros, A.A., (1995), A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother, 39, 1211–1233.PubMedGoogle Scholar
  61. Butaye, P., Cloeckaert, A. and Schwarz, S., (2003), Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Int J Antimicrob Agents, 22, 205–210.PubMedCrossRefGoogle Scholar
  62. Cao, L., Srikumar, R. and Poole, K., (2004), MexAB-OprM hyperexpression in NalC-type multidrug-resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720–PA3719. Mol Microbiol, 53, 1423–1436.PubMedCrossRefGoogle Scholar
  63. Carlet, J., Ben Ali, A. and Chalfine, A., (2004), Epidemiology and control of antibiotic resistance in the intensive care unit. Curr Opin Infect Dis, 17, 309–316.PubMedCrossRefGoogle Scholar
  64. Caroff, N., Espaze, E., Be’rard, I., Richet, H. and Reynaud, A., (1999), Mutations in the ampC promotor of Escherichia coli isolates resistant to oxyiminocephalosporins without extended-spectrum β-lactamase production. FEMS Microbiol Lett, 173, 459–465.PubMedGoogle Scholar
  65. Castanheira, M., Toleman, M.A., Jones, R.N., Schmidt, F.J. and Walsh, T.R., (2004), Molecular characterization of a β-lactamase gene, bla_GIM-1, encoding a new subclass of metallo-β-lactamase. Antimicrob Agents Chemother, 48, 4654–4661.PubMedCrossRefGoogle Scholar
  66. Centers for Disease Control (CDC), (2004), National nosocomial infections surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Contr, 32, 470–485.CrossRefGoogle Scholar
  67. Chaibi, E.B., Sirot, D., Paul, G. and Labia, R., (1999), Inhibitor-resistant TEM-β-lactamases: phenotypic, genetic and biochemical characteristics. J Antimicrob Chemother, 43, 447–458.PubMedCrossRefGoogle Scholar
  68. Champoux, J.J., (2001), DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem, 70, 369–413.PubMedCrossRefGoogle Scholar
  69. Chan, Y.Y. and Chua, K.L., (2005), The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J Bacteriol, 187, 4707–4719.PubMedCrossRefGoogle Scholar
  70. Chan, Y.Y., Tan, T.M., Ong, Y.M. and Chua, K.L., (2004), BpeAB-OprB, a multidrug efflux pump in Burkholderia pseudomallei. Antimicrob Agents Chemother, 48, 1128–1135.PubMedCrossRefGoogle Scholar
  71. Chen, C.R., Malik, M., Snyder, M. and Drlica, K., (1996), DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J Mol Biol, 258, 627–637.PubMedCrossRefGoogle Scholar
  72. Chen, F.J., Lauderdale, T.L., Ho, M. and Lo, H.J., (2003), The roles of mutations in gyrA, parC, and ompK35 in fluoroquinolone resistance in Klebsiella pneumoniae. Microb Drug Resist, 9, 265–271.PubMedCrossRefGoogle Scholar
  73. Cheung, T.K., Chu, Y.W., Chu, M.Y., Ma, C.H., Yung, R.W. and Kam, K.M., (2005), Plasmid-mediated resistance to ciprofloxacin and cefotaxime in clinical isolates of Salmonella enterica serotype Enteritidis in Hong Kong. J Antimicrob Chemother, 56, 586–589.PubMedCrossRefGoogle Scholar
  74. Chevalier, J., Bredin, J., Mahamoud, A., Mallea, M., Barbe, J. and Pages, J.M., (2004), Inhibitors of antibiotic efflux in resistant Enterobacter aerogenes and Klebsiella pneumoniae strains. Antimicrob Agents Chemother, 48, 1043–1046.PubMedCrossRefGoogle Scholar
  75. Chopra, I. and Roberts, M.C., (2001), Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev, 65, 232–260.PubMedCrossRefGoogle Scholar
  76. Chow, J.W., Kak, V., You, I., Kao, S.J., Petrin, J., Clewell, D.B., Lerner, S.A., Miller, G.H. and Shaw, K.J., (2001), Aminoglycoside resistance genes aph(2”)-Ib and aac(6’)-Im detected together in strains of both Escherichia coli and Enterococcus faecium. Antimicrob Agents Chemother, 45, 2691–2694.PubMedCrossRefGoogle Scholar
  77. Chuanchuen, R., Karkhoff-Schweizer, R.R. and Schweizer, H.P., (2003), High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am J Infect Control, 31, 124–127.PubMedCrossRefGoogle Scholar
  78. Cirz, R.T., Chin, J.K., Andes, D.R., de Crecy-Lagard, V., Craig, W.A. and Romesberg, F.E., (2005), Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol, 3, e176.PubMedCrossRefGoogle Scholar
  79. Clerch, B., Barbe, J. and Llagostera, M., (1992), The role of the excision and error-prone repair systems in mutagenesis by fluorinated quinolones in Salmonella typhimurium. Mutat Res, 281, 207–213.PubMedCrossRefGoogle Scholar
  80. CLSI., (2005), Performance standards for antimicrobial susceptibility testing: M100-S15, Fifteenth informational supplement. In Committee for Clinical Laboratory Standards, Wayne, PA. Vol. 25.Google Scholar
  81. Connell, S.R., Tracz, D.M., Nierhaus, K.H. and Taylor, D.E., (2003a), Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother, 47, 3675–3681.CrossRefGoogle Scholar
  82. Connell, S.R., Trieber, C.A., Einfeldt, E., Dinos, G.P., Taylor, D.E. and Nierhaus, K.H., (2003b), Mechanism of Tet(O) mediated resistance. EMBO J, 22, 945–953.CrossRefGoogle Scholar
  83. Connell, S.R., Trieber, C.A., Stelzl, U., Einfeldt, E., Taylor, D.E. and Nierhaus, K.H., (2002), The tetracycline resistance protein Tet(O), perturbs the conformation of the ribosomal decoding center. Mol Microbiol, 45, 1463–1472.PubMedCrossRefGoogle Scholar
  84. Cormican, M.G., Marshall, S.A. and Jones, R.N., (1996), Detection of extended-spectrum β-lactamase (ESBL)-producing strains by the Etest ESBL screen. J Clin Microbiol, 34, 1880–1884.PubMedGoogle Scholar
  85. Coronado, V.G., Edwards, J.R., Culver, D.H. and Gaynes, R.P., (1995), Ciprofloxacin resistance among nosocomial Pseudomonas aeruginosa and Staphylococcus aureus in the United States. National Nosocomial Infections Surveillance (NNIS) System. Infect Control Hosp Epidemiol, 16, 71–75.PubMedGoogle Scholar
  86. Courvalin, P., (1990), Plasmid-mediated 4-quinolone resistance: a real or apparent absence? Antimicrob Agents Chemother, 34, 681–684.PubMedGoogle Scholar
  87. Cox, M.M., Goodman, M.F., Kreuzer, K.N., Sherratt, D.J., Sandler, S.J. and Marians, K.J., (2000), The importance of repairing stalled replication forks. Nature, 404, 37–41.PubMedCrossRefGoogle Scholar
  88. Croom, K.F. and Goa, K.L., (2003), Levofloxacin: a review of its use in the treatment of bacterial infections in the United States. Drugs, 63, 2769–2802.PubMedCrossRefGoogle Scholar
  89. Daigle, D.M., McKay, G.A. and Wright, G.D., (1997), Inhibition of aminoglycoside antibiotic resistance enzymes by protein kinase inhibitors. J Biol Chem, 272, 24755–24758.PubMedCrossRefGoogle Scholar
  90. Daikos, G.L., Jackson, G.G., Lolans, V.T. and Livermore, D.M., (1990), Adaptive resistance to aminoglycoside antibiotics from first-exposure down-regulation. J Infect Dis, 162, 414–420.PubMedGoogle Scholar
  91. Daikos, G.L., Lolans, V.T. and Jackson, G.G., (1991), First-exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob Agents Chemother, 35, 117–123.PubMedGoogle Scholar
  92. Dantley, K.A., Dannelly, H.K. and Burdett, V., (1998), Binding interraction between Tet(M) and the ribosome: requirements for binding. J Bacteriol, 180, 4089–4092.PubMedGoogle Scholar
  93. Datta, N. and Kontomichalou, P., (1965), Penicillinase synthesis controlled by infectious R Factors in Enterobacteriaceae. Nature, 208, 239–244.PubMedCrossRefGoogle Scholar
  94. Davies, J. and Davis, B.D., (1968), Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J Biol Chem, 243, 3312–3316.PubMedGoogle Scholar
  95. Dean, C.R., Narayan, S., Daigle, D.M., Dzink-Fox, J.L., Puyang, X., Bracken, K.R., Dean, K.E., Weidmann, B., Yuan, Z., Jain, R. and Ryder, N.S., (2005), Role of the AcrAB-TolC efflux pump in determining susceptibility of Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415. Antimicrob Agents Chemother, 49, 3129–3135.PubMedCrossRefGoogle Scholar
  96. Dean, C.R., Visalli, M.A., Projan, S.J., Sum, P.E. and Bradford, P.A., (2003), Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother, 47, 972–978.PubMedCrossRefGoogle Scholar
  97. Delihas, N. and Forst, S., (2001), MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J Mol Biol, 313, 1–12.PubMedCrossRefGoogle Scholar
  98. Doi, Y., Yokoyama, K., Yamane, K., Wachino, J., Shibata, N., Yagi, T., Shibayama, K., Kato, H. and Arakawa, Y., (2004), Plasmid-mediated 16S rRNA methylase in Serratia marcescens conferring high-level resistance to aminoglycosides. Antimicrob Agents Chemother, 48, 491–496.PubMedCrossRefGoogle Scholar
  99. Dominguez, E.A., Smith, T.L., Reed, E., Sanders, C.C. and Sanders Jr, W.E., (2000), A pilot study of antibiotic cycling in a hemotology–oncology unit. Infect Control Hosp Epidemiol, 21(Suppl. 1), S4–S8.PubMedCrossRefGoogle Scholar
  100. Doyle, D., McDowall, K.J., Butler, M.J. and Hunter, I.S., (1991), Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus. Mol Microbiol, 5, 2923–2933.PubMedCrossRefGoogle Scholar
  101. Drlica, K., (1984), Biology of bacterial deoxyribonucleic acid topoisomerases. Microbiol Rev, 48, 273–289.PubMedGoogle Scholar
  102. Drlica, K. and Malik, M., (2003), Fluoroquinolones: action and resistance. Curr Top Med Chem, 3, 249–282.PubMedCrossRefGoogle Scholar
  103. Drlica, K. and Zhao, X., (1997), DNA gyrase, topoisomerase IV and the 4-quinolones. Microbiol Mol Biol Rev, 61, 377–392.PubMedGoogle Scholar
  104. Eda, S., Maseda, H. and Nakae, T., (2003), An elegant means of self-protection in gram-negative bacteria by recognizing and extruding xenobiotics from the periplasmic space. J Biol Chem, 278, 2085–2088.PubMedCrossRefGoogle Scholar
  105. Elkins, C.A. and Nikaido, H., (2002), Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J Bacteriol, 184, 6490–6498.PubMedCrossRefGoogle Scholar
  106. Elkins, C.A. and Nikaido, H., (2003), 3D structure of AcrB: the archetypal multidrug efflux transporter of Escherichia coli likely captures substrates from periplasm. Drug Resist Updat, 6, 9–13.PubMedCrossRefGoogle Scholar
  107. Ellis-Grosse, E., Babinchak, T., Dartois, N., Rose, G. and Loh, E., (2005), The efficacy and safety of tigecycline in the treatment of skin and skin structure infections: results of two double-blind phase 3 comparison studies with vancomycin/aztreonam. Clin Infect Dis, 41, S341–S353.PubMedCrossRefGoogle Scholar
  108. Ena, J., Amador, C., Martinez, C. and Ortiz de la Tabla, V., (1995), Risk factors for acquisition of urinary tract infections caused by ciprofloxacin resistant Escherichia coli. J Urol, 153, 117–120.PubMedCrossRefGoogle Scholar
  109. Endtz, H.P., Ruijs, G.J., van Klingeren, B., Jansen, W.H., van der Reyden, T. and Mouton, R.P., (1991), Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimicrob Chemother, 27, 199–208.PubMedCrossRefGoogle Scholar
  110. Evans, K., Passador, L., Srikumar, R., Tsang, E., Nezezon, J. and Poole, K., (1998), Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J Bacteriol, 180, 5443–5447.PubMedGoogle Scholar
  111. Ferrero, L., Cameron, B., Manse, B., Lagneaux, D., Crouzet, J., Famechon, A. and Blanche, F., (1994), Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones, Mol Microbiol 13, 641–653.PubMedCrossRefGoogle Scholar
