IntestinalTransporters in Drug Absorption

  • Rajinder K. Bhardwaj
  • Dea R. Herrera-Ruiz
  • Yan Xu
  • Stephen M. Carl
  • Thomas J. Cook
  • Nicholi Vorsa
  • Gregory T. Knipp

Effective drug therapy relies on the interplay between the pharmacokinetics and pharmacodynamics (PK/PD) of the agent upon administration. During the initial stages of drug discovery, numerous studies are performed to assess the pharmacological effectiveness of new chemical entities (NCEs) to select a lead compound(s) that offers the greatest promise for therapeutic efficacy. While the ability of a drug to bind to a therapeutic target is critical to its clinical success, the ultimate effectiveness is also a function of its ability to reach the therapeutic target in sufficient concentrations to mitigate or treat the ailment. Therefore, the pharmacokinetics of any NCE must also be evaluated early in the drug discovery stages to enhance the rational selection of a lead compound from the many NCEs that are screened, based on not only biological activity but also potential in vivo bioavailability. Bioavailability is defined by the US FDA as “the rate and extent to which the active ingredient or active moiety is absorbed from a drug product and becomes available at the site of action” (21 CFR 320.1(a)). The overall bioavailability is largely determined by the absorption, distribution, metabolism, and excretion (ADME) of selected compounds in targeted patient populations.While ADME involves transport/ permeability processes across cellular barriers in numerous tissues, we will restrict our discussion to intestinal absorption (absorptive influx) and excretion (secretory efflux).


Breast Cancer Resistance Protein Multidrug Resistance Protein Organic Cation Transporter Peptide Transporter Nucleoside Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acimovic, Y., and Coe, I.R. 2002. Molecular evolution of the equilibrative nucleoside transporter family: identification of novel family members in prokaryotes and eukaryotes. Mol. Biol. Evol. 19(12):2199-2210.PubMedGoogle Scholar
  2. Adibi, S.A. 1997. The oligopeptide transporter (PepT1) in human intestine: biology and function. Gastroenterology 113:322-340.Google Scholar
  3. Adibi, S.A.2003. Regulation of expression of the intestinal oligopeptide trans-porter(Pept-1) in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 285(5):G779-G788.PubMedGoogle Scholar
  4. Adson, A., Burton, P.S., Raub, T.J., Barsuhn, C.L., Audus, K.L., and Ho, N.F. 1995. Pas-sive diffusion of weak organic electrolytes across Caco-2 cell monolayers: uncoupling the contributions of hydrodynamic, transcellular, and paracellular barriers. J. Pharm. Sci. 84 (10):1197-1204.PubMedGoogle Scholar
  5. Akiyama, S.I., Cornwell, M.M., Kuwano, M., Pastan, I., and Gottesman, M.M. 1988. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog. Mol. Pharmacol. 33:144-147.PubMedGoogle Scholar
  6. Allikmets, R., Schriml, L.M., Hutchinson, A., Romano-Spica, V., and Dean, M. 1998. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 58(23):5337-5339.PubMedGoogle Scholar
  7. Almquist, K.C., Loe, D.W., Hipfner, D.R., Mackie, J.E., Cole, S.P., and Deeley, R.G. 1995. Characterization of the 190 kDa multidrug resistance protein (MRP) in drug-selected and transfected human tumor cells. Cancer Res. 55:102-110.PubMedGoogle Scholar
  8. Amasheh, S., Wenzel, U., Boll, M., Dom, D., Weber, W., and Clauss, W.D.H. 1997. Transport of charged dipeptides by the intestinal H+/peptide symporter PepT1 expressed in Xenopus laevis oocytes. J. Membr. Biol. 155:247-256.PubMedGoogle Scholar
  9. Angeletti, R.H., Bergwerk, A.J., Novikoff, P.M., and Wolkoff, A.W. 1998. Dichotomous development of the organic anion transport protein in liver and choroid plexus. Am. J. Physiol. 275:C882-C887.PubMedGoogle Scholar
  10. Arima, H., Yunomae, K., Hirayama, F., and Uekama, K. 2001. Contribution of P-glycoprotein to the enhancing effects of dimethyl-a-cyclodextrin on oral bioavailability of tacrolimus. J. Pharmacol. Exp. Ther. 297:547-555.PubMedGoogle Scholar
  11. Ashida, K., Katsura, T., Motohashi, H., Saito, H., and Inui, K.I. 2002. Thyroid hormone regulates the activity and expression of the peptide transporter PepT1 in Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 282:G617-G623.PubMedGoogle Scholar
  12. Ashida, K., Katsura, T., Saito, H., and Inui, K. 2004. Decreased activity and expression of intestinal oligopeptide transporter PEPT1 in rats with hyperthyroidism in vivo. Pharm. Res. 21(6):969-975.PubMedGoogle Scholar
  13. Bailey, D.G., Malcolm, J., Arnold, O., and Spence, J.D. 1998. Grapefruit juice-drug interactions. Br. J. Clin. Pharmacol. 46:101-110.PubMedGoogle Scholar
  14. Bailey, P.D., Boyd, C.A., Bronk, J.R., Collier, I.D., Meredith, D., Morgan, K.M., and Temple, C.S. 1999. How to make drugs orally active: a substrate model for the pep-tide transporter PepT1. Angew Chem. Int. Ed. Engl. 39:505-508.Google Scholar
  15. Bakos, E., Hegedus, T., Hollo, Z., Welker, E., Tusnady, G.E., Zaman, G.J., Flens, M.J., Varadi, A., and Sarkadi, B. 1996. Membrane topology and glycosylation of the human multidrug resistance-associated protein. J. Biol. Chem. 271(21):12322-12326.PubMedGoogle Scholar
  16. Baldwin, S.A., Beal, P.R., Yao, S.Y.M., King, A.E., Cass, C.E., and Young, J.D. 2004. The equilibrative nucleoside transporter family, SLC29. Plugers Arch. Eur. J. Physiol. 447:735-743.Google Scholar
