Advertisement

A Biopharmaceutical Classification System Approach to Dissolution: Mechanisms and Strategies

  • William E. Bowen
  • Qingxi Wang
  • W. Peter Wuelfing
  • Denise L. Thomas
  • Eric D. Nelson
  • Yun Mao
  • Brian Hill
  • Mark Thompson
  • Kimberly Gallagher
  • Robert A. Reed

Dissolution testing is a common characterization method employed by the pharmaceutical industry to design formulations and assess product quality. It is a required performance test by many regulatory authorities for solid oral dosage forms, transdermal patches, stents, and oral suspensions. Dissolution testing is unique in that it is the only finished product test method in routine use that measures the effect of the formulation and physical properties of the active pharmaceutical ingredient (API) on the in vitro rate of drug solubilization. As a result, dissolution testing is the only test that monitors the impact of environmental storage conditions and manufacturing process upon the rate of drug release from the dosage form. These sensitivities have led to the use of the dissolution test as a measure of formulation bioperformance.

Keywords

Drug Release Quality Attribute Immediate Release Release Dosage Form Tablet Disintegration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiche, J. M.; Pierre, N.; Beyssac, E.; Prasad, V. K.; Skelly, J. P. 1989. New Results on an In Vitro Model for the Study of the Influence of Fatty Meals on the Bioavailability of Theophylline Controlled-Release Formulations. J. Pharm. Sci. 78: 261-263.CrossRefGoogle Scholar
  2. Amidon, G. L.; Lennernas, H.; Shah, V. P.; Crison, J. R. 1995. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of In Vitro Drug Product Dissolution and In Vivo Bioavailability. Pharm. Res. 12: 413-420.CrossRefPubMedGoogle Scholar
  3. Brown, C. K.; Chokshi, H. P.; Nickerson, B.; Reed, R. A.; Rohrs, B. R.; Shah, P. A. 2004. Acceptable Analytical Practices for Dissolution Testing of Poorly Soluble Compounds. Pharm. Technol. 28: 56-65.Google Scholar
  4. Buchwald, P. 2003. Direct, Differential-Equation-Based In-Vitro-In-Vivo Correlation (IVIVC) Method. J. Pharm. Pharmacol. 55: 495-504.CrossRefPubMedGoogle Scholar
  5. Caramella, C.; Ferrari, F.; Boneroni, M. C.; Sangalli, M. E.; Debernardi di Valserra, M.; Feletti, F.; Galmozzi, M. R. 1993. In Vitro/In Vivo Correlation of Prolonged Release Dosage Forms Containing Diltiazem HCl. Biopharm. Drug Dispos. 14: 143-160.CrossRefPubMedGoogle Scholar
  6. Civiale, C.; Ritschel, W. A.; Shiu, G. K.; Aiache, J. M.; Beyssac, E. 1991. In Vivo-In Vitro Correlation of Salbutamol Release from a Controlled Release Osmotic Pump Delivery System. Methods Find. Exp. Clin. Pharmacol. 13: 491-498.Google Scholar
  7. Devi, K. P.; Rao, K. V. R.; Baveja, S.; Fathi, M.; Roth, M. 1989. Zero-Order Release Formulation of Oxprenolol Hydrochloride with Swelling and Erosion Control. Pharm. Res. 6: 313-317.CrossRefPubMedGoogle Scholar
  8. Dhopeshwarker, V.; O’Keefe, J. C.; Zatz, J. L.; Deeter, R.; Horton, M. 1994. Development of an Oral Sustained-Release Antibiotic Matrix Tablet Using In-Vitro/In-Vivo Correlations. Drug Dev. Ind. Pharm. 20: 1851-1867.CrossRefGoogle Scholar
  9. Dietrich, R.; Brausse, R.; Benedikt, G.; Steinijans, V. W. 1988. Feasibility of In Vitro/In Vivo Correlation in the Case of a New Sustained-Release Theophylline Pellet Formulation. Arzneimittelforschung/Drug Res. 38: 1229-1237.Google Scholar
  10. Dunne, A.; O’Hara, T.; Devane, J. 1977. Level A In-Vivo-In-Vitro Correlation: Nonlinear Models and Statistical Methodology. J. Pharm. Sci. 86(11): 1245-1249.Google Scholar