  112. Fey, P.D., Safranek, T.J., Rupp, M.E., F., D.E., Ribot, E., Iwen, P.C., Bradford, P.A., Angulo, F.J. and Hinrichs, S.H., (2000), Ceftriaxone-resistant Salmonella infection acquired by a child from cattle. New England J Med, 342, 1242–1249.CrossRefGoogle Scholar
  113. Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M., McKenney, K., Sutton, G.G., Fitzhugh, W., Fields, C.A., Gocayne, J.D., Scott, J.D., Shirley, R., Liu, L.I., Glodek, A., Kelley, J.M., Weidman, J.F., Philips, C.A., Spriggs, T., Hedblom, E., Cotton, M.D., Utterback, T., Hanna, M.C., Nguyen, D.T., Saudek, D.M., Brandon, R.C., Fine, L.D., Fritchman, J.L., Fuhrman, J.L., Geoghagen, N.S., Gnehm, C.L., McDonald, L.A., Small, K.V., Fraser, C.M., Smith, H.O. and Venter, J.C., (1995), Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269, 496–512.PubMedCrossRefGoogle Scholar
  114. Fluit, A.C., Florijn, A., Verhoef, J. and Milatovic, D., (2005), Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline. Antimicrob Agents Chemother, 49, 1636–1638.PubMedCrossRefGoogle Scholar
  115. Fridkin, S.K., (2003), Routine cycling of antimicrobial agents as an infection-control measure. Clin Infect Dis, 36, 1438–1444.PubMedCrossRefGoogle Scholar
  116. Fritsche, T.R. and Jones, R.N., (2004), Antimicrobial activity of LBM415 (NVP PDF-713) tested against Neisseria meningitidis and N. gonorrhoeae, Abstr. F-1962. In 44th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC.Google Scholar
  117. Fritsche, T.R., Rhomberg, P.R. and Jones, R.N., (2004), Comparative antimicrobial characterization of LBM415 (NVP PDF-713), a new peptide deformylase inhibitor, Abstr. F-1961. In 44th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC.Google Scholar
  118. Gales, A.C., Sader, H.S. and Jones, R.N., (2002), Urinary tract infection trends in Latin American hospitals: report from the SENTRY antimicrobial surveillance program (1997–2000). Diagn Microbiol Infect Dis, 44, 289–299.PubMedCrossRefGoogle Scholar
  119. Galimand, M., Courvalin, P. and Lambert, T., (2003), Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother, 47, 2565–2571.PubMedCrossRefGoogle Scholar
  120. Galimand, M., Sabtcheva, S., Courvalin, P. and Lambert, T., (2005), Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrob Agents Chemother, 49, 2949–2953.PubMedCrossRefGoogle Scholar
  121. Garau, J., Xercavins, M., Rodriguez-Carballeira, M., Gomez-Vera, J.R., Coll, I., Vidal, D., Llovet, T. and Ruiz-Bremon, A., (1999), Emergence and dissemination of quinolone-resistant Escherichia coli in the community. Antimicrob Agents Chemother, 43, 2736–2741.PubMedGoogle Scholar
  122. Garcia-Rodriguez, J.A. and Jones, R.N., (2002), Antimicrobial resistance in gram-negative isolates from European intensive care units: data from the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) programme. J Chemother, 14, 25–32.PubMedGoogle Scholar
  123. Gazouli, M., Sidorenko, S.V., Tzelepi, E., Kozlova, N.S., Gladin, D.P. and Tzouvelekis, L.S., (1998a), A plasmid-mediated β-lactamase conferring resistance to cefotaxime in a Salmonella typhimurium clone found in St. Petersburg, Russia. J Antimicrob Chemother, 41, 119–121.CrossRefGoogle Scholar
  124. Gazouli, M., Tzelepi, E., Markogiannakis, A., Legakis, N.J. and Tzouvelekis, L.S., (1998b), Two novel plasmid-mediated cefotaxime-hydrolyzing β-lactamases (CTX-M-5 and CTX-M-6) from Salmonella typhimurium. FEMS Microbiol Lett, 165, 289–293.Google Scholar
  125. Gazouli, M., Tzouvelekis, L.S., Vatopoulos, A.C. and Tzelepi, E., (1998c), Transferable class C β-lactamases in Escherichia coli strains isolated in Greek hospitals and characterization of two enzyme variants (LAT-3 and LAT-4) closely related to Citrobacter freundii AmpC β-lactamase. J Antimicrob Chemother, 42, 419–425.CrossRefGoogle Scholar
  126. Ge, B., McDermott, P.F., White, D.G. and Meng, J., (2005), Role of efflux pumps and topoisomerase mutations in fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother, 49, 3347–3354.PubMedCrossRefGoogle Scholar
  127. Ge, Y., Wikler, M.A., Sahm, D.F., Blosser-Middleton, R.S. and Karlowsky, J.A., (2004), In vitro antimicrobial activity of doripenem, a new carbapenem. Antimicrob Agents Chemother, 48, 1384–1396.PubMedCrossRefGoogle Scholar
  128. Georgiou, M., Munoz, R., Roman, F., Canton, R., Gomez-Lus, R., Campos, J. and De La Campa, A.G., (1996), Ciprofloxacin-resistant Haemophilus influenzae strains possess mutations in analogous positions of GyrA and ParC. Antimicrob Agents Chemother, 40, 1741–1744.PubMedGoogle Scholar
  129. Gellert, M., Mizuuchi, K., O’Dea, M.H., Itoh, T. and Tomizawa, J.I., (1977), Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci USA, 74, 4772–4776.Google Scholar
  130. Gerrits, M.M., De Zoete, M.R., Arents, N.L., Kuipers, E.J. and Kusters, J.G., (2002), 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob Agents Chemother, 46, 2996–3000.PubMedCrossRefGoogle Scholar
  131. Ghuysen, J.M., (1991), Serine β-lactamases and penicillin-binding proteins. In L.N., Ornston, A. Ballows, and E.P., Greenberg, editors, Annual Reviews of Microbiology, Vol. 45. Palo Alto, CA, Annual Reviews Inc., pp. 37–67.Google Scholar
  132. Giakkoupi, P., Petrikkos, G., Tzouvelekis, L.S., Tsonas, S., The WHONET GREECE Study Group, Legakis, N.J. and Vatopoulos, A.C., (2003), Spread of integron-associated VIM-type metallo-β-lactamase genes among imipenem-nonsusceptible Pseudomonas aeruginosa strains in Greek hospitals. J Clin Microbiol, 41, 822–825.PubMedCrossRefGoogle Scholar
  133. Giakkoupi, P., Tzouvelekis, L.S., Diakos, G.L., Miragou, V., Petrikkos, G., Legakis, N.J. and Vatopoulos, A.C., (2005), Discrepancies and interpretation problems in susceptibility testing of VIM-1 producing Klebsiella pneumoniae isolates. J Clin Microbiol, 43, 494–496.PubMedCrossRefGoogle Scholar
  134. Gibson, R.L., Burns, J.L. and Ramsey, B.W., (2003), Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med, 168, 918–951.PubMedCrossRefGoogle Scholar
  135. Giraud, E., Cloeckaert, A., Baucheron, S., Mouline, C. and Chaslus-Dancla, E., (2003), Fitness cost of fluoroquinolone resistance in Salmonella enterica serovar Typhimurium. J Med Microbiol, 52, 697–703.PubMedCrossRefGoogle Scholar
  136. Girlich, D., Naas, T., Bellais, S., Poirel, L., Karim, A. and Nordman, P., (2000), Biochemical-genetic characterization and regulation of expression of an ACC-1-like chromosome-borne cephalosporinase from Hafnia alvei . Antimicrob Agents Chemother, 44, 1470–1478.PubMedCrossRefGoogle Scholar
  137. Gmuender, H., Kuratli, K., Di Padova, K., Gray, C.P., Keck, W. and Evers, S., (2001), Gene expression changes triggered by exposure of Haemophilus influenzae to novobiocin or ciprofloxacin: combined transcription and translation analysis. Genome Res, 11, 28–42.PubMedCrossRefGoogle Scholar
  138. Goettsch, W., van Pelt, W., Nagelkerke, N., Hendrix, M.G., Buiting, A.G., Petit, P.L., Sabbe, L.J., van Griethuysen, A.J. and de Neeling, A.J., (2000), Increasing resistance to fluoroquinolones in Escherichia coli from urinary tract infections in the Netherlands. J Antimicrob Chemother, 46, 223–228.PubMedCrossRefGoogle Scholar
  139. Gonzalez-Zorn, B., Teshager, T., Casas, M., Porrero, M.C., Moreno, M.A., Courvalin, P. and Dominguez, L., (2005), armA and aminoglycoside resistance in Escherichia coli. Emerg Infect Dis, 11, 954–956.PubMedGoogle Scholar
  140. Gordon, S.M., Carlyn, C.J., Doyle, L.J., Knapp, C.C., Longworth, D.L., Hall, G.S. and Washington, J.A., (1996), The emergence of Neisseria gonorrhoeae with decreased susceptibility to ciprofloxacin in Cleveland, Ohio: epidemiology and risk factors. Ann Intern Med, 125, 465–470.PubMedGoogle Scholar
  141. Greenberg, W.A., Priestley, E.S., Sears, P.S., Alper, P.B., Rosenbohm, C., Hendrix, M.G., Hung, H.-C. and Wong-C-H., (1999), Design and synthesis of new aminoglycoside antibiotics containing neamine as an optimal core structure: correlation of antibiotic activity with in vitro inhibition of translation. J Am Chem Soc, 121, 6527–6541.CrossRefGoogle Scholar
  142. Grossman, R.F., Rotschafer, J.C. and Tan, J.S., (2005), Antimicrobial treatment of lower respiratory tract infections in the hospital setting. Am J Med, 118, 29S–38S.PubMedCrossRefGoogle Scholar
  143. Gruson, D., Hilbert, G., Vargas, F., Valentino, R., Bebear, C., Allery, A., Bebear, C., Gbikpi-Benissan, G. and Cardinaud, J.-P., (2000), Rotation and restricted use of antibiotics in a medical intensive care unit. Impact on the incidence of ventilator-associated pneumonia caused by antibiotic-resistant gram-negative bacteria. Am J Respir Crit Care Med, 162, 837–843.PubMedGoogle Scholar
  144. Gruson, D., Hilbert, G., Vargas, F., Valentino, R., Bui, N., Pereyre, S., Bebear, C., Bebear, C.-M. and Gbikpi-Benissan, G., (2003), Strategy of antibiotic rotation: Long-term effect on incidence and susceptibilities of Gram-negative bacilli responsible for ventilator-associated pneumonia. Crit Care Med, 31, 1908–1914.PubMedCrossRefGoogle Scholar
  145. Hall, L.M.C., Livermore, D.M., Gur, D., Akova, M. and Akalin, H.E., (1993), OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) β-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother, 37, 1637–1644.PubMedGoogle Scholar
  146. Hasegawa, M., Kobayashi, I., Saika, T. and Nishida, M., (1997), Drug-resistance patterns of clinical isolates of Pseudomonas aeruginosa with reference to their lipopolysaccharide compositions. Chemotherapy, 43, 323–331.PubMedGoogle Scholar
  147. Hassett, D.J., Cuppoletti, J., Trapnell, B., Lymar, S.V., Rowe, J.J., Yoon, S.S., Hilliard, G.M., Parvatiyar, K., Kamani, M.C., Wozniak, D.J., Hwang, S.H., McDermott, T.R. and Ochsner, U.A., (2002), Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev, 54, 1425–1443.PubMedCrossRefGoogle Scholar
  148. Hata, M., Suzuki, M., Matsumoto, M., Takahashi, M., Sato, K., Ibe, S. and Sakae, K., (2005), Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob Agents Chemother, 49, 801–803.PubMedCrossRefGoogle Scholar
  149. Hebeisen, P., Heinze-Krauss, I., Angehrn, P., Hohl, P., Page, M.G.P. and Then, R.L., (2001), In vitro and in vivo properties of Ro 63-9141, a novel broad-spectrum cephalosporin with activity against methicillin-resistant staphylococci. Antimicrob Agents Chemother, 45, 825–836.PubMedCrossRefGoogle Scholar
  150. Heisig, P., (1996), Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother, 40, 879–885.PubMedGoogle Scholar
  151. Helling, R.B., Janes, B.K., Kimball, H., Tran, T., Bundesmann, M., Check, P., Phelan, D. and Miller, C., (2002), Toxic waste disposal in Escherichia coli. J Bacteriol, 184, 3699–3703.PubMedCrossRefGoogle Scholar
  152. Hiasa, H., Yousef, D.O. and Marians, K.J., (1996), DNA strand cleavage is required for replication fork arrest by a frozen topoisomerase-quinolone-DNA ternary complex. J Biol Chem, 271, 26424–26429.PubMedCrossRefGoogle Scholar