  17. Baldwin, S.A., Yao, S.Y., Hyde, R.J., Ng, A.M., Foppolo, S., Barnes, K., Ritzel, M.W., Cass, C.E., and Young, J.D. 2005. Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J. Biol. Chem. 280(16):15880-15887.PubMedGoogle Scholar
  18. Balimane, P.V., and Sinko, P.J. 2000. Effect of ionization on the variable uptake of valacyclovir via the human intestinal peptide transporter (hPepT1) in CHO cells. Biopharm. Drug Dispos. 21:165-174.PubMedGoogle Scholar
  19. Barendt, W.M., and Wright, S.H. 2002. The human organic cation transporter (hOCT2) recognizes the degree of substrate ionization. Biol. Chem. 277:22491-22496.Google Scholar
  20. Bates, S.E., Mickley, L.A., Chen, Y.N., Richert, N., Rudick, J., Biedler, J.L., and Fojo, A.T. 1989. Expression of a drug resistance gene in human neuroblastoma cellines: modula-tion by retinoic acid-induced differentiation. Mol. Cell. Biol. 9:4337-4344.PubMedGoogle Scholar
  21. Belinsky, M.G., Bain, L.J., Balsara, B.B., Testa, J.R., and Kruh, G.D. 1998. J. Natl Cancer. Inst. 90:1735-1741.Google Scholar
  22. Belinsky, M.G., Chen, Z.S., Shchaveleva, I., Zeng, H., and Kruh, G.D. 2002. Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res. 62(21):6172-6177.PubMedGoogle Scholar
  23. Benet, L.Z., and Cummins, C.L. 2001. The drug efflux-metabolism alliance: biochemical aspects. Adv. Drug Deliv. Rev. 50(Suppl. 1): S3-S11.PubMedGoogle Scholar
  24. Bera, T.K., Lee, S., Salvatore, G., Lee, B., and Pastan, I. 2001. MRP8, a new member of ABC transporter superfamily, identified by EST database mining and gene prediction program, is highly expressed in breast cancer. Mol. Med. 7(8):509-516.PubMedGoogle Scholar
  25. Bera, T.K., Iavarone, C., Kumar, V., Lee, S., Lee, B., and Pastan, I. 2002. MRP9, an unusual truncated member of the ABC transporter superfamily, is highly expressed in breast cancer. Proc. Natl. Acad. Sci. USA 99(10):6997-7002.PubMedGoogle Scholar
  26. Berlioz, F., Julien, S., Tsocas, A., Chariot, J., Carbon, C., Farinotti, R., and Roze, C. 1999. Neural modulation of cephalexin intestinal absorption through the di- and tripeptide brush border transporter of rat jejunum in vivo. J. Pharmacol. Exp. Ther. 288:1037-1044.PubMedGoogle Scholar
  27. Berlioz, F., Maoret, J.J., Paris, H., Laburthe, M., Farinotti, R., and Roze, C. 2000. Alpha(2)-adrenergic receptors stimulate oligopeptide transport in a human intestinal cell line. J. Pharmacol. Exp. Ther. 294:466-472.PubMedGoogle Scholar
  28. Bhardwaj, R.K., Glaeser, H., Becquemont, L., Klotz, U., Gupta, S.K., and Fromm, M.F. 2002. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 302:645-650.PubMedGoogle Scholar
  29. Bhardwaj, R.K., Herrera-Ruiz, D., Eltoukhy, N., Saad, M., and Knipp, G.T. (2005a). The functional evaluation of human peptide/histidine transporter1(hPHT1) in transiently transfected COS-7cells. Eur. J. Pharm. Sci.(Epub ahead of print; DOI:10.1016/j.ejps.2005.09.014).Google Scholar
  30. Bhardwaj, R.K., Herrera-Ruiz, D., Sinko, P.J., Gudmundsson, O.S., and Knipp, G. 2005b. Delineation of HPEPT1 meditated uptake and transport of substrates with varying trans-porter affinities utilizing stably transfected HPEPT1/MDCK clones and Caco-2 cells. J. Pharmacol. Exp. Ther. 314(3):1093-1100.PubMedGoogle Scholar
  31. Biegel, A., Gebauer, S., Hartrodt, B., Brandsch, M., Neubert, K., and Thondorf, I. 2005. Three-dimensional quantitative structure-activity relationship analyses of beta-lactam antibiotics and tripeptides as substrates of the mammalian H+/peptide cotransporter PEPT1. J. Med. Chem. 48(13):4410-4419.PubMedGoogle Scholar
  32. Bolger, M.B., Haworth, I.S., Yeung, A.K., Ann, D., von Grafenstein, H., Hamm-Alvarez, S., Okamoto, C.T., Kim, K.J., Basu, S.K., Wu, S., and Lee, V.H. 1998. Structure, function, and molecular modeling approaches to the study of the intestinal dipeptides transporter PepT1. J. Pharm. Sci. 87:1286-1291.PubMedGoogle Scholar
  33. Botka, C.W., Witting, T.W., Graul, R.C., Nielsen, C.U., Sad ée, W., Higaki, K., and Amidon, G.L. 2000. Human proton/oligopeptide transporter (POT) genes: identifica-tion of putative human genes using bioinformatics. AAPS Pharm Sci 2:Article 16.Google Scholar
  34. Brandsch, M., Miyamoto, Y., Ganapathy, V., and Leibach, F.H. 1994. Expression and protein kinase C-dependent regulation of peptide/H+ co-transport system in the Caco-2 human colon carcinoma cell line. Biochem. J. 299:253-260.PubMedGoogle Scholar
  35. Brandsch, M., Knutter, I., and Leibach, F.H. 2004. The intestinal H+/peptide symporter PEPT1: structure-affinity relationships. Eur. J. Pharm. Sci. 21(1):53-60.PubMedGoogle Scholar
  36. Burt, R.K., and Thorgeirsson, S.S. 1988. Coinduction of MDR-1 multidrug resistance and cytochrome P-450 genes in rat liver by xenobiotics. J. Natl Cancer Inst. 80:1383-1386.PubMedGoogle Scholar
  37. Busch, A.E., Quester, S., Ulzheimer, J.C., Waldegger, S., Gorboulev, V., Arndt, P., Lang, F., and Koepsell, H. 1996. Electrogenic properties and substrate specificity of the polyspe-cific rat cation transporter rOCT1. J. Biol. Chem. 271:32599-32604.PubMedGoogle Scholar
  38. Busch, A.E., Karbach, U., Miska, D., Gorboulev, V., Akhoundova, A., Volk, C., Arndt, P., Ulzheimer, J.C., Sonders, M.S., Baumann, C., Waldegger, S., Lang, F., and Koepsell, H. 1998. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol. Pharma-col. 54:342-352.Google Scholar