  11. European Agency for the Evaluation of Medicinal Products. (2001). Note for Guidance on the Investigation of Bioavailability and Bioequivalence. (CPMP/EWP/QWP/1401/98). Fassihi, R. A.; Ritschel, W. A. (1993). Multiple-Layer, Direct-Compression, Controlled-Release System: In Vitro and In Vivo Evaluation. J. Pharm. Sci. 82: 750-754.Google Scholar
  12. FDA. (1997a). Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms. U.S. Department of Health and Human Services, Food and Drug Admin-istration, Center for Drug Evaluation and Research (CDER), Rockville, MD.Google Scholar
  13. FDA. (1997b). Guidance for Industry: Extended Release Oral Dosage Forms: Development, Evaluation, and Application of In Vitro/In Vivo Correlation. (1997b). U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Rockville, MD.Google Scholar
  14. FDA. (2000). Guidance for Industry: Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Rockville, MD. Fed. Regist. (2005). 70: 6888-6889.Google Scholar
  15. Harrison, L. I.; Mitra, A. K.; Kehe, C. R.; Klinger, N. M.; Wick, K. A.; McCarville, S. E.; Cooper, K. M.; Chang, S. F.; Roddy, P. J.; Berge, S. M.; Kisicki, J. C.; Dockhorn, R. 1993. Kinetics of Absorption of New Once-a-Day Formulation of Theophylline in the Presence and Absence of Food. J. Pharm. Sci. 82: 644-648.CrossRefPubMedGoogle Scholar
  16. Humbert, H.; Cabiac, M.-D.; Bosshardt, H. 1994. In Vitro-In Vivo Correlation of a Modified-Release Oral Form of Ketotifen: In Vitro Dissolution Rate Specification. J. Pharm. Sci. 83: 131-136.CrossRefPubMedGoogle Scholar
  17. International Conference on Harmonization. (1999). Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances, Q6A. International Conference on Harmonization. (2004). Pharmaceutical Development, Q8.Google Scholar
  18. Johnson, K. C.; Swindell, A. C. 1996. Guidance in the Setting of Drug Particle Size Specification to Minimize Variability in Absorption. Pharm. Res. 13: 1795-1798.CrossRefPubMedGoogle Scholar
  19. Hussein, Z.; Friedman, M. 1990. Release and Absorption Characteristics of Novel Theo-phylline Sustained-Release Formulations: In Vitro-In Vivo Correlation. Pharm. Res. 7: 1167-1171.CrossRefPubMedGoogle Scholar
  20. Llabres, M.; Farina, J. B. 1989. Gastrointestinal Bioavailability Assessment of Commer-cially Prepared Sustained-Release Lithium Tablets Using a Deconvolution Technique. Drug Dev. Ind. Pharm. 15: 1827-1841.CrossRefGoogle Scholar
  21. Mojaverian, P.; Radwanski, E.; Lin, C.; Cho, P.; Vadino, W. A.; Rosen J. M. 1992. Correlation of In Vitro Release Rate and In Vivo Absorption Characteristics of Four Chlorpheniramine Maleate Extended-Release Formulations. Pharm. Res. 9: 450-456.CrossRefPubMedGoogle Scholar
  22. Polli, J. E.; Crison, J. R.; Amidon, G. L. 1996. Novel Approach to the Analysis of In-Vitro-In-Vivo Relationships. J. Pharm. Sci. 85: 753-760.CrossRefPubMedGoogle Scholar
  23. Wagner, J. G. 1975a. Application of the Loo-Reigelaman Absorption Method. J. Phar-macokinet. Biopharm. 3: 51-57.CrossRefGoogle Scholar
  24. Wagner, J. G. 1975b. Fundamentals of Clinical Pharmacokinetics, 1st Edition. Drug Intelligence Publications: Hamilton, IL.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • William E. Bowen
    • 1
  • Qingxi Wang
    • 1
  • W. Peter Wuelfing
    • 1
  • Denise L. Thomas
    • 1
  • Eric D. Nelson
    • 1
  • Yun Mao
    • 1
  • Brian Hill
    • 1
  • Mark Thompson
    • 1
  • Kimberly Gallagher
    • 1
  • Robert A. Reed
    • 1
  1. 1.Merck Research LaboratoriesWest PointUSA

Personalised recommendations