  153. Hierowski, M., (1965), Inhibition of protein synthesis by chlorotetracylcine in the Escherichia coli in vitro system. Proc Natl Acad Sci USA, 53, 594–599.PubMedCrossRefGoogle Scholar
  154. Hirakata, Y., Srikumar, R., Poole, K., Gotoh, N., Suematsu, T., Kohno, S., Kamihira, S., Hancock, R.E. and Speert, D.P., (2002), Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med, 196, 109–118.PubMedCrossRefGoogle Scholar
  155. Hocquet, D., Vogne, C., El Garch, F., Vejux, A., Gotoh, N., Lee, A., Lomovskaya, O. and Plesiat, P., (2003), MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother, 47, 1371–1375.PubMedCrossRefGoogle Scholar
  156. Hoffman, L.R., D’Argenio, D.A., MacCoss, M.J., Zhang, Z., Jones, R.A. and Miller, S.I., (2005), Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 436, 1171–1175.PubMedCrossRefGoogle Scholar
  157. Hon, W.C., McKay, G.A., Thompson, P.R., Sweet, R.M., Yang, D.S., Wright, G.D. and Berghuis, A.M., (1997), Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell, 89, 887–895.PubMedCrossRefGoogle Scholar
  158. Honore, N. and Cole, S.T., (1994), Streptomycin resistance in mycobacteria. Antimicrob Agents Chemother, 38, 238–242.PubMedGoogle Scholar
  159. Honore, N., Marchal, G. and Cole, S.T., (1995), Novel mutation in 16S rRNA associated with streptomycin dependence in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 39, 769–770.PubMedGoogle Scholar
  160. Hooper, D.C., (1999), Mechanisms of fluoroquinolone resistance. Drug Resist Updat, 2, 38–55.PubMedCrossRefGoogle Scholar
  161. Hooper, D.C., (2000), New uses for new and old quinolones and the challenge of resistance. Clin Infect Dis, 30, 243–254.PubMedCrossRefGoogle Scholar
  162. Hooper, D.C., (2001), Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis, 7, 337–341.PubMedGoogle Scholar
  163. Hooper, D.C., Wolfson, J.S., Bozza, M.A. and Ng, E.Y., (1992), Genetics and regulation of outer membrane protein expression by quinolone resistance loci nfxB, nfxC, and cfxB. Antimicrob Agents Chemother, 36, 1151–1154.PubMedGoogle Scholar
  164. Hooper, D.C., Wolfson, J.S., Souza, K.S., Ng, E.Y., McHugh, G.L. and Swartz, M.N., (1989), Mechanisms of quinolone resistance in Escherichia coli: characterization of nfxB and cfxB, two mutant resistance loci decreasing norfloxacin accumulation. Antimicrob Agents Chemother, 33, 283–290.PubMedGoogle Scholar
  165. Hossain, A., Ferraro, M.J., Pino, R.M., Dew III, R.B., Moland, E.S., Lockhart, T.J., Thomson, K.S., Goering, R.V. and Hanson, N.D., (2004), Plasmid-mediated carbapenem-hydrolyzing enzyme KPC-2 in an Enterobacter spp. Antimicrob Agents Chemother, 48, 4438–4440.PubMedCrossRefGoogle Scholar
  166. Hughes, M.G., Evans, H.L., Chong, T.W., Smith, R.L., Raymond, D.P., Pelletier, S.J., Pruett, T.L. and Sawyer, R.G., (2004), Effect of an intensive care unit rotating empiric antibiotic schedule on the development of hospital-acquired infections on the non-intensive care unit ward. Crit Care Med, 32, 53–60.PubMedCrossRefGoogle Scholar
  167. Hujer, A.M., Bethel, C.R., Hujer, K.M. and Bonomo, R.A., (2004), Antibiotic resistance in the institutionalized elderly. Clin Lab Med, 24, 343–361.PubMedCrossRefGoogle Scholar
  168. Hurley, J.C., Miller, G.H. and Smith, A.L., (1995), Mechanism of amikacin resistance in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Diagn Microbiol Infect Dis, 22, 331–336.PubMedCrossRefGoogle Scholar
  169. Issa, N.C., Rouse, M.S., Piper, K.E., Wilson, W.R., Steckelberg, J.M. and Patel, R., (2004), In vitro activity of BAL9141 against clinical isolates of gram-negative bacteria. Diagn Microbiol Infect Dis, 48, 73–75.PubMedCrossRefGoogle Scholar
  170. Jacobs, C., Huang, L., Bartowsky, E., Normark, S. and Park, T., (1994), Bacterial cell wall recycling provides cytosoli muropeptides as effectors for β-lactmase induction. EMBO J, 13, 4684–4694.PubMedGoogle Scholar
  171. Jacoby, G.A., (1999), Sequence of the MIR-1 β-lactamase gene. Antimicrob Agents Chemother, 43, 1759–1760.PubMedGoogle Scholar
  172. Jacoby, G.A., (2005), The new β-lactamases. N Engl J Med, 352, 380–389.PubMedCrossRefGoogle Scholar
  173. Jacoby, G.A. and Bush, K., (2005), Amino Acid Sequences for TEM, SHV and OXA Extended-Spectrum and Inhibitor Resistant β-Lactamases. Available at Scholar
  174. Jacoby, G.A. and Medeiros, A.A., (1991), More extended-spectrum β-lactamases. Antimicrob Agents Chemother, 35, 1697–1704.PubMedGoogle Scholar
  175. Jalal, S. and Wretlind, B., (1998), Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb Drug Resist, 4, 257–261.PubMedGoogle Scholar
  176. Jana, S. and Deb, J.K., (2005), Molecular targets for design of novel inhibitors to circumvent aminoglycoside resistance. Curr Drug Targets, 6, 353–361.PubMedCrossRefGoogle Scholar
  177. Jarlier, V., Nicolas, M., Fournier, G. and Philippon, A., (1988), Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaeceae: Hospital prevalence and susceptibility patterns. Rev Infect Dis, 10, 867–878.PubMedGoogle Scholar
  178. Jeannot, K., Sobel, M.L., El Garch, F., Poole, K. and Plesiat, P., (2005), Induction of the MexXY efflux pump in Pseudomonas aeruginosa is dependent on drug-ribosome interaction. J Bacteriol, 187, 5341–5346.PubMedCrossRefGoogle Scholar
  179. Jellen-Ritter, A.S. and Kern, W.V., (2001), Enhanced expression of the multidrug efflux pumps AcrAB and AcrEF associated with insertion element transposition in Escherichia coli mutants Selected with a fluoroquinolone. Antimicrob Agents Chemother, 45, 1467–1472.PubMedCrossRefGoogle Scholar
  180. Jo, J.T., Brinkman, F.S. and Hancock, R.E., (2003), Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteins. Antimicrob Agents Chemother, 47, 1101–1111.PubMedCrossRefGoogle Scholar
  181. Jones, C.S., Osborne, D.J. and Stanley, J., (1992), Enterobacterial tetracycline resistance in relation to plasmid incompatability. Mol Cell Probes, 6, 313–317.PubMedCrossRefGoogle Scholar
  182. Karlowsky, J.A., Hoban, D.J., Zelenitsky, S.A. and Zhanel, G.G., (1997), Altered denA and anr gene expression in aminoglycoside adaptive resistance in Pseudomonas aeruginosa. J Antimicrob Chemother, 40, 371–376.PubMedCrossRefGoogle Scholar
  183. Karlowsky, J.A., Jones, M.E., Thornsberry, C., Evangelista, A.T., Yee, Y.C. and Sahm, D.F., (2005), Stable antimicrobial susceptibility rates for clinical isolates of Pseudomonas aeruginosa from the 2001–2003 tracking resistance in the United States today surveillance studies. Clin Infect Dis, 40(Suppl. 2), S89–98.PubMedGoogle Scholar
  184. Karlowsky, J.A., Saunders, M.H., Harding, G.A., Hoban, D.J. and Zhanel, G.G., (1996), In vitro characterization of aminoglycoside adaptive resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 40, 1387–1393.PubMedGoogle Scholar
  185. Kato, J., Nishimura, Y., Imamura, R., Niki, H., Hiraga, S. and Suzuki, H., (1990), New topoisomerase essential for chromosome segregation in Escherichia coli. Cell, 63, 393–404.PubMedCrossRefGoogle Scholar
  186. Kato, J., Suzuki, H. and Ikeda, H., (1992), Purification and characterization of DNA topoisomerase IV in Escherichia coli. J Biol Chem, 267, 25676–25684.PubMedGoogle Scholar
  187. Kaye, K.S., Gold, H.S., Schwaber, M.J., Venkataraman, L., Qi, Y., De Girolami, P.C., Samore, M.H., Anderson, G., Rasheed, J.K. and Tenover, F.C., (2004), Variety of β-lactamases produced by amoxicillin-clavulanate-resistant Escherichia coli isolated in the northeastern United States. Antimicrob Agents Chemother, 48, 1520–1525.PubMedCrossRefGoogle Scholar
  188. Khodursky, A.B., Zechiedrich, E.L. and Cozzarelli, N.R., (1995), Topoisomerase IV is a target of quinolones in Escherichia coli. Proc Natl Acad Sci USA, 92, 11801–11805.PubMedCrossRefGoogle Scholar
  189. King, D.E., Malone, R. and Lilley, S.H., (2000), New classification and update on the quinolone antibiotics. Am Fam Physician, 61, 2741–2748.PubMedGoogle Scholar
  190. Kohler, T., Michea-Hamzehpour, M., Plesiat, P., Kahr, A.L. and Pechere, J.C., (1997), Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 41, 2540–2543.PubMedGoogle Scholar
  191. Kohler, T., van Delden, C., Curty, L.K., Hamzehpour, M.M. and Pechere, J.C., (2001), Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol, 183, 5213–5222.PubMedCrossRefGoogle Scholar
  192. Komp Lindgren, P., Karlsson, A. and Hughes, D., (2003), Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob Agents Chemother, 47, 3222–3232.PubMedCrossRefGoogle Scholar
  193. Kono, M. and O’Hara, K., (1976), Mechanisms of streptomycin(SM)-resistance of highly SM-resistant Pseudomonas aeruginosa strains. J Antibiot (Tokyo), 29, 169–175.Google Scholar
  194. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. and Hughes, C., (2000), Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature, 405, 914–919.PubMedCrossRefGoogle Scholar
  195. Kotra, L.P., Haddad, J. and Mobashery, S., (2000), Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother, 44, 3249–3256.PubMedCrossRefGoogle Scholar
  196. Kriengkauykiat, J., Porter, E., Lomovskaya, O. and Wong-Beringer, A., (2005), Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 49, 565–570.PubMedCrossRefGoogle Scholar
  197. Kumar, A. and Schweizer, H.P., (2005), Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev, 57, 1486–1513.PubMedCrossRefGoogle Scholar
  198. Lauretti, L., Riccio, M.L., Mazzariol, A., Cornaglia, G., Amicosante, G., Fontana, R. and Rossolini, G.M., (1999), Cloning and characterization of bla_VIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother, 43, 1584–1590.PubMedGoogle Scholar
  199. Le Thomas, I., Couetdic, G., Clermont, O., Brahimi, N., Plesiat, P. and Bingen, E., (2001), In vivo selection of a target/efflux double mutant of Pseudomonas aeruginosa by ciprofloxacin therapy. J Antimicrob Chemother, 48, 553–555.CrossRefGoogle Scholar
  200. Lee, A., Mao, W., Warren, M.S., Mistry, A., Hoshino, K., Okumura, R., Ishida, H. and Lomovskaya, O., (2000), Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol, 182, 3142–3150.PubMedCrossRefGoogle Scholar
  201. Lee, K., Lim, J.B., Yum, J.H., Yong, D., Chong, Y., Kim, J.M. and Livermore, D.M., (2002), bla_VIM-2 cassette-containing novel integrons in metallo-β-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob Agents Chemother, 46, 1053–1058.PubMedCrossRefGoogle Scholar
  202. Lemozy, J., Sirot, D., Chanal, C., Huc, C., Labia, R., Dabernat, H. and Sirot, J., (1995), First characterization of inhibitor-resistant TEM (IRT) β-lactamases in Klebsiella pneumoniae strains. Antimicrob Agents Chemother, 33, 2580–2582.Google Scholar
  203. Levin, A.S., Barone, A.A., Penço, J., Santos, M.V., Marinho, I.S., Arruda, E.A.G., Manrique, E.I. and Costa, S.F., (1998), Intraveneous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Clin Infect Dis, 28, 1008–1011.Google Scholar