  39. Buyse, M., Berlioz, F., Guilmeau, S., Tsocas, A., Voisin, T., P éranzi, G., Merlin, D., Laburthe, M., Lewin, M.J.M., Rozé, C., and Bado, A. 2001. PepT1-mediated epithe-lial transport of dipeptides and cephalexin is enhanced by luminal leptin in the small intestine. J. Clin. Invest. 108:1483-1494.PubMedGoogle Scholar
  40. Carpenter, L., and Halestrap, A.P. 1994. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem. J. 304:751-760.PubMedGoogle Scholar
  41. Chang, C., Swaan, P.W., Ngo, L.Y., Lum, P.Y., Patil, S.D., and Unadkat, J.D. 2004. Molecular requirements of the human nucleoside transporters hCNT1, hCNT2, and hENT1. Mol. Pharmacol. 65(3):558-570.PubMedGoogle Scholar
  42. Chaudhary, P.M., and Roninson, I.B. 1991. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66(1):85-94.PubMedGoogle Scholar
  43. Chaudhary, P.M., and Roninson, I.B. 1993. Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J. Natl Cancer. Inst. 85 (8):632-639.PubMedGoogle Scholar
  44. Chen, H., Wong, E.A., and Webb, K.E. 1999. Tissue distribution of a peptide transporter mRNA in sheep, dairy cows, pigs, and chickens. J. Anim. Sci. 77:1277-1283.PubMedGoogle Scholar
  45. Chen, X.-Z., Steel, A., and Hediger, M.A. 2000. Functional roles of histidine and tyro-sine residues in the H+-peptide transporter PepT1. Biochem. Biophys. Res. Commun. 272:726-730.PubMedGoogle Scholar
  46. Chen, Z.S., Lee, K., and Kruh, G.D.2001. Transport of cyclic nucleotides and estradiol17-beta-D-glucuronide by multidrug resistance protein4. Resistance to 6-mercaptopurine and 6-thioguanine. J. Biol. Chem. 276(36):33747-33754.PubMedGoogle Scholar
  47. Chen, Z.S., Lee, K., Walther, S., Raftogianis, R.B., Kuwano, M., Zeng, H., and Kruh, G.D. 2002. Analysis of methotrexate and folate transport by multidrug resistance protein 4(ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer. Res. 62(11):3144-3150.PubMedGoogle Scholar
  48. Chen, Z.S., Hopper-Borge, E., Belinsky, M.G., Shchaveleva, I., Kotova, E., and Kruh, G.D. 2003. Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol. Pharmacol. 63(2):351-358.PubMedGoogle Scholar
  49. Chen, Z.S., Guo, Y., Belinsky, M.G., Kotova, E., and Kruh, G.D. 2005. Transport of bile acids, sulfated steroids, estradiol 17-beta-D-glucuronide, and leukotriene C4 by human multidrug resistance protein 8 (ABCC11). Mol. Pharmacol. 67(2):545-557.PubMedGoogle Scholar
  50. Cheng, X., Maher, J., Chen, C., and Klaassen, C.D. 2005. Tissue distribution and ontogeny of mouse organic anion transporting polypeptides (Oatps). Drug Metab. Dis-pos. 33:1062-1073.Google Scholar
  51. Cherrington, N.J., Hartley, D.P., Li, N., Johnson, D.R., and Klaassen, C.D. 2002. Organ distribution of multidrug resistance proteins 1, 2, and 3 (Mrp1, 2, and 3) mRNA and hepatic induction of Mrp3 by constitutive androstane receptor activators in rats. J. Pharmacol. Exp. Ther. 300(1):97-104.PubMedGoogle Scholar
  52. Chin, K.V., Tanaka, S., Darlington, G., Pastan, I., and Gottesman, M.M. 1990. Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. J. Biol. Chem. 265:221-226.PubMedGoogle Scholar
  53. Chiou, W.L., Chung, S.M., and Wu, T.C. 2000. Apparent lack of effect of P-glycoprotein on the gastrointestinal absorption of a substrate, tacrolimus, in normal mice. Pharm. Res. 17:205-208.PubMedGoogle Scholar
  54. Choudhuri, S., Ogura, K., and Klaassen, C.D. 2001. Cloning, expression, and ontogeny of mouse organic anion-transporting polypeptide-5, a kidney-specific organic anion transporter. Biochem. Biophys. Res. Commun. 280:92-98.PubMedGoogle Scholar
  55. Ciarimboli, G., and Schlatter, E. 2005. Regulation of organic cation transport. Pflugers Arch. 449:423-441.PubMedGoogle Scholar
  56. Clark, H.F., Gurney, A.L., Abaya, E., Baker, K., Baldwin, D., Brush, J., Chen, J., Chow, B., Chui, C., Crowley, C., Currell, B., Deuel, B., Dowd, P., Eaton, D., Foster, J., Grimaldi, C., Gu, Q., Hass, P.E., Heldens, S., Huang, A., Kim, H.S., Klimowski, L., Jin, Y., Johnson, S., Lee, J., Lewis, L., Liao, D., Mark, M., Robbie, E., Sanchez, C., Schoenfeld, J., Seshagiri, S., Simmons, L., Singh, J., Smith, V., Stinson, J., Vagts, A., Vandlen, R., Watanabe, C., Wieand, D., Woods, K., Xie, M.-H., Yansura, D., Yi, S., Yu, G., Yuan, J., Zhang, M., Zhang, Z., Goddard, A., Wood, W.I., and Godowski, P. 2003. The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res. 13(10):2265-2270.PubMedGoogle Scholar
  57. Cole, S.P., Bhardwaj, G., Gerlach, J.H., Mackie, J.E., Grant, C.E., Almquist, K.C., Stewart, A.J., Kurz, E.U., Duncan, A.M., and Deeley, R.G. 1992. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258 (5088):1650-1654.PubMedGoogle Scholar
  58. Cole, S.P., Sparks, K.E., Fraser, K., Loe, D.W., Grant, C.E., Wilson, G.M., and Deeley, R.G. 1994. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res. 54(22):5902-5910.PubMedGoogle Scholar
  59. Coe, I.R., Griffiths, M., Young, J.D., Baldwin, S.A., and Cass, C.E. 1997. Assignment of the human equilibrative nucleoside transporter (hENT1) to 6p21.1-p21.2. Genomics 45 (2):459-460.PubMedGoogle Scholar
  60. Coe, I., Zhang, Y., McKenzie, T., and Naydenova, Z. 2002. PKC regulation of the human equilibrative nucleoside transporter, hENT1. FEBS Lett. 517:201-205.PubMedGoogle Scholar
  61. Cornwell, M.M., Safa, A.R., Felsted, R.L., Gottesman, M.M., and Pastan, I. 1986. Mem-brane vesicles from multidrug-resistant human cancer cells contain a specific 150-to 170-kDa protein detected by photoaffinity labeling. Proc. Natl Acad. Sci. USA 83:3847-3850.PubMedGoogle Scholar
  62. Courtois, A., Payen, L., Guillouzo, A., and Fardel, O. 1999. Up-regulation of multidrug resistance-associated protein 2 (MRP2) expression in rat hepatocytes by dexamethasone. FEBS Lett. 459(3):381-385.PubMedGoogle Scholar
  63. Covitz, Y.K.-M., Amidon, G.L., and Sad ée, W. 1998. Membrane topology of the human dipeptides transporter, hPepT1, determined by epitope insertions. Biochemistry 37:15214-15221.PubMedGoogle Scholar
  64. Crawford, C.R., Patel, D.H., Naeve, C., and Belt, J.A. 1998. Cloning of the human equi-librative, nitrobenzylmercaptopurine riboside (NBMPR)-insensitive nucleoside trans-porter ei by functional expression in a transport-deficient cell line. J. Biol. Chem. 273:5288-5293.PubMedGoogle Scholar
  65. Cronstein, B.N. 1994. Adenosine, an endogenous anti-inflammatory agent. J. Appl. Physiol. 76:5-13.PubMedGoogle Scholar
  66. Cuff, M.A., Lambert, D.W., and Shirazi-Beechey, S.P. 2002. Substrate-induced regulation of the human colonic monocarboxylate transporter, MCT1. J. Physiol. 539:361-371.PubMedGoogle Scholar
  67. Cuff, M., Dyer, J., Jones, M., and Shirazi-Beechey, S. 2005. The human colonic monocarboxylate transporter isoform 1: its potential importance to colonic tissue homeostasis. Gastroenterology 128:676-686.PubMedGoogle Scholar
  68. Damaraju, V.L., Visser, F., Zhang, J., Mowles, D., Ng, A.M., Young, J.D., Jayaram, H.N., and Cass, C.E. 2005. Role of human nucleoside transporters in the cellular uptake of two inhibitors of IMP dehydrogenase, tiazofurin and benzamide riboside. Mol. Pharma-col. 67(1):273-279.Google Scholar
  69. Daniel, H. 1996. Function and molecular structure of brush border membrane peptide/H+ symporters. J. Memb. Biol. 154:197-203.Google Scholar
  70. Dantzig, A.H., Hoskins, J.A., Tabas, L.B., Bright, S., Shepard, R.L., Jenkins, I.L., Duckworth, D.C., Sportsman, J.R., Mackensen, D., Rosteck, P.R., Jr., and Skatrud, P.L. 1994. Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science 264:430-433.PubMedGoogle Scholar
  71. Dautrey, S., Felice, K., Petiet, A., Lacour, B., Carbon, C., and Farinotti, R. 1999. Active intestinal elimination of ciprofloxacin in rats: modulation by different substrates. Br. J. Pharmacol. 127:1728-1734.PubMedGoogle Scholar
  72. Del Santo, B., Valdes, R., Mata, J., Felipe, A., Casado, F.J., and Pastor-Anglada, M. 1998. Differential expression and regulation of nucleoside transport systems in rat liver parenchymal and hepatoma cells. Hepatology 28:1504-1511.PubMedGoogle Scholar
  73. Dietrich, C.G., de Waart, D.R., Ottenhoff, R., Schoots, I.G., and Elferink, R.P. 2001. Increased bioavailability of the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in MRP2-deficient rats. Mol. Pharmacol. 59(5):974-980.PubMedGoogle Scholar
  74. D öring, F., Dorn, D., Bachfisher, U., Amasheh, S., Herget, M., and Daniel, H. 1996. Func-tional analysis of a chimeric mammalian peptide transporter derived from the intestinal and renal isoforms. J. Physiol. 497:773-779.Google Scholar
  75. D öring, F., Martini, C., Walter, J., and Daniel, H. 2002. Importance of a small N-terminal region in mammalian peptide transporters for substrate affinity and function. J. Membr. Biol. 186:55-62.Google Scholar
  76. Doyle, L.A., Yang, W., Abruzzo, L.V., Krogmann, T., Gao, Y., Rishi, A.K., and Ross, D.D. 1998. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl Acad. Sci. USA 95:15665-15670.PubMedGoogle Scholar
  77. Drenou, B., Fardel, O., Amiot, L., and Fauchet, R. 1993. Detection of P glycoprotein activity on normal and leukemic CD34+ cells. Leuk Res. 17(12):1031-1035.PubMedGoogle Scholar
  78. Dresser, G.K., Bailey, D.G., Leake, B.F., Schwarz, U.I., Dawson, P.A., Freeman, D.J., and Kim, R.B. 2002. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin. Pharmacol. Ther. 71:11-20.PubMedGoogle Scholar
  79. Duflot, S., Calvo, M., Casado, F.J., Enrich, C., and Pastor-Anglada, M. 2002. Concentrative nucleoside transporter (rCNT1) is targeted to the apical membrane through the hepatic transcytotic pathway. Exp. Cell Res. 281(1):77-85.PubMedGoogle Scholar
  80. Dumitrescu, A.M., Liao, X.H., Best, T.B., Brockmann, K., and Refetoff, S. 2004. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am. J. Hum. Genet. 74:168-175.PubMedGoogle Scholar
  81. Dunwiddie, T.V. 1985. The physiological role of adenosine in the central nervous system. Int. Rev. Neurobiol. 27:63-139.PubMedGoogle Scholar
  82. D ürr, D., Stieger, B., Kullak-Ublick, G.A., Rentsch, K.M., Steinert, H.C., Meier, P.J., and Fattinger, K. 2000. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intesti-nal and hepatic CYP3A4. Clin. Pharmacol. Ther. 68:598-604.Google Scholar
  83. Dussault, I., Lin, M., Hollister, K., Wang, E.H., Synold, T.W., and Forman, B.M. 2001. Peptide mimetic HIV protease inhibitors are ligands for the orphan receptor SXR. J. Biol. Chem. 276(36):33309-33312.PubMedGoogle Scholar
  84. Ekins, S., Waller, C.L., Swaan, P.W., Cruciani, G., Wrighton, S.A., and Wikel, J.H. 2000. Progress in predicting human ADME parameters in silico. J. Pharmacol. Toxicol. Methods 44(1):251-272.PubMedGoogle Scholar