  204. Levine, C., Hiasa, H. and Marians, K.J., (1998), DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication and drug sensitivities. Biochim Biophys Acta, 1400, 29–43.PubMedGoogle Scholar
  205. Levy, S.B., (2002), Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Micrbiol, 92Symposium supplement, 65S–71S.CrossRefGoogle Scholar
  206. Lewis, K., (2005), Persister cells and the riddle of biofilm survival. Biochemistry (Mosc), 70, 267–274.CrossRefGoogle Scholar
  207. Li, X.Z., Ma, D., Livermore, D.M. and Nikaido, H., (1994), Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to β-lactam resistance. Antimicrob Agents Chemother, 38, 1742–1752.PubMedGoogle Scholar
  208. Li, X., Mariano, N., Rahal, J.J., Urban, C.M. and Drlica, K., (2004a), Quinolone-resistant Haemophilus influenzae: determination of mutant selection window for ciprofloxacin, garenoxacin, levofloxacin and moxifloxacin. Antimicrob Agents Chemother, 48, 4460–4462.CrossRefGoogle Scholar
  209. Li, X., Mariano, N., Rahal, J.J., Urban, C.M. and Drlica, K., (2004b), Quinolone-resistant Haemophilus influenzae in a long-term-care facility: nucleotide sequence characterization of alterations in the genes encoding DNA gyrase and DNA topoisomerase IV. Antimicrob Agents Chemother, 48, 3570–3572.CrossRefGoogle Scholar
  210. Li, X., Zolli-Juran, M., Cechetto, J.D., Daigle, D.M., Wright, G.D. and Brown, E.D., (2004c), Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. Chem Biol, 11, 1423–1430.CrossRefGoogle Scholar
  211. Li, X.Z. and Nikaido, H., (2004), Efflux-mediated drug resistance in bacteria. Drugs, 64, 159–204.PubMedCrossRefGoogle Scholar
  212. Li, X.Z., Zhang, L. and Poole, K., (2000), Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J Antimicrob Chemother, 45, 433–436.PubMedCrossRefGoogle Scholar
  213. Liu, M., Haddad, J., Azucena, E., Kotra, L.P., Kirzhner, M. and Mobashery, S., (2000), Tethered bisubstrate derivatives as probes for mechanism and as inhibitors of aminoglycoside 3’-phosphotransferases. J Org Chem, 65, 7422–7431.PubMedCrossRefGoogle Scholar
  214. Lu, T., Malik, M. and Drlica-Wagner, A., (2001), C-8-methoxy fluoroquinolones. Res Adv Antimicrob Agents Chemother, 2, 29–42.Google Scholar
  215. Livermore, D.M., (2002), Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis, 34, 634–640.PubMedCrossRefGoogle Scholar
  216. Livermore, D.M., (2004), The need for new antibiotics. Clin Microbiol Infect, 10(Suppl. 4), 1–9.PubMedCrossRefGoogle Scholar
  217. Llano-Sotelo, B., Azucena, E.F., Jr, Kotra, L.P., Mobashery, S. and Chow, C.S., (2002), Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. Chem Biol, 9, 455–463.PubMedCrossRefGoogle Scholar
  218. Lomovskaya, O. and Totrov, M., (2005), Vacuuming the periplasm. J Bacteriol, 187, 1879–1883.PubMedCrossRefGoogle Scholar
  219. Lomovskaya, O. and Watkins, O., (2001a), Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J Mol Microbiol Biotechnol, 3, 225–236.Google Scholar
  220. Lomovskaya, O. and Watkins, W.J., (2001b), Efflux pumps: their role in antibacterial drug discovery. Curr Med Chem, 8, 1699–1711.Google Scholar
  221. Lomovskaya, O., Lee, A., Hoshino, K., Ishida, H., Mistry, A., Warren, M.S., Boyer, E., Chamberland, S. and Lee, V.J., (1999), Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 43, 1340–1346.PubMedGoogle Scholar
  222. Lomovskaya, O., Warren, M.S., Lee, A., Galazzo, J., Fronko, R., Lee, M., Blais, J., Cho, D., Chamberland, S., Renau, T., Leger, R., Hecker, S., Watkins, W., Hoshino, K., Ishida, H. and Lee, V.J., (2001), Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother, 45, 105–116.PubMedCrossRefGoogle Scholar
  223. Lucet, J.-C., Decré, D., Fichelle, A., Joly-Guillou, M.-L., Pernet, M., Deblangy, C., Kosmann, M.-J. and Régnier, B., (1999), Control of a prolonged outbreak of extended-spectrum β-lactamase-producing Enterobacteriaceae in a university hospital. Clin Infect Dis, 20, 1411–1418.CrossRefGoogle Scholar
  224. Lucet, J.-C., Chevret, S., Durand-Zleski, I., Chastang, C. and Regnier, B., (2003), Prevalence and risk factors for carriage of methicillin-resistant Staphylococcus aureus at admission to the intensive care unit. Arch Int Med, 163, 181–188.CrossRefGoogle Scholar
  225. Ma, L., Ishii, Y., Ishiguro, M., Matsuzawa, H. and Yamaguchi, K., (1998), Cloning and sequencing of the gene encoding Toho-2, a class A β-lactamase preferentially inhibited by tazobactam. Antimicrob Agents Chemother, 42, 1181–1186.PubMedGoogle Scholar
  226. MacLeod, D.L., Nelson, L.E., Shawar, R.M., Lin, B.B., Lockwood, L.G., Dirk, J.E., Miller, G.H., Burns, J.L. and Garber, R.L., (2000), Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. J Infect Dis, 181, 1180–1184.PubMedCrossRefGoogle Scholar
  227. Macone, A., Donatelli, J., Dumont, T., Levy, S.B. and Tanaka, S.K., (2003), In vitro activity of PTK 0796 (BAY 73-6944) against gram-positive and gram-negative organisms. In Interscience Conference on Antimicrobial Agents and Chemotherapy. Vol. Abst. 2439 Chicago, IL.Google Scholar
  228. Magnet, S., Smith, T.A., Zheng, R., Nordmann, P. and Blanchard, J.S., (2003), Aminoglycoside resistance resulting from tight drug binding to an altered aminoglycoside acetyltransferase. Antimicrob Agents Chemother, 47, 1577–1583.PubMedCrossRefGoogle Scholar
  229. Mah, T.F., Pitts, B., Pellock, B., Walker, G.C., Stewart, P.S. and O’Toole, G.A., (2003), A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature, 426, 306–310.PubMedCrossRefGoogle Scholar
  230. Mallea, M., Chevalier, J., Eyraud, A. and Pages, J.M., (2002), Inhibitors of antibiotic efflux pump in resistant Enterobacter aerogenes strains. Biochem Biophys Res Commun, 293, 1370–1373.PubMedCrossRefGoogle Scholar
  231. Mallea, M., Mahamoud, A., Chevalier, J., Alibert-Franco, S., Brouant, P., Barbe, J. and Pages, J.M., (2003), Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates. Biochem J, 376, 801–805.PubMedCrossRefGoogle Scholar
  232. Mamber, S.W., Kolek, B., Brookshire, K.W., Bonner, D.P. and Fung-Tomc, J., (1993), Activity of quinolones in the Ames Salmonella TA102 mutagenicity test and other bacterial genotoxicity assays. Antimicrob Agents Chemother, 37, 213–217.PubMedGoogle Scholar
  233. Mamelli, L., Amoros, J.P., Pages, J.M. and Bolla, J.M., (2003), A phenylalanine-arginine beta-naphthylamide sensitive multidrug efflux pump involved in intrinsic and acquired resistance of Campylobacter to macrolides. Int J Antimicrob Agents, 22, 237–241.PubMedCrossRefGoogle Scholar
  234. Mammeri, H., Van De Loo, M., Poirel, L., Martinez-Martinez, L. and Nordmann, P., (2005), Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. Antimicrob Agents Chemother, 49, 71–76.PubMedCrossRefGoogle Scholar
  235. Mao, W., Warren, M.S., Black, D.S., Satou, T., Murata, T., Nishino, T., Gotoh, N. and Lomovskaya, O., (2002), On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonas aeruginosa are involved in substrate recognition. Mol Microbiol, 46, 889–901.PubMedCrossRefGoogle Scholar
  236. Marians, K.J. and Hiasa, H., (1997), Mechanism of quinolone action. A drug-induced structural perturbation of the DNA precedes strand cleavage by topoisomerase IV. J Biol Chem, 272, 9401–9409.PubMedCrossRefGoogle Scholar
  237. Martinez-Martinez, L., Pascual, A., Garcia, I., Tran, J. and Jacoby, G.A., (2003), Interaction of plasmid and host quinolone resistance. J Antimicrob Chemother, 51, 1037–1039.PubMedCrossRefGoogle Scholar
  238. Martínez-Martínez, L., Pascual, A., Hernández-Allés, S., Alvarez-Díaz, D., Suárez, A.I., Tran, J., Benedí, V.J. and Jacoby, G.A., (1999), Roles of β-lactamases and porins in activities of carbapenems and cephalosporins agains Klebsiella pneumoniae. Antimicrob Agents Chemother, 43, 1669–1673.PubMedGoogle Scholar
  239. Martinez-Martinez, L., Pascual, A. and Jacoby, G.A., (1998), Quinolone resistance from a transferable plasmid. Lancet, 351, 797–799.PubMedCrossRefGoogle Scholar
  240. McPhee, J.B., Lewenza, S. and Hancock, R.E., (2003), Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol, 50, 205–217.PubMedCrossRefGoogle Scholar
  241. Meier, A., Kirschner, P., Bange, F.C., Vogel, U. and Bottger, E.C., (1994), Genetic alterations in streptomycin-resistant Mycobacterium tuberculosis: mapping of mutations conferring resistance. Antimicrob Agents Chemother, 38, 228–233.PubMedGoogle Scholar
  242. Menard, R., Molinas, C., Arthur, M., Duval, J., Courvalin, P. and Leclercq, R., (1993), Overproduction of 3’-aminoglycoside phosphotransferase type I confers resistance to tobramycin in Escherichia coli. Antimicrob Agents Chemother, 37, 78–83.PubMedGoogle Scholar
  243. Mhand, R.A., Brahimi, N., Moustaoui, N., Mdaghri, N.E., Amaruch, H., Grimont, F., Bingen, E. and Benbachir, M., (1999), Characterization of extended-spectrum β-lactamase-producing Salmonella typhimurium by phenotypic and genotypic typing methods. J Clin Microbiol, 37, 3769–3773.PubMedGoogle Scholar
  244. Michel, B., Ehrlich, S.D. and Uzest, M., (1997), DNA double-strand breaks caused by replication arrest. Embo J, 16, 430–438.PubMedCrossRefGoogle Scholar
  245. Michel, B., Grompone, G., Flores, M.J. and Bidnenko, V., (2004), Multiple pathways process stalled replication forks. Proc Natl Acad Sci U S A, 101, 12783–12788.PubMedCrossRefGoogle Scholar
  246. Middlemiss, J.K. and Poole, K., (2004), Differential impact of MexB mutations on substrate selectivity of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa. J Bacteriol, 186, 1258–1269.PubMedCrossRefGoogle Scholar
  247. Miller, G.H., Sabatelli, F.J., Hare, R.S., Glupczynski, Y., Mackey, P., Shlaes, D., Shimizu, K. and Shaw, K.J., (1997), The most frequent aminoglycoside resistance mechanisms—changes with time and geographic area: a reflection of aminoglycoside usage patterns? Aminoglycoside Resistance Study Groups. Clin Infect Dis, 24 (Suppl. 1), S46–S62.PubMedGoogle Scholar
  248. Miller, G.H., Sabatelli, F.J., Naples, L., Hare, R.S. and Shaw, K.J., (1995), The changing nature of aminoglycoside resistance mechanisms and the role of isepamicin—a new broad-spectrum aminoglycoside. The Aminoglycoside Resistance Study Groups. J Chemother, 7 (Suppl. 2), 31–44.PubMedGoogle Scholar
  249. Mine, T., Morita, Y., Kataoka, A., Mizushima, T. and Tsuchiya, T., (1999), Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother, 43, 415–417.PubMedCrossRefGoogle Scholar
  250. Mingeot-Leclercq, M.P., Glupczynski, Y. and Tulkens, P.M., (1999), Aminoglycosides: activity and resistance. Antimicrob Agents Chemother, 43, 727–737.PubMedGoogle Scholar
  251. Miriagou, V., Tzouvelekis, L.S., Rossiter, S., Tzelepi, E., Angulo, F.J. and Whichard, J.M., (2003), Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated Class A carbapenemase KPC-2. Antimicrob Agents Chemother, 47, 1297–1300.PubMedCrossRefGoogle Scholar