  85. Ekins, S., Nikolsky, Y., and Nikolskaya, T. 2005. Techniques: application of systems biology to absorption, distribution, metabolism, excretion and toxicity. Trends Pharmacol. Sci. 26(4):202-209.PubMedGoogle Scholar
  86. Engel, K., Zhou, M., and Wang, J. 2004. Identification and characterization of a novel monoamine transporter in the human brain. J. Biol. Chem. 279(48):50042-50049.PubMedGoogle Scholar
  87. Ely, S.W., and Berne, R.M. 1992. Protective effects of adenosine in myocardial ischemia. Circulation 85:893-904.PubMedGoogle Scholar
  88. Emoto, A., Ushigome, F., Koyabu, N., Kajiya, H., Okabe, K., Satoh, S., Tsukimori, K., Nakano, H., Ohtani, H., and Sawada, Y. (2002). H(+)-linked transport of salicylic acid, an NSAID, in the human trophoblast cell line BeWo. Am. J. Physiol. 282:C1064-C1075.Google Scholar
  89. Enerson, B.E., and Drewes, L.R. (2003). Molecular features, regulation and function of monocarboxylate transporters: implications for drug delivery. J. Pharm. Sci. 92:1531-1544.PubMedGoogle Scholar
  90. Fain, J.N., and Malbon, C.C. 1979. Regulation of adenylate cyclase by adenosine. Mol. Cell. Biochem. 25:143-169.PubMedGoogle Scholar
  91. Fei, Y.J., Kanai, Y., Nussberger, S., Ganapathy, V., Leibach, F.H., Romero, M.F., Singh, S.K., Boron, W.F., and Hediger, M.A. 1994. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368:563-566.PubMedGoogle Scholar
  92. Fei, Y.J., Liu, W., Prasad, P.D., Kekuda, R., Oblak, T.G., Ganapathy, V., and Leibach, F.H. 1997. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PepT1 and PepT2. Biochemistry 14:452-460.Google Scholar
  93. Fei, Y.J., Ganapathy, V., and Leibach, F.H. 1998. Molecular and structural features of the proton-coupled oligopeptide transporter superfamily. Prog. Nucleic. Acid. Res. Mol. Biol. 58:239-261.PubMedGoogle Scholar
  94. Fei, Y.J., Sugawara, M., Liu, J.C., Li, H.W., Ganapathy, V., Ganapathy, M.E., and Leibach, F.H. 2000. cDNA structure, genomic organization, and promoter analy-sis of the mouse intestinal peptide transporter PepT1. Biochim. Biophys. Acta 1492: 145-154.PubMedGoogle Scholar
  95. Ferry, D.R., Russell, M.A., and Cullen, M.H. 1992. P-glycoprotein possesses a 1,4-dihydropyridine-selective drug acceptor site which is allosterically coupled to a vincaalkaloid-selective binding site. Biochem. Biophys. Res. Commun. 188:440-445.PubMedGoogle Scholar
  96. Ferte, J. 2002. Analysis of tangled relationships between P-glycoprotein mediated mul-tidrug resistance and the lipid phase of the cell membrane. Eur. J. Biochem. 267:277-294 .Google Scholar
  97. Fisher, G.A., Lum, B.L., Hausdorff, J., and Sikic, B.I. 1996. Pharmacological considera-tions in the modulation of multidrug resistance. Eur. J. Cancer 32A(6):1082-1088.PubMedGoogle Scholar
  98. Flens, M.J., Zaman, G.J., Van Der Valk, P., Izquierdo, M.A., Schroeijers, A.B., Scheffer, G.L., Van Der Groep, P., De Haas, M., Meijer, C.J., and Scheper, R.J. 1996. Tissue distribution of the multidrug resistance protein. Am. J. Pathol. 148:1237-1247.PubMedGoogle Scholar
  99. Fletcher, C., and Bean, B. 1985. Evaluation of oral aciclovir therapy. Drug Intell. Clin. Pharm. 19:518-524.Google Scholar
  100. Fojo, A.T., Ueda, K., Slamon, D.J., Poplack, D.G., Gottesman, M.M., and Pastan, I. 1987. Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl Acad. Sci. USA 84(1):265-269.PubMedGoogle Scholar
  101. Friedrich, A., Prasad, P.D., Freyer, D., Ganapathy, V., and Brust, P. 2003. Molecular cloning and functional characterization of the OCTN2 transporter at the RBE4 cells, an in vitro model of the blood-brain barrier. Brain Res. 968:69-79.PubMedGoogle Scholar
  102. Friedrichsen, G.M., Chen, W., Begtrup, M., Lee, C.P., Smith, P.L., and Borchardt, R.T. 2002. Synthesis of analogs of L-valacyclovir and determination of their substrate activ-ity for the oligopeptide transporter in Caco-2 cells. Eur. J. Pharm. Sci. 16(1-2):1-13.PubMedGoogle Scholar
  103. Friesema, E.C., Grueters, A., Biebermann, H., Krude, H., von Moers, A., Reeser, M., Barrett, T.G., Mancilla, E.E., Svensson, J., Kester, M.H., Kuiper, G.G., Balkassmi, S., Uitterlinden, A.G., Koehrle, J., Rodien, P., Halestrap, A.P., and Visser, T.J. 2004. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364:1435-1437.PubMedGoogle Scholar
  104. Friesema, E.C., Jansen, J., Milici, C., and Visser, T.J. 2005. Thyroid hormone transporters. Vitam. Horm. 70:137-167.PubMedGoogle Scholar
  105. Fromm, M.F., Kauffman, H.M., Fritz, P., Burk, O., Kroemer, H.K., Warzok, R.W., Eichelbaum, M., Siegmund, W., and Schrenk, D. 2000. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am. J. Pathol. 157:1575-1580.PubMedGoogle Scholar
  106. Ganapathy, M.E., Huang, W., Rajan, D.P., Carter, A.L., Sugawara, M., Iseki, K., Leibach, F.H., and Ganapathy, V. 2000. Beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J. Biol. Chem. 275:1699-1707.PubMedGoogle Scholar
  107. Gangopadhyay, A., Thamotharan, M., and Adibi, S.A. 2002. Regulation of oligopeptide transporter (Pept-1) in experimental diabetes. Am. J. Physiol. Gastrointest. Liver Physiol. 283 (1):G133-G138.PubMedGoogle Scholar
  108. Garcia, C.K., Goldstein, J.L., Pathak, R.K., Anderson, R.G., and Brown, M.S. 1994. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell 76:865-873.PubMedGoogle Scholar
  109. Gatmaitan, Z.C., and Arias, I.M. 1993. Structure and function of P-glycoprotein in normal liver and small intestine. Adv. Pharmacol. 24:77-97.PubMedGoogle Scholar
  110. Gebauer, S., Knutter, I., Hartrodt, B., Brandsch, M., Neubert, K., and Thondorf, I. 2003. Three-dimensional quantitative structure-activity relationship analyses of pep-tide substrates of the mammalian H+/peptide cotransporter PEPT1. J. Med. Chem. 46 (26):5725-5734 .PubMedGoogle Scholar
  111. Germann, U.A., Pastan, I., and Gottesman, M.M. 1993. P-glycoproteins: mediators of multidrug resistance. Semin. Cell. Biol. 4(1):63-76.PubMedGoogle Scholar
  112. Gill, R.K., Saksena, S., Alrefai, W.A., Sarwar, Z., Goldstein, J.L., Carroll, R.E., Ramaswamy, K., and Dudeja, P.K. 2005. Expression and membrane localization of MCT isoforms along the length of the human intestine. Am. J. Physiol. Cell Physiol. 289 (4):C846-C852.PubMedGoogle Scholar
  113. Glavy, J.S., Wu, S.M., Wang, P.J., Orr, G.A., and Wolkoff, A.W. 2000. Down-regulation by extracellular ATP of rat hepatocyte organic anion transport is mediated by serine phosphorylation of Oatp1. J. Biol. Chem. 275:1479-1484.PubMedGoogle Scholar
  114. Gomez-Angelats, M., Del Santo, B., Mercader, J., Ferrer-Martinez, A., Felipe, A., Casado, J., and Pastor-Anglada, M. 1996. Hormonal regulation of concentrative nucle-oside transport in liver parenchymal cells. Biochem. J. 313:915-920.PubMedGoogle Scholar
  115. Gorboulev, V., Ulzheimer, J.C., Akhoundova, A., Ulzheimer-Teuber, I., Karbach, U., Quester, S., Baumann, C., Lang, F., Busch, A.E., and Koepsell, H. 1997. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 16:871-881.PubMedGoogle Scholar
  116. Gotoh, Y., Kato, Y., Stieger, B., Meier, P.J., and Sugiyama, Y. 2002. Gender difference in the Oatp1-mediated tubular reabsorption of estradiol 17beta-D-glucuronide in rats. Am. J. Physiol. Endocrinol. Metab. 282:E1245-E1254.PubMedGoogle Scholar
  117. Gottesman, M.M., and Pastan, I. 1993. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62:385-427.PubMedGoogle Scholar
  118. Graul, R.C., and Sad ée, W. 1997. Sequence alignments of the H(+)-dependent oligopep-tide transporter family PTR: Inferences on structure and function of the intestinal PEPT1 transporter. Pharm. Res. 14:388-400.PubMedGoogle Scholar
  119. Gray, J.H., Owen, R.P., and Giacomini, K.M. 2004. The concentrative nucleoside transporter family, SLC28. Pflugers Arch. Eur. J. Physiol. 447:728-734.Google Scholar
  120. Greiner, B., Eichelbaum, M., Fritz, P., Kreichgauer, H.P., von Richter, O., Zundler, J., and Kroemer, H.K. 1999. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest. 104(2):147-153.PubMedGoogle Scholar
  121. Griffiths, D.A., and Jarvis, S.M. 1996. Nucleoside and nucleobase transport systems of mammalian cells. Biochim. Biophys. Acta 1286:153-181.Google Scholar
  122. Griffiths, M., Beaumont, N., Yao, S.Y.M., Sundaram, M., Boumah, C.E., Davies, A., Kwong, F.Y.P., Coe, I.R., Cass, C.E., Young, J.D., Baldwin, S.A. 1997a. Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. Nat. Med. 3(1):89-93.PubMedGoogle Scholar
  123. Griffiths, M., Yao, S.Y., Abidi, F., Phillips, S.E., Cass, C.E., Young, J.D., and Baldwin, S.A. 1997b. Molecular cloning and characterization of a nitrobenzylthioinosine-insensitive (ei) equilibrative nucleoside transporter from human placenta. Biochem. J. 328 (3):739-743.PubMedGoogle Scholar
  124. Grundemann, D., Gorboulev, V., Gambaryan, S., Veyhl, M., and Koepsell, H. 1994. Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549-552.PubMedGoogle Scholar
  125. Guo, G.L., and Klaassen, C.D. 2001. Protein kinase C suppresses rat organic anion trans-porting polypeptide 1- and 2-mediated uptake. J. Pharmacol. Exp. Ther. 299:551-557PubMedGoogle Scholar
  126. Guo, G.L., Johnson, D.R., and Klaassen, C.D. 2002a. Postnatal expression and induction by pregnenolone-16α-carbonitrile of the organic anion-transporting polypeptide 2 in rat liver. Drug Metab. Dispos. 30:283-288.Google Scholar
  127. Guo, G.L., Staudinger, J., Ogura, K., and Klaassen, C.D. 2002b. Induction of rat organic anion transporting polypeptide 2 by pregnenolone-16alpha-carbonitrile is via interaction with pregnane X receptor. Mol. Pharmacol. 61:832-839.PubMedGoogle Scholar
  128. Guo, Y., Kotova, E., Chen, Z.S., Lee, K., Hopper-Borge, E., Belinsky, M.G., and Kruh, G.D. 2003. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2-3-dideoxycytidine and 9-(2-phosphonylmethoxyethyl)-adenine. J. Biol. Chem. 278:29509-29514.PubMedGoogle Scholar
  129. Gutmann, H., Hruz, P., Zimmermann, C., Beglinger, C., and Drewe, J. 2005. Distribution of breast cancer resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract. Biochem. Pharmacol. 70(5):695-699.PubMedGoogle Scholar
  130. Hagenbuch, B., and Meier, P.J. 2003. The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta 1609:1-18.PubMedGoogle Scholar
  131. Hagenbuch, B., and Meier, P.J. 2004. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers. Arch. 447:653-665.PubMedGoogle Scholar
  132. Hahn, E.L., Halestrap, A.P., and Gamelli, R.L. 2000. Expression of the lactate transporter MCT1 in macrophages. Shock 13:253-260.PubMedGoogle Scholar
  133. Halestrap, A.P., and Meredith, D. 2004. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. Eur. J. Physiol. 447:619-628.Google Scholar
  134. Halestrap, A.P., and Price, N.T. 1999. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J. 343(Pt 2):281-299.PubMedGoogle Scholar