  252. Miro, E., Verges, C., Garcia, I., Mirelis, B., Navarro, F., Coll, P., Prats, G. and Martinez-Martinez, L., (2004), Resistance to quinolones and β-lactams in Salmonella enterica due to mutations in topoisomerase-encoding genes, altered cell permeability and expression of an active efflux system. Enferm Infecc Microbiol Clin, 22, 204–211.PubMedCrossRefGoogle Scholar
  253. Miró, E., del Cuerpo, M., Navarro, F., Sabaté, M., Mireleis, B. and Prats, G., (1998), Emergence of clinical isolates with decreased susceptibility to ceftazidime and synergistic effect with co-amoxiclav due to SHV-1 hyperproduction. J Antimicrob Chemother, 42, 535–538.PubMedCrossRefGoogle Scholar
  254. Moazed, D. and Noller, H.F., (1987), Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 327, 389–394.PubMedCrossRefGoogle Scholar
  255. Montero, C., Mateu, G., Rodriguez, R. and Takiff, H., (2001), Intrinsic resistance of Mycobacterium smegmatis to fluoroquinolones may be influenced by new pentapeptide protein MfpA. Antimicrob Agents Chemother, 45, 3387–3392.PubMedCrossRefGoogle Scholar
  256. Moore, R.A., DeShazer, D., Reckseidler, S., Weissman, A. and Woods, D.E., (1999), Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother, 43, 465–470.PubMedGoogle Scholar
  257. Morais Cabral, J.H., Jackson, A.P., Smith, C.V., Shikotra, N., Maxwell, A. and Liddington, R.C., (1997), Crystal structure of the breakage-reunion domain of DNA gyrase. Nature, 388, 903–906.PubMedCrossRefGoogle Scholar
  258. Morita, Y., Murata, T., Mima, T., Shiota, S., Kuroda, T., Mizushima, T., Gotoh, N., Nishino, T. and Tsuchiya, T., (2003), Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother, 51, 991–994.PubMedCrossRefGoogle Scholar
  259. Murakami, S., Nakashima, R., Yamashita, E. and Yamaguchi, A., (2002), Crystal structure of bacterial multidrug efflux transporter AcrB. Nature, 419, 587–593.PubMedCrossRefGoogle Scholar
  260. Mushtaq, S., Ge, Y. and Livermore, D.M., (2004), Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized mutants, and transconjugants and resistance seletion potential. Antimicrob Agents Chemother, 48, 3086–3092.PubMedCrossRefGoogle Scholar
  261. Mutnick, A.H., Rhomberg, P.R., Sader, H.S. and Jones, R.N., (2004), Antimicrobial usage and resistance trend relationships from the MYSTIC Programme in North America (1999–2001). J Antimicrob Chemother, 53, 290–296.PubMedCrossRefGoogle Scholar
  262. Murakami, S., Nakashima, R., Yamashita, E., Matsumoto T. and Yamaguchi, A., (2006), Crystal structures of a multidrug transporter reveal a functionally rotating Mechanism. Nature 443: 173–179.Google Scholar
  263. Nachamkin, I., Ung, H. and Li, M., (2002), Increasing fluoroquinolone resistance in Campylobacter jejuni, Pennsylvania, USA, 1982–2001. Emerg Infect Dis, 8, 1501–1503.PubMedGoogle Scholar
  264. National Nosocomial Infections Surveillance (NNIS) System, (1999), Hospital infection program. NNIS antimicrobial resistance ICU surveillance report, 1999. Centers for disease Control and Prevention, Atlanta, GA.Google Scholar
  265. Nadjar, D., Rouveau, M., Verdet, C., Donay, J.-L., Herrmann, J.-L., Lagrange, P.H., Philippon, A. and Arlet, G., (2000), Outbreak of Klebsiella pneumoniae producing transferable AmpC-type β-lactamase (ACC-1) originating from Hafnia alvei. FEMS Microbiol Lett, 187, 35–40.PubMedGoogle Scholar
  266. Nakayama, K., Takashima, K., Ishihara, H., Shinomiya, T., Kageyama, M., Kanaya, S., Ohnishi, M., Murata, T., Mori, H. and Hayashi, T., (2000), The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol, 38, 213–231.PubMedCrossRefGoogle Scholar
  267. Nazir, J., Urban, C., Mariano, N., Burns, J., Tommasulo, B., Rosenberg, C., Segal-Maurer, S. and Rahal, J.J., (2004), Quinolone-resistant Haemophilus influenzae in a long-term care facility: clinical and molecular epidemiology. Clin Infect Dis, 38, 1564–1569.PubMedCrossRefGoogle Scholar
  268. Nelson, E.C. and Elisha, B.G., (1999), Molecular basis of AmpC hyperproduction in clinical isolates of Escherichia coli . Antimicrob Agents Chemother, 43, 957–959.PubMedGoogle Scholar
  269. Nelson, M.L. and Levy, S.B., (1999), The reversal of tetracycline resistance mediated by different bacterial tetracycine resistance determinants by an inhibitor of the Tet(B) antiport protein. Antimicrob Agents Chemother, 43, 1719–1724.PubMedGoogle Scholar
  270. Neuhauser, M.M., Weinstein, R.A., Rydman, R., Danziger, L.H., Karam, G. and Quinn, J.P., (2003), Antibiotic resistance among gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA, 289, 885–888.PubMedCrossRefGoogle Scholar
  271. Nikaido, H., (1998), Multiple antibiotic resistance and efflux. Curr Opin Microbiol, 1, 516–523.PubMedCrossRefGoogle Scholar
  272. Nikaido, H. and Thanassi, D.G., (1993), Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrob Agents Chemother, 37, 1393–1399.PubMedGoogle Scholar
  273. Nikaido, H., Basina, M., Nguyen, V. and Rosenberg, E.Y., (1998), Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those beta-lactam antibiotics containing lipophilic side chains. J Bacteriol, 180, 4686–4692.PubMedGoogle Scholar
  274. Nordmann, P., Mariotte, S., Nass, T., labia, R. and Nicolas, M.-H., (1993), Biochemical properties of a carbapenem-hydrolyzing β-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli . Antimicrob Agents Chemother, 37, 939–946.PubMedGoogle Scholar
  275. Nordmann, P. and Poirel, L., (2002), Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect, 8, 321–331.PubMedCrossRefGoogle Scholar
  276. Norrby, S.R. and Lietman, P.S., (1993), Safety and tolerability of fluoroquinolones. Drugs, 45 (Suppl. 3), 59–64.PubMedGoogle Scholar
  277. O’Hara, K., Haruta, S., Sawai, T., Tsunoda, M. and Iyobe, S., (1998), Novel metallo-β-lactamase mediated by a Shigella flexneri plasmid. FEMS Microbiol Lett, 162, 201–206.PubMedGoogle Scholar
  278. Oethinger, M., Kern, W.V., Jellen-Ritter, A.S., McMurry, L.M. and Levy, S.B., (2000), Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob Agents Chemother, 44, 10–13.PubMedCrossRefGoogle Scholar
  279. Ogle, J.W., Reller, L.B. and Vasil, M.L., (1988), Development of resistance in Pseudomonas aeruginosa to imipenem, norfloxacin, and ciprofloxacin during therapy: proof provided by typing with a DNA probe. J Infect Dis, 157, 743–748.PubMedGoogle Scholar
  280. Oh, H., Stenhoff, J., Jalal, S. and Wretlind, B., (2003), Role of efflux pumps and mutations in genes for topoisomerases II and IV in fluoroquinolone-resistant Pseudomonas aeruginosa strains. Microb Drug Resist, 9, 323–328.PubMedCrossRefGoogle Scholar
  281. Olliver, A., Valle, M., Chaslus-Dancla, E. and Cloeckaert, A., (2005), Overexpression of the multidrug efflux operon acrEF by insertional activation with IS1 or IS10 elements in Salmonella enterica serovar typhimurium DT204 acrB mutants selected with fluoroquinolones. Antimicrob Agents Chemother, 49, 289–301.PubMedCrossRefGoogle Scholar
  282. Orth, P., Schnappinger, D., Hillen, W., Saenger, W. and Hinrichs, W., (2000), Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nature Struct Biol, 7, 215–219.PubMedCrossRefGoogle Scholar
  283. Osano, E., Arakawa, Y., Wacharotayankun, R., Ohta, M., Horii, T., Ito, H., Yosimura, F. and Kato, N., (1994), Molecular characterization of an enterobacterial metallo β-lactamase found in a clinical isoalte of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother, 38, 71–78.PubMedGoogle Scholar
  284. Palumbo, J.D., Kado, C.I. and Phillips, D.A., (1998), An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol, 180, 3107–3113.PubMedGoogle Scholar
  285. Parr, T.R., Jr. and Bayer, A.S., (1988), Mechanisms of aminoglycoside resistance in variants of Pseudomonas aeruginosa isolated during treatment of experimental endocarditis in rabbits. J Infect Dis, 158, 1003–1010.PubMedGoogle Scholar
  286. Payne, D.J., Bateson, J.H., Gasson, B.C., Proctor, D., Khushi, T., Farmer, T.H., Tolson, D.A., Bell, D., Skett, P.W., Marshall, A.C., Reid, R., Ghosez, L., Combret, Y. and Marchand-Brynaert, J., (1997), Inhibition of metallo-β-lactamases by a series of mercaptoacetic acid thiol ester derivatives. Antimicrob Agents Chemother, 41, 135–140.PubMedGoogle Scholar
  287. Pearson, J.P., Van Delden, C. and Iglewski, B.H., (1999), Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol, 181, 1203–1210.PubMedGoogle Scholar
  288. Pena, C., Albareda, J.M., Pallares, R., Pujol, M., Tubau, F. and Ariza, J., (1995), Relationship between quinolone use and emergence of ciprofloxacin-resistant Escherichia coli in bloodstream infections. Antimicrob Agents Chemother, 39, 520–524.PubMedGoogle Scholar
  289. Peng, H. and Marians, K.J., (1993a), Escherichia coli topoisomerase IV. Purification, characterization, subunit structure, and subunit interactions. J Biol Chem, 268, 24481–24490.Google Scholar
  290. Peng, H. and Marians, K.J., (1993b), Decatenation activity of topoisomerase IV during oriC and pBR322 DNA replication in vitro. Proc Natl Acad Sci U S A, 90, 8571–8575.CrossRefGoogle Scholar
  291. Petersen, P.J. and Bradford, P.A., (2005), Effect of medium age and supplementation with the biocatalytic oxygen-reducing reagent oxyrase on in vitro activities of tigecycline against recent clinical Isolates. Antimicrob Agents Chemother, 49, 3910–3918.PubMedCrossRefGoogle Scholar
  292. Petersen, P.J., Jacobus, N.V., Weiss, W.J., Sum, P.E. and Testa, R.T., (1999), In vitro and in vivo antimicrobial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob Agents Chemother, 43, 738–744.PubMedGoogle Scholar
  293. Peterson, A.A., Hancock, R.E. and McGroarty, E.J., (1985), Binding of polycationic antibiotics and polyamines to lipopolysaccharides of Pseudomonas aeruginosa. J Bacteriol, 164, 1256–1261.PubMedGoogle Scholar
  294. Poirel, L., Girlich, D., Naas, T. and Nordmann, P., (2001a), OXA-28, an extended-spectrum variant of OXA-10 β-lactamase from Pseudomonas aeruginosa and its plasmid- and integron-located gene. Antimicrob Agents Chemother, 45, 447–453.CrossRefGoogle Scholar
  295. Poirel, L., Lambert, T., Turkoglu, S., Ronco, E., Gaillard, J. and Nordmann, P., (2001b), Characterization of Class 1 integrons from Pseudomonas aeruginosa that contain the bla(VIM-2) carbapenem-hydrolyzing β-lactamase gene and of two novel aminoglycoside resistance gene cassettes. Antimicrob Agents Chemother, 45, 546–552.CrossRefGoogle Scholar
  296. Poirel, L., Weldhagen, G.F., Naas, T., Champs, C.D., Dove, M.G. and Nordmann, P., (2001c), GES-2, a class A β-lactamase from Pseudomonas aeruginosa with increased hydroloysis of imipenem. Antimicrob Agents Chemother, 45, 2598–2603.CrossRefGoogle Scholar
  297. Poole, K., (2000), Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob Agents Chemother, 44, 2233–2241.PubMedCrossRefGoogle Scholar
  298. Poole, K., (2001), Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol, 3, 255–264.PubMedGoogle Scholar
  299. Poole, K., (2002), Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr Pharm Biotechnol, 3, 77–98.PubMedCrossRefGoogle Scholar