  135. Hamilton, S.R., Yao, S.Y., Ingram, J.C., Hadden, D.A., Ritzel, M.W., Gallagher, M.P., Henderson, P.J., Cass, C.E., Young, J.D., and Baldwin, S.A. 2001. Subcellular distribution and membrane topology of the mammalian concentrative Na+-nucleoside cotransporter rCNT1. J. Biol. Chem. 276(30):27981-27988.PubMedGoogle Scholar
  136. Hamman, M.A., Bruce, M.A., Haehner-Daniels, B.D., and Hall, S.D. 2001. The effect of rifampin administration on the disposition of fexofenadine. Clin. Pharmacol. Ther. 69 (3):114-121.PubMedGoogle Scholar
  137. Harrison, A.P., Erlwanger, K.H., Elbrond, V.S., Andersen, N.K., and Unmack, M.A. 2004. Gastrointestinal-tract models and techniques for use in safety pharmacology. J. Pharmacol. Toxicol. Methods 49(3):187-199.PubMedGoogle Scholar
  138. Hayer-Zillgen, M., Bruss, M., and Bonisch, H. 2002. Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br. J. Pharmacol. 136:829-836.PubMedGoogle Scholar
  139. Hediger, M.A., Romero, M.F., Peng, J.B., Rolfs, A., Takanaga, H., and Bruford, E.A. 2004. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins Introduction. Pflugers Arch. 447 (5):465-468.PubMedGoogle Scholar
  140. Herrera-Ruiz, D., and Knipp, G.T. 2003. Current Perspectives on Established and Putative Mammalian Oligopeptide Transporters. J. Pharm. Sci. 92(4):691-714.PubMedGoogle Scholar
  141. Herrera-Ruiz, D., Wang, Q., Gudmundsson, O.S., Cook, T.J., Smith, R.L., Faria, T.N., and Knipp, G.T. 2001. Spatial expression patterns of peptide transporters in the human and rat gastrointestinal tracts, Caco-2 in vitro cell culture, and multiple human tissues. AAPS Pharm Sci 3(1):Article 9 (DOI: 10.1208/ps030109).Google Scholar
  142. Higgins, C.F. 1991. Molecular basis of multidrug resistance mediated by P-glycoprotein. Curr. Opin. Biotechnol. 2(2):278-281.PubMedGoogle Scholar
  143. Higgins, C.F., and Gottesman, M.M. 1992. Is the multidrug transporter a flippase? Trends Biochem. Sci. 17(1):18-21.Google Scholar
  144. Higuchi, T., and Davis, S.S. 1970. Thermodynamic analysis of structure-activity relation-ships of drugs. Prediction of optimal structure. J. Pharm. Sci. 59(10):1376-1383.PubMedGoogle Scholar
  145. Hipfner, D.R., Almquist, K.C., Leslie, E.M., Gerlach, J.H., Grant, C.E., Deeley, R.G., and Cole, S.P. 1997. Membrane topology of the multidrug resistance protein (MRP), A study of glycosylation-site mutants reveals an extracytosolic NH2 terminus. J. Biol. Chem. 272(38):23623-23630.PubMedGoogle Scholar
  146. Hirohashi, T., Suzuki, H., and Sugiyama, Y. 1999. Characterization of the transport properties of cloned rat multidrug resistance-associated protein 3 (MRP3). J. Biol. Chem. 274:15181-15185.PubMedGoogle Scholar
  147. Hirohashi, T., Suzuki, H., Takikawa, H., and Sugiyama, Y. 2000. ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J. Biol. Chem. 275:2905-2910.PubMedGoogle Scholar
  148. Hoffmeyer, S., Burk, O., von Richter, O., Arnold, H.P., Brockmoller, J., Johne, A., Cascorbi, I., Gerloff, T., Roots, I., Eichelbaum, M., and Brinkmann, U. 2000. Func-tional polymorphisms of the human multidrug-resistance gene: multiple sequence vari-ations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl Acad. Sci. USA 97(7):3473-3478.PubMedGoogle Scholar
  149. Hogben, C.A.M., Tocco, D.J., Brodie, B.B., and Schanker, L.S. 1959. On the mechanism of intestinal absorption of drugs. J. Pharmacol. Exp. Ther. 125:275-282.PubMedGoogle Scholar
  150. Honda, Y., Ushigome, F., Koyabu, N., Morimoto, S., Shoyama, Y., Uchiumi, T., Kuwano, M., Ohtani, H., and Sawada, Y. 2004. Effects of grapefruit juice and orange juice components on P-glycoprotein and MRP2 mediated drug efflux. Br. J. Pharmacol. 143 (7):856-864.PubMedGoogle Scholar
  151. Hooijberg, J.H., Broxterman, H.J., Kool, M., Assaraf, Y.G., Peters, G.J., Noordhuis, P., Scheper, R.J., Borst, P., Pinedo, H.M., and Jansen, G. 1999. Antifolate resistance medi-ated by the multidrug resistance proteins MRP1 and MRP2. Cancer. Res. 59:2532-2535.PubMedGoogle Scholar
  152. Hopper, E., Belinsky, M.G., Zeng, H., Tosolini, A., Testa, J.R., and Kruh, G.D. 2001. Analysis of the structure and expression pattern of MRP7 (ABCC10), a new member of the MRP subfamily. Cancer Lett. 162:181-191.PubMedGoogle Scholar
  153. Hopper-Borge, E., Chen, Z.S., Shchaveleva, I., Belinsky, M.G., and Kruh, G.D. 2004. Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel. Cancer Res. 64(14):4927-4930.PubMedGoogle Scholar
  154. Hosoya, K., Kondo, T., Tomi, M., Takanaga, H., Ohtsuki, S., and Tersaki, T. 2001. MCT1-mediated transport of L-lactic acid at the inner blood-retinal barrier: a possible route for delivery of monocarboxylic acid drugs to the retina. Pharm. Res. 18:1669-1676.PubMedGoogle Scholar
  155. Huang, Q.Q., Yao, S.Y., Ritzel, M.W., Paterson, A.R., Cass, C.E., and Young, J.D. 1994. Cloning and functional expression of a complementary DNA encoding a mammalian nucleoside transport protein. J. Biol. Chem. 269:17757-17760.PubMedGoogle Scholar
  156. Hugger, E.D., Novak, B.L., Burton, P.S., Audus, K.L., and Borchardt, R.T. 2002. A com-parison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. J. Pharm. Sci. 91:1991-2002.PubMedGoogle Scholar
  157. Hussain, I., Kellett, G.L., Affleck, J., Shepherd, E.J., and Boyd, C.A.R. 2002. Expression and cellular distribution during development of the peptide transporter (PepT1) in the small intestinal epithelium of the rat. Cell. Tissue Res. 307:139-142.PubMedGoogle Scholar