  300. Poole, K., (2004), Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect, 10, 12–26.PubMedCrossRefGoogle Scholar
  301. Prammananan, T., Sander, P., Brown, B.A., Frischkorn, K., Onyi, G.O., Zhang, Y., Bottger, E.C. and Wallace, R.J., Jr. (1998) A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J Infect Dis, 177, 1573–1581.Google Scholar
  302. Prinarakis, E.E., Miriagou, V., Tzelepi, E., Gazouli, M. and Tzouvelekis, L.S., (1997), Emergence of an inhibitor-resistant β-lactamase (SHV-10) derived from an SHV-5 variant. Antimicrob Agents Chemother, 41, 838–840.PubMedGoogle Scholar
  303. Projan, S.J., (2003), Why is big Pharma getting out of antibacterial drug discovery? Curr Opin Microbiol, 6, 427–430.PubMedCrossRefGoogle Scholar
  304. Purohit, P. and Stern, S., (1994), Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature, 370, 659–662.PubMedCrossRefGoogle Scholar
  305. Rafii, F., Park, M. and Novak, J.S., (2005), Alterations in DNA gyrase and topoisomerase IV in resistant mutants of Clostridium perfringens found after in vitro treatment with fluoroquinolones. Antimicrob Agents Chemother, 49, 488–492.PubMedCrossRefGoogle Scholar
  306. Rahal, J.J., Urban, C. and Horn, D., (1998), Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA, 280, 1233–1237.PubMedCrossRefGoogle Scholar
  307. Ramsey, B.W., Pepe, M.S., Quan, J.M., Otto, K.L., Montgomery, A.B., Williams-Warren, J., Vasiljev, K.M., Borowitz, D., Bowman, C.M., Marshall, B.C., Marshall, S. and Smith, A.L., (1999), Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med, 340, 23–30.PubMedCrossRefGoogle Scholar
  308. Randall, L.P. and Woodward, M.J., (2002), The multiple antibiotic resistance (mar) locus and its significance. Res Vet Sci, 72, 87–93.PubMedCrossRefGoogle Scholar
  309. Randall, L.P., Cooles, S.W., Piddock, L.J. and Woodward, M.J., (2004), Effect of triclosan or a phenolic farm disinfectant on the selection of antibiotic-resistant Salmonella enterica. J Antimicrob Chemother, 54, 621–627.PubMedCrossRefGoogle Scholar
  310. Rasheed, J.K., Jay, C., Metchock, B., Berkowitz, F., Weigel, L., Crellin, J., Steward, C., Hill, B., Medeiros, A.A. and Tenover, F.C., (1997), Evolution of extended-spectrum β-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob Agents Chemother, 41, 647–653.PubMedGoogle Scholar
  311. Rasmussen, B. and Bush, K., (1997), Carbapenem-hydrolyzing β-lactamases. Antimicrob Agents Chemother, 41, 23–232.Google Scholar
  312. Rasmussen, B.A., Bush, K., Keeney, D., Yang, Y., hare, R., O’Gara, C. and Medeiros, A.A., (1996), Characterization of IMI-1 β-lactamase, a novel class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrob Agents Chemother, 40, 2080–2086.PubMedGoogle Scholar
  313. Renau, T.E., Leger, R., Flamme, E.M., Sangalang, J., She, M.W., Yen, R., Gannon, C.L., Griffith, D., Chamberland, S., Lomovskaya, O., Hecker, S.J., Lee, V.J., Ohta, T. and Nakayama, K., (1999), Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J Med Chem, 42, 4928–4931.PubMedCrossRefGoogle Scholar
  314. Renau, T.E., Leger, R., Flamme, E.M., She, M.W., Gannon, C.L., Mathias, K.M., Lomovskaya, O., Chamberland, S., Lee, V.J., Ohta, T., Nakayama, K. and Ishida, Y., (2001), Addressing the stability of C-capped dipeptide efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg Med Chem Lett, 11, 663–667.PubMedCrossRefGoogle Scholar
  315. Renau, T.E., Leger, R., Filonova, L., Flamme, E.M., Wang, M., Yen, R., Madsen, D., Griffith, D., Chamberland, S., Dudley, M.N., Lee, V.J., Lomovskaya, O., Watkins, W.J., Ohta, T., Nakayama, K. and Ishida, Y., (2003), Conformationally-restricted analogues of efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg Med Chem Lett, 13, 2755–2758.PubMedCrossRefGoogle Scholar
  316. Renau, T.E., Leger, R., Yen, R., She, M.W., Flamme, E.M., Sangalang, J., Gannon, C.L., Chamberland, S., Lomovskaya, O. and Lee, V.J., (2002), Peptidomimetics of efflux pump inhibitors potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg Med Chem Lett, 12, 763–766.PubMedCrossRefGoogle Scholar
  317. Rice, L.B., Willey, S.H., Papanicolaou, G.A., Medieros, A.A., Eliopoulos, G.M., R.C Moellering, J. and Jacoby, G.A., (1990), Outbreak of ceftazidime resistance caused by extended-spectrum β-lactamases at a Massachusetts chronic-care facility. Antimicrob Agents Chemother, 34, 2193–2199.PubMedGoogle Scholar
  318. Rice, L.B., Eckstein, E.C., DeVente, J. and Shlaes, D.M., (1996), Ceftazidime-resistant Klebsiella pneumoniae isolates recovered at the Cleveland Department of Veterans Affairs Medical Center. Clin Infect Dis, 23, 118–124.PubMedGoogle Scholar
  319. Rivera, M., Hancock, R.E., Sawyer, J.G., Haug, A. and McGroarty, E.J., (1988), Enhanced binding of polycationic antibiotics to lipopolysaccharide from an aminoglycoside-supersusceptible, tolA mutant strain of Pseudomonas aeruginosa. Antimicrob Agents Chemother, 32, 649–655.PubMedGoogle Scholar
  320. Roberts, M.C., (1996), Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility and distribution. FEMS Microbiol Rev, 19, 1–24.PubMedCrossRefGoogle Scholar
  321. Robicsek, A., Sahm, D.F., Strahilevitz, J., Jacoby, G.A. and Hooper, D.C., (2005), Broader distribution of plasmid-mediated quinolone resistance in the United States. Antimicrob Agents Chemother, 49, 3001–3003.PubMedCrossRefGoogle Scholar
  322. Robicsek, A., Strahilevits, J., Jacoby, G.A., Macielag, M., Abbanat, D., Park, C.H., Bush, K. and Hooper D.C., (2006),. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nature Med, 12,83–88Google Scholar
  323. Rodriguez Esparragon, F., Gonzalez Martin, M., Gonzalez Lama, Z., Sabatelli, F.J. and Tejedor Junco, M.T., (2000), Aminoglycoside resistance mechanisms in clinical isolates of Pseudomonas aeruginosa from the Canary Islands. Zentralbl Bakteriol, 289, 817–826.PubMedGoogle Scholar
  324. Rodriguez-Martinez, J.M., Pascual, A., Garcia, I. and Martinez-Martinez, L., (2003), Detection of the plasmid-mediated quinolone resistance determinant qnr among clinical isolates of Klebsiella pneumoniae producing AmpC-type β-lactamase. J Antimicrob Chemother, 52, 703–706.PubMedCrossRefGoogle Scholar
  325. Roestamadji, J. and Mobashery, S., (1998), The use of neamine as a molecular template: inactivation of bacterial antibiotic resistance enzyme aminoglycoside 3’-phosphotransferase type IIa. Bioorg Med Chem Lett, 8, 3483–3488.PubMedCrossRefGoogle Scholar
  326. Rosenberg, E.Y., Ma, D. and Nikaido, H., (2000), AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol, 182, 1754–1756.PubMedCrossRefGoogle Scholar
  327. Ross, J.I., Eady, E.A., Cove, J.H. and Cunliffe, W.J., (1998), 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob Agents Chemother, 42, 1702–1705.PubMedGoogle Scholar
  328. Rothstein, D.M., McGlynn, M., Bernan, V., McGahren, J., Zaccardi, J., Cekleniak, N. and Bertrand, K.P., (1993), Detection of tetracyclines and efflux pump inhibitors. Antimicrob Agents Chemother, 37, 1624–1629.PubMedGoogle Scholar
  329. Rubens, C.E., McNeill, W.F. and Farrar, W.E., Jr., (1979), Transposable plasmid deoxyribonucleic acid sequence in Pseudomonas aeruginosa which mediates resistance to gentamicin and four other antimicrobial agents. J Bacteriol, 139, 877–882.PubMedGoogle Scholar
  330. Ruzin, A., Visalli, M.A., Keeney, D. and Bradford, P.A., (2005), Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother, 49, 1017–1022.PubMedCrossRefGoogle Scholar
  331. Ryder, N.S., Dzink-Fox, J., Kubik, B., Mlineritsch, W., Alavarez, S., Bracken, K., Dean, K., Jain, R., Sundaram, A., Weidmann, B. and Yuan, Z., (2004), LBM415, a new peptide deformylase inhibitor with potent in vitro activity agains drug-resistant bacteria, Abstr. F-1959. In 44th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC.Google Scholar
  332. Sabaté, M., Tarragó, R., Navarro, F., Miró, E., Vergés, C., Barbé, J. and Prats, G., (2000), Cloning and sequence of the gene encoding a novel cefotaxime-hydrolyzing β-lactamase (CTX-M-9) from Escherichia coli in Spain. Antimicrob Agents Chemother, 44, 1970–1973.PubMedCrossRefGoogle Scholar
  333. Sader, H.S., Jones, R.N. and Silva, J.B., (2002), Skin and soft tissue infections in Latin American medical centers: four-year assessment of the pathogen frequency and antimicrobial susceptibility patterns. Diagn Microbiol Infect Dis, 44, 281–288.PubMedCrossRefGoogle Scholar
  334. Saenz, Y., Zarazaga, M., Lantero, M., Gastanares, M.J., Baquero, F. and Torres, C., (2000), Antibiotic resistance in Campylobacter strains isolated from animals, foods, and humans in Spain in 1997–1998. Antimicrob Agents Chemother, 44, 267–271.PubMedCrossRefGoogle Scholar
  335. Sahm, D.F., Critchley, I.A., Kelly, L.J., Karlowsky, J.A., Mayfield, D.C., Thornsberry, C., Mauriz, Y.R. and Kahn, J., (2001), Evaluation of current activities of fluoroquinolones against gram-negative bacilli using centralized in vitro testing and electronic surveillance. Antimicrob Agents Chemother, 45, 267–274.PubMedCrossRefGoogle Scholar
  336. Saika, T., Hasegawa, M., Kobayashi, I. and Nishida, M., (1999), Ionic binding of 3H-gentamicin and short-time bactericidal activity of gentamicin against Pseudomonas aeruginosa isolates with different lipopolysaccharide structures. Chemotherapy, 45, 296–302.PubMedCrossRefGoogle Scholar
  337. Sakon, J., Liao, H.H., Kanikula, A.M., Benning, M.M., Rayment, I. and Holden, H.M., (1993), Molecular structure of kanamycin nucleotidyltransferase determined to 3.0-A resolution. Biochemistry, 32, 11977–11984.PubMedCrossRefGoogle Scholar
  338. Sanchez, L., Pan, W., Vinas, M. and Nikaido, H., (1997), The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump. J Bacteriol, 179, 6855–6857.PubMedGoogle Scholar
  339. Sanchez-Pescador, R., Brown, J.T., Roberts, M.C. and Urdea, M.S., (1998), Homology of the TetM with translational elongation factors: implications for potential modes of the tetM-conferred tetracycline resistance. Nucleic Acids Res, 16, 1218.CrossRefGoogle Scholar
  340. Sanders, C.C., Barry, A.L., Washington, J.A., Shubert, C., Moland, E.S., Traczewski, M.M., Knapp, C. and Mulder, R., (1996), Detection of extended-spectrum-β-lactamase-producing members of the family Enterobacteriaceae with the Vitek ESBL test. J Clin Microbiol, 34, 2997–3001.PubMedGoogle Scholar
  341. Schiappa, D.A., Hayden, M.K., Matushek, M.G., Hashemi, F.N., Sullivan, J., Smith, K.Y., Miyashiro, D., Quinn, J.P., Weinstein, R.A. and Trenholme, G.M., (1996), Ceftazidime-resistant Klebsiella pneumoniae and Escherichia coli bloodstream infection: a case-control and molecular epidemiologic infection. J Infect Dis, 174, 529–536.PubMedGoogle Scholar
  342. Schlessinger, D., (1988), Failure of aminoglycoside antibiotics to kill anaerobic, low-pH, and resistant cultures. Clin Microbiol Rev, 1, 54–59.PubMedGoogle Scholar
  343. Schnappinger, D. and Hillen, W., (1996), Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Archives of Microbiology, 165, 359–369.PubMedCrossRefGoogle Scholar
  344. Schweizer, H.D., (1993), Small broad-host-range gentamicin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques, 15, 831–834.PubMedGoogle Scholar
  345. Seeger, M.A., Schiefner A., Eicher, T., Verrey, F., Diederichs, K. and Pos, K.M., (2006), Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298.Google Scholar
  346. Shafer, W.M., Balthazar, J.T., Hagman, K.E. and Morse, S.A., (1995), Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. Microbiology, 141 (Pt 4), 907–911.PubMedGoogle Scholar
  347. Shah, A.A., Hasan, F., Ahmed, S. and Hameed, A., (2004), Characteristics, epidemiology and clinical importance of emerging strains of Gram-negative bacilli producing extended-spectrum β-lactamases. Res Microbiol, 155, 409–421.PubMedCrossRefGoogle Scholar
  348. Shams, W.E. and Evans, M.E., (2005), Guide to selection of fluoroquinolones in patients with lower respiratory tract infections. Drugs, 65, 949–991.PubMedCrossRefGoogle Scholar
  349. Shaw, K.J., Hare, R.S., Sabatelli, F.J., Rizzo, M., Cramer, C.A., Naples, L., Kocsi, S., Munayyer, H., Mann, P., Miller, G.H., Verbist, L., Van Landuyt, H., Glupczynski, Y., Catalano, M. and Woloj, M., (1991), Correlation between aminoglycoside resistance profiles and DNA hybridization of clinical isolates. Antimicrob Agents Chemother, 35, 2253–2261.PubMedGoogle Scholar
  350. Shaw, K.J., Rather, P.N., Hare, R.S. and Miller, G.H., (1993), Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev, 57, 138–163.PubMedGoogle Scholar
  351. Shea, M.E. and Hiasa, H., (1999), Interactions between DNA helicases and frozen topoisomerase IV-quinolone-DNA ternary complexes. J Biol Chem, 274, 22747–22754.PubMedCrossRefGoogle Scholar
  352. Shearer, B.G. and Legakis, N.J., (1985), Pseudomonas aeruginosa: evidence for the involvement of lipopolysaccharide in determining outer membrane permeability to carbenicillin and gentamicin. J Infect Dis, 152, 351–355.PubMedGoogle Scholar
  353. Shen, L.L., (1994), Molecular mechanisms of DNA gyrase inhibition by quinolone antibacterials. Adv Pharmacol, 29A, 285–304.PubMedCrossRefGoogle Scholar
  354. Shen, L.L., (2001), Quinolone interactions with DNA and DNA gyrase. Methods Mol Biol, 95, 171–184.PubMedGoogle Scholar
  355. Shen, L.L., Baranowski, J. and Pernet, A.G., (1989a), Mechanism of inhibition of DNA gyrase by quinolone antibacterials: specificity and cooperativity of drug binding to DNA. Biochemistry, 28, 3879–3885.CrossRefGoogle Scholar
  356. Shen, L.L., Kohlbrenner, W.E., Weigl, D. and Baranowski, J., (1989b), Mechanism of quinolone inhibition of DNA gyrase. Appearance of unique norfloxacin binding sites in enzyme-DNA complexes. J Biol Chem, 264, 2973–2978.Google Scholar
  357. Shen, L.L., Mitscher, L.A., Sharma, P.N., O’Donnell, T.J., Chu, D.W., Cooper, C.S., Rosen, T. and Pernet, A.G., (1989c), Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug-DNA binding model. Biochemistry, 28, 3886–3894.CrossRefGoogle Scholar
  358. Shultz, T.R., Tapsall, J.W. and White, P.A., (2001), Correlation of in vitro susceptibilities to newer quinolones of naturally occurring quinolone-resistant Neisseria gonorrhoeae strains with changes in GyrA and ParC. Antimicrob Agents Chemother, 45, 734–738.PubMedCrossRefGoogle Scholar
  359. Sirot, D., Recule, C., Chaibi, E.B., Bret, L., Croize, J., Chanal-Claris, C., Labia, R. and Sirot, J., (1997), A complex mutant of TEM-1 β-lactamase with mutations encountered in both IRT-4 and extended-spectrum TEM-15, produced by an Escherichia coli clinical isolate. Antimicrob Agents Chemother, 41, 1322–1325.PubMedGoogle Scholar
  360. Siu, L.K., Lo, J.Y.C., Yuen, K.Y., Chau, P.Y., Ng, M.H. and Ho, P.L., (2000), β-lactamases in Shigella flexneri isolates from Hong Kong and Shanghai and a novel OXA-1-like β-lactamase, OXA-30. Antimicrob Agents Chemother, 44, 2034–2038.PubMedCrossRefGoogle Scholar
  361. Smith, C.A. and Baker, E.N., (2002), Aminoglycoside antibiotic resistance by enzymatic deactivation. Curr Drug Targets Infect Disord, 2, 143–160.PubMedCrossRefGoogle Scholar
  362. Smith, K.E., Besser, J.M., Hedberg, C.W., Leano, F.T., Bender, J.B., Wicklund, J.H., Johnson, B.P., Moore, K.A. and Osterholm, M.T., (1999), Quinolone-resistant Campylobacter jejuni infections in Minnesota, 1992–1998. Investigation Team. N Engl J Med, 340, 1525–1532.PubMedCrossRefGoogle Scholar
  363. Sobel, M.L., Hocquet, D., Cao, L., Plesiat, P. and Poole, K., (2005), Mutations in PA3574 (nalD) lead to increased MexAB-OprM expression and multidrug resistance in laboratory and clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother, 49, 1782–1786.PubMedCrossRefGoogle Scholar
  364. Sobel, M.L., McKay, G.A. and Poole, K., (2003), Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother, 47, 3202–3207.PubMedCrossRefGoogle Scholar
  365. Sougakoff, W., Papadopoulou, B., Nordmann, P. and Courvalin, P., (1987), Nucleotide sequence and distribution of gene tetO encoding tetracycline resistance in Campylobacter coli. FEMS Microbiol Lett, 44, 153–159.CrossRefGoogle Scholar
  366. Spahn, C.M.T., Blaha, G., Agrawal, R.K., Penczek, P., Grassucci, R.A., Trieber, C.A., Connell, S.R., Taylor, D.E., Nierhaus, K.H. and Frank, J., (2001), Localization of the ribosomal protection protein Tet(O) on the ribosome and mechanism of tetracycline resistance. Mol Cell, 7, 1037–1045.PubMedCrossRefGoogle Scholar
  367. Speer, B.S. and Salyers, A.A., (1989), Novel aerobic tetracycline resistance gene that chemically modifies tetracycline. J Bacteriol, 171, 148–153.PubMedGoogle Scholar
  368. Springer, B., Kidan, Y.G., Prammananan, T., Ellrott, K., Bottger, E.C. and Sander, P., (2001), Mechanisms of streptomycin resistance: selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob Agents Chemother, 45, 2877–2884.PubMedCrossRefGoogle Scholar
  369. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E., Lory, S. and Olson, M.V., (2000), Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406, 959–964.PubMedCrossRefGoogle Scholar
  370. Strahilevitz, J. and Hooper, D.C., (2005), Dual targeting of topoisomerase IV and gyrase to reduce mutant selection: direct testing of the paradigm by using WCK-1734, a new fluoroquinolone, and ciprofloxacin. Antimicrob Agents Chemother, 49, 1949–1956.PubMedCrossRefGoogle Scholar
  371. Suarez, G. and Nathans, D., (1965), Inhibition of aminoacyl tRNA binding to ribosomes by tetracylcline. Biochem Biophys Res Commun, 18, 743–750.CrossRefGoogle Scholar
  372. Sugino, A., Peebles, C.L., Kreuzer, K.N. and Cozzarelli, N.R., (1977), Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci USA, 74, 4767–4771.PubMedCrossRefGoogle Scholar
  373. Sum, P.-E. and Petersen, P., (1999), Synthesis and structure-activity relationship of novel glycylcycline derivatives leading to the discovery of GAR-936. Bioorg Med Chem Lett, 9, 1459–1462.PubMedCrossRefGoogle Scholar
  374. Takehasi, M., Altschmied, L. and Hillen, W., (1986), Kinetic and equilibrium characterization of the Tet repressor–tetracycline complex by fluorescence measurements. Evidence for divalent metal ion requirement and energy transfer. J Mol Biol, 187, 641–348.Google Scholar
  375. Taylor, D.E., (1986), Plasmid-mediated tetracycline resistance in Campylobacter jejuni and Campylobacter coli: expresssion in Escherichia coli and identification of homology with streptococcal class M determinant. J Bacteriol, 165, 1037–1039.PubMedGoogle Scholar
  376. Tenover, F.C., Raney, P.M., Williams, P.P., Rasheed, J.K., Biddle, J.W., Oliver, A., Fridkin, S.K., Jevitt, L. and McGowan, J.E., Jr., (2003), Evaluation of the NCCLS extended-spectrum β-lactamase confirmation methods for Escherichia coli with isolates collected during project ICARE. J Clin Microbiol, 41, 3142–3146.PubMedCrossRefGoogle Scholar
  377. Testa, R.T., Petersen, P.J., Jacobus, N.V., Sum, P.E., Lee, V.J. and Tally, F.P., (1993), In vitro and in vivo antibacterial activities of the glycylcyclines, a new class of semisynthetic tetracyclines. Antimicrob Agents Chemother, 37, 2270–2277.PubMedGoogle Scholar
  378. Thanassi, D.G., Cheng, L.W. and Nikaido, H., (1997), Active efflux of bile salts by Escherichia coli. J Bacteriol, 179, 2512–2518.PubMedGoogle Scholar
  379. Thomson, K.S. and Sanders, C.C., (1992), Detection of extended-spectrum β-lactamases in members of the family Enterobacteriaceae: Comparison of the double-disk and three dimensional tests. Antimicrob Agents Chemother, 36, 1877–1882.PubMedGoogle Scholar
  380. Toleman, M.A., Simm, A.M., Murphy, T.A., Gales, A.C., Biedenbach, D.J., Jones, R.N. and Walsh, T.R., (2002), Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother, 50, 673–679.PubMedCrossRefGoogle Scholar
  381. Toltzis, P., Dul, M.J., Hoyen, C., Salvator, A., Walsh, M., Zetts, L. and Toltzis, H., (2002), The effect of antibiotic rotation on colonization with antibiotic-resistant bacilli in a neonatal intensive care unit. Pediatrics, 110, 707–711.PubMedCrossRefGoogle Scholar
  382. Traczewski, M.M. and Brown, S.D., (2003), PTK 0796 (BAY 73-6944): In vitro potency and spectrum of activity compared to ten other antimicrobial compounds. In 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy. Vol. Abstract 2458, Chicago, IL.Google Scholar
  383. Tran, J.H. and Jacoby, G.A., (2002), Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci USA, 99, 5638–5642.PubMedCrossRefGoogle Scholar
  384. Tran, J.H., Jacoby, G.A. and Hooper, D.C., (2005a), Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV. Antimicrob Agents Chemother, 49, 3050–3052.CrossRefGoogle Scholar
  385. Tran, J.H., Jacoby, G.A. and Hooper, D.C., (2005b), Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother, 49, 118–125.CrossRefGoogle Scholar
  386. Trieber, C.A. and Taylor, D.E., (2002), Mutations in the 16S ribosomal RNA genes of Helicobacter pylori mediate resistance to tetracycline. J Bacteriol, 184, 2131–2140.PubMedCrossRefGoogle Scholar
  387. Tygacil, (2005), Tygacil™ [package insert]. Philadelphia, PA, Wyeth Pharmaceuticals Inc. 2005. Available at Accessed June 20, 2005.Google Scholar
  388. Tzouvelekis, L.S., Gazouli, M., Markogiannakis, A., Paraskaki, E., Legakis, N.J. and Tzelepi, E., (1998), Emergence of resistance to third-generation cephalosporins amongst Salmonella typhimurium isolates in Greece: report of the first three cases. J Antimicrob Chemother, 42, 273–275.PubMedCrossRefGoogle Scholar
  389. Tzouvelekis, L.S., Tzelepi, E., Tassios, P.T. and Legakis, N.J., (2000), CTX-M-type β-lactamases: an emerging group of extended-spectrum enzymes. Intern J Antimicrob Agents, 14, 137–143.CrossRefGoogle Scholar
  390. Unal, S., Masterton, R. and Goossens, H., (2004), Bacteraemia in Europe—antimicrobial susceptibility data from the MYSTIC surveillance programme. Int J Antimicrob Agents, 23, 155–163.PubMedCrossRefGoogle Scholar
  391. Van Bambeke, F., Michot, J.M., Van Eldere, J. and Tulkens, P.M., (2005), Quinolones in 2005: an update. Clin Microbiol Infect, 11, 256–280.PubMedCrossRefGoogle Scholar
  392. Visalli, M.A., Murphy, E., Projan, S.J. and Bradford, P.A., (2003), AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis. Antimicrob Agents Chemother, 47, 665–669.PubMedCrossRefGoogle Scholar
  393. Vogne, C., Aires, J.R., Bailly, C., Hocquet, D. and Plesiat, P., (2004), Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother, 48, 1676–1680.PubMedCrossRefGoogle Scholar
  394. Walsh, T.R., Bolmstrom, A., Qwarnstrom, A. and Gales, A., (2002), Evaluation of a new Etest for detecting metallo-β-lactamases in routine clinical testing. J Clin Microbiol, 40, 2755–2759.PubMedCrossRefGoogle Scholar
  395. Walsh, T.R., Toleman, M.A., Poirel, L. and Nordmann, P., (2005), Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev, 18, 306–325.Google Scholar
  396. Wang, F., Zhu, D. and Hu, F., (2001a), Surveillance of bacterial resistance in Shanghai. Zhonghua Yi Xue Za Zhi, 81, 17–19.Google Scholar
  397. Wang, H., Dzink-Fox, J.L., Chen, M. and Levy, S.B., (2001b), Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrR mutations. Antimicrob Agents Chemother, 45, 1515–1521.CrossRefGoogle Scholar
  398. Wang, M., Sahm, D.F., Jacoby, G.A. and Hooper, D.C., (2004), Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. Antimicrob Agents Chemother, 48, 1295–1299.PubMedCrossRefGoogle Scholar
  399. Wang, M., Tran, J.H., Jacoby, G.A., Zhang, Y., Wang, F. and Hooper, D.C., (2003), Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob Agents Chemother, 47, 2242–2248.PubMedCrossRefGoogle Scholar
  400. Watanabe, M., Iyobe, S., Inoue, M. and Mitsuhashi, S., (1991), Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 35, 147–151.PubMedGoogle Scholar
  401. Weinstein, R.A., (2001), Controlling antimicrobial resistance in hospitals: infection control and use of antibiotics. Emerg Infect Dis, 7, 188–192.PubMedCrossRefGoogle Scholar
  402. Westbrock-Wadman, S., Sherman, D.R., Hickey, M.J., Coulter, S.N., Zhu, Y.Q., Warrener, P., Nguyen, L.Y., Shawar, R.M., Folger, K.R. and Stover, C.K., (1999), Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother, 43, 2975–2983.PubMedGoogle Scholar
  403. Wiener, J., Quinn, J.P., Bradford, P.A., Goering, R.V., Nathan, C., Bush, K. and Weinstein, R.A., (1999), Multiple antibiotic-resistant Klebsiella and Escherichia coli in nursing homes. JAMA, 281, 517–523.PubMedCrossRefGoogle Scholar
  404. Williams, R.J., Livermore, D.M., Lindridge, M.A., Said, A.A. and Williams, J.D., (1984), Mechanisms of β-lactam resistance in British isolates of Pseudomonas aeruginosa. J Med Microbiol, 17, 283–293.PubMedGoogle Scholar
  405. Willmott, C.J., Critchlow, S.E., Eperon, I.C. and Maxwell, A., (1994), The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J Mol Biol, 242, 351–363.PubMedCrossRefGoogle Scholar
  406. Willmott, C.J. and Maxwell, A., (1993), A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex. Antimicrob Agents Chemother, 37, 126–127.PubMedGoogle Scholar
  407. Wolf, E., Vassilev, A., Makino, Y., Sali, A., Nakatani, Y. and Burley, S.K., (1998), Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell, 94, 439–449.PubMedCrossRefGoogle Scholar
  408. Woodcock, J., Moazed, D., Cannon, M., Davies, J. and Noller, H.F., (1991), Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. Embo J, 10, 3099–3103.PubMedGoogle Scholar
  409. Woodford, N., Tierno, P.M., Jr, Young, K., Tysall, L., Palepou, M.-F.I., Ward, E., Painer, R.E., Suber, D.F., Shungu, D., Silver, L.L., Inglima, K., Kornblum, J. and Livermore, D.M., (2004), Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York medical center. Antimicrob Agents Chemother, 48, 4793–4799.PubMedCrossRefGoogle Scholar
  410. Wright, G.D., (1999), Aminoglycoside-modifying enzymes. Curr Opin Microbiol, 2, 499–503.PubMedCrossRefGoogle Scholar
  411. Wybenga-Groot, L.E., Draker, K., Wright, G.D. and Berghuis, A.M., (1999), Crystal structure of an aminoglycoside 6’-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Structure Fold Des, 7, 497–507.PubMedCrossRefGoogle Scholar
  412. Wyeth Pharmaceuticals, (2005), Tygacil™ [package insert]. Available at Vol. Accessed June 20, 2005., Collegeville, PA, Wyeth Pharmaceuticals Inc.Google Scholar
  413. Xiong, Y.Q., Caillon, J., Kergueris, M.F., Drugeon, H., Baron, D., Potel, G. and Bayer, A.S., (1997), Adaptive resistance of Pseudomonas aeruginosa induced by aminoglycosides and killing kinetics in a rabbit endocarditis model. Antimicrob Agents Chemother, 41, 823–826.PubMedGoogle Scholar
  414. Yamaguchi, A., Ono, N., Akasaka, T., Noumi, T. and Sawai, T., (1990), Metal-tetracycline/H+ antiporter of Escherichia coli encoded by a transposon, Tn10. J Biol Chem, 265, 15525–15530.PubMedGoogle Scholar
  415. Yamane, K., Wachino, J., Doi, Y., Kurokawa, H. and Arakawa, Y., (2005), Global spread of multiple aminoglycoside resistance genes. Emerg Infect Dis, 11, 951–953.PubMedGoogle Scholar
  416. Yan, J.J., Wu, J.J., Tsai, S.-H. and Chuang, C.-L., (2004a), Comparison of the double-disk, combined disk, and Etest methods for detecting metallo-β-lactamases in gram negative bacilli. Diagn Microbiol Infect Dis, 49, 5–11.CrossRefGoogle Scholar
  417. Yan, J.J., Wu, J.J., Ko, W.C., Tsai, S.H., Chuang, C.L., Wu, H.M., Lu, Y.J. and Li, J.D., (2004b), Plasmid-mediated 16S rRNA methylases conferring high-level aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae isolates from two Taiwanese hospitals. J Antimicrob Chemother, 54, 1007–1012.CrossRefGoogle Scholar
  418. Yang, Y., Rasmussen, B.A. and Shlaes, D.M., (1999), Class A β-lactamases-enzyme-inhibitor interactions and resistance. Pharmacology & Therapeutics, 83, 141–151.CrossRefGoogle Scholar
  419. Yang, Y., Wu, P.C. and Livermore, D.M., (1990), Biochemical characterization of a β-lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates. Antimicrob Agents Chemother, 1990, 755–758.Google Scholar
  420. Yigit, H., Queenan, A.M., Anderson, G.J., Domenech-Sanchez, A., Biddle, J.W., Steward, C.D., Alberti, S., Bush, K. and Tenover, F.C., (2001), Novel carbapenem-hydrolyzing β-lactamase, KPC-1 from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother, 45, 1151–1161.PubMedCrossRefGoogle Scholar
  421. Yigit, H., Queenan, A.M., Rasheed, J.K., Biddle, J.W., Domenech-Sanchez, A., Alberti, S., Bush, K. and Tenover, F.C., (2003), Carbapenem-resistant strain of Klebsiella oxytoca harboring carbapenem-hydrolyzing β-lactamase KPC-2. Antimicrob Agents Chemother, 47, 3881–3889.PubMedCrossRefGoogle Scholar
  422. Yokoyama, K., Doi, Y., Yamane, K., Kurokawa, H., Shibata, N., Shibayama, K., Yagi, T., Kato, H. and Arakawa, Y., (2003), Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet, 362, 1888–1893.PubMedCrossRefGoogle Scholar
  423. Yoneyama, H., Sato, K. and Nakae, T., (1991), Aminoglycoside resistance in Pseudomonas aeruginosa due to outer membrane stabilization. Chemotherapy, 37, 239–245.PubMedCrossRefGoogle Scholar
  424. Yoon, S.S., Hennigan, R.F., Hilliard, G.M., Ochsner, U.A., Parvatiyar, K., Kamani, M.C., Allen, H.L., DeKievit, T.R., Gardner, P.R., Schwab, U., Rowe, J.J., Iglewski, B.H., McDermott, T.R., Mason, R.P., Wozniak, D.J., Hancock, R.E., Parsek, M.R., Noah, T.L., Boucher, R.C. and Hassett, D.J., (2002), Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell, 3, 593–603.PubMedCrossRefGoogle Scholar
  425. Yoshida, H., Bogaki, M., Nakamura, M. and Nakamura, S., (1990), Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother, 34, 1271–1272.PubMedGoogle Scholar
  426. Yoshida, H., Bogaki, M., Nakamura, M., Yamanaka, L.M. and Nakamura, S., (1991), Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob Agents Chemother, 35, 1647–1650.PubMedGoogle Scholar
  427. Yoshizawa, S., Fourmy, D. and Puglisi, J.D., (1999), Recognition of the codon–anticodon helix by ribosomal RNA. Science, 285, 1722–1725.PubMedCrossRefGoogle Scholar
  428. Yu, E.W., Aires, J.R., McDermott, G. and Nikaido, H., (2005), A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J Bacteriol, 187, 6804–6815.PubMedCrossRefGoogle Scholar
  429. Yu, E.W., McDermott, G., Zgurskaya, H.I., Nikaido, H. and Koshland, D.E., Jr., (2003), Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science, 300, 976–980.PubMedCrossRefGoogle Scholar
  430. Zbindien, R., Pünter, V. and von Graevenitz, A., (2002), In vitro activities of BAL9141, a novel broad-spectrum pyrrolidinone cephalosporin, against gram-negative nonfermenters. Antimicrob Agents Chemother, 46, 871–874.CrossRefGoogle Scholar
  431. Zechiedrich, E.L. and Cozzarelli, N.R., (1995), Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev, 9, 2859–2869.PubMedCrossRefGoogle Scholar
  432. Zechiedrich, E.L., Khodursky, A.B., Bachellier, S., Schneider, R., Chen, D., Lilley, D.M. and Cozzarelli, N.R., (2000), Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J Biol Chem, 275, 8103–8113.PubMedCrossRefGoogle Scholar
  433. Zembower, T.R., Noskin, G.A., Postelnick, M.J., Nguyen, C. and Peterson, L.R., (1998), The utility of aminoglycosides in an era of emerging drug resistance. Int J Antimicrob Agents, 10, 95–105.PubMedCrossRefGoogle Scholar
  434. Zervos, M.J., Hershberger, E., Nicolau, D.P., Ritchie, D.J., Blackner, L.K., Coyle, E.A., Donnelly, A.J., Eckel, S.F., Eng, R.H., Hiltz, A., Kuyumjian, A.G., Krebs, W., McDaniel, A., Hogan, P. and Lubowski, T.J., (2003), Relationship between fluoroquinolone use and changes in susceptibility to fluoroquinolones of selected pathogens in 10 United States teaching hospitals, 1991–2000. Clin Infect Dis, 37, 1643–1648.PubMedCrossRefGoogle Scholar
  435. Zgurskaya, H.I. and Nikaido, H., (2000), Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol, 37, 219–225.PubMedCrossRefGoogle Scholar
  436. Zhao, X. and Drlica, K., (2001), Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin Infect Dis, 33 (Suppl. 3), S147–156.PubMedCrossRefGoogle Scholar
  437. Zhao, X. and Drlica, K., (2002), Restricting the selection of antibiotic-resistant mutant bacteria: measurement and potential use of the mutant selection window. J Infect Dis, 185, 561–565.PubMedCrossRefGoogle Scholar
  438. Zhao, X., Malik, M., Chn, N., Drlica-Wagner, A., Wang, J-Y., Li, X. and Drlica K., (2006), Lethal action of quinolones against a temperature sensitive dnaB replication mutant of Escherichia coli. Antimicrob Agents. Chemother, 50, 362–364.PubMedCrossRefGoogle Scholar
  439. Zhao, X., Xu, C., Domagala, J. and Drlica, K., (1997), DNA topoisomerase targets of the fluoroquinolones: a strategy for avoiding bacterial resistance. Proc Natl Acad Sci USA, 94, 13991–13996.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Patricia A. Bradford
  • Charles R. Dean

There are no affiliations available

Personalised recommendations