  158. Hyafil, F.C., Vergely, P., and Vigneaud, T. 1993. Grand-Perret: in vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 53:4595-4602.PubMedGoogle Scholar
  159. Hyde, R.J., Cass, C.E., Young, J.D., and Baldwin, S.A. 2001. The ENT family of eukary-ote nucleoside and nucleobase transporter: recent advances in the investigation of struc-ture/function relationships and the identification of novel isoforms. Mol. Membr. Biol. 18 (1):53-63.PubMedGoogle Scholar
  160. Ieiri, I., Takane, H., and Otsubo, K. 2004. The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin. Pharmacokinet. 43(9):553-576.PubMedGoogle Scholar
  161. Ihara, T., Tsujikawa, T., Fujiyama, Y., and Bamba, T. 2000. Regulation of PepT1 peptide transporter expression in the rat small intestine under malnourished conditions. Digestion 61:59-67.PubMedGoogle Scholar
  162. Imai, Y., Asada, S., Tsukahara, S., Ishikawa, E., Tsuruo, T., and Sugimoto, Y. 2003. Breast cancer resistance protein exports sulfated estrogens but not free estrogens. Mol. Pharmacol. 64:610-618.PubMedGoogle Scholar
  163. Inokuchi, A., Hinoshita, E., Iwamoto, Y., Kohno, K., Kuwano, M., and Uchiumi, T. 2001. Enhanced expression of the human multidrug resistance protein 3 by bile salt in human enterocytes. A transcriptional control of a plausible bile acid transporter. J. Biol. Chem. 276 (50):46822-46829.PubMedGoogle Scholar
  164. Irie, M., Terada, T., Sawada, K., Saito, H., and Inui, K.-I. 2001. Recognition and transport characteristics of nonpeptidic compounds by basolateral peptide transporter in Caco-2 cells. J. Pharmacol. Exp. Ther. 298:711-717.PubMedGoogle Scholar
  165. Irie, M., Terada, T., Okuda, M., and Inui, K.-I. 2004. Efflux properties of basolateral peptide transporter in human intestinal cell line Caco-2. Pflugers Arch. 449(2):186-194.PubMedGoogle Scholar
  166. Irie, M., Terada, T., Katsura, T., Matsuoka, S., and Inui, K.I. 2005. Computational mod-elling of H+-coupled peptide transport via human PEPT1. J. Physiol. 565(Pt 2):429-439.PubMedGoogle Scholar
  167. Ishikawa, T., Tsuji, A., Inui, K., Sai, Y., Anzai, N., Wada, M., Endou, H., and Sumino, Y. 2004. The genetic polymorphism of drug transporters: functional analysis approaches. Pharmacogenomics 5(1):67-99.PubMedGoogle Scholar
  168. Itoh, T., Tanno, M., Li, Y.-H., and Yamada, H. 1998. Transport of phenethicillin into rat intestinal brush border membrane vesicles: role of the monocarboxylic acid transport system. Int. J. Pharm. 172:103-112.Google Scholar
  169. Izzo, A.A. 2005. Herb-drug interactions: an overview of the clinical evidence. Fundam. Clin. Pharmacol. 19(1):1-16.PubMedGoogle Scholar
  170. Jacobs, M.H. 1940. Some aspects of cell permeability to weak electrolytes. Cold Spring Harbor Symp. Quant. Biol. 8:30-39.Google Scholar
  171. Jancis, E.M., Carbone, R., Loechner, K.J., and Dannies, P.S. 1993. Estradiol induction of rhodamine 123 efflux and the multidrug resistance pump in rat pituitary cells. Mol. Pharmacol. 43:51-56.PubMedGoogle Scholar
  172. Jedlitschky, G., Leier, I., Buchholz, U., Barnouin, K., Kurz, G., and Keppler, D. 1996. Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Res. 56:988-994.PubMedGoogle Scholar
  173. Jedlitschky, G., Leier, I., Buchholz, U., Hummel-Eisenbeiss, J., Burchell, B., and Keppler, D. 1997. ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2. Biochem. J. 327 (Pt 1):305-310.PubMedGoogle Scholar
  174. Jennings, L.L., Hao, C., Cabrita, M.A., Vickers, M.F., Baldwin, S.A., Young, J.D., and Cass, C.E. 2001. Distinct regional distribution of human equilibrative nucleoside trans-porter proteins 1 and 2 (hENT1 and hENT2) in the central nervous system. Neurophar-macology 40:722-731.Google Scholar
  175. Jimenez, A., Pubill, D., Pallas, M., Camins, A., Llado, S., Camarasa, J., and Escubedo, E. 2000. Further characterization of an adenosine transport system in the mitochondrial fraction of rat testis. Eur. J. Pharmacol. 298:31-39.Google Scholar
  176. Joly, B., Fardel, O., Cecchelli, R., Chesne, C., Puzzo, C., and Guillouzo, A. 1995. Selective drug transport and P-glycoprotein activity in an in-vitro blood brain barrier model. Tox. In Vitro 9:357-364.Google Scholar
  177. Jonker, J.W., and Schinkel, A.H. 2004. Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J. Pharmacol. Exp. Ther. 308(1):2-9.PubMedGoogle Scholar
  178. Jonker, J.W., Smit, J.W., Brinkhuis, R.F., Maliepaard, M., Beijnen, J.H., Schellens, J.H., and Schinkel, A.H. 2000. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J. Natl Cancer. Inst. 92(20):1651-1656.PubMedGoogle Scholar
  179. Jonker, J.W., Wagenaar, E., Mol, C.A., Buitelaar, M., Koepsell, H., Smit, J.W., and Schinkel, A.H. 2001. Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 [Slc22a1]) gene. Mol. Cell Biol. 21:5471-5477.PubMedGoogle Scholar
  180. Juliano, R.T., and Ling, V.A. 1976. Surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455:152-162.PubMedGoogle Scholar
  181. Jung, D., Hagenbuch, B., Gresh, L., Pontoglio, M., Meier, P.J., and Kullak-Ublick, G.A. 2001. Characterization of the human OATP-C (SLC21A6) gene promoter and regula-tion of liver-specific OATP genes by hepatocyte nuclear factor 1 alpha. J. Biol. Chem. 276:37206-37214.PubMedGoogle Scholar
  182. Jung, D., Podvinec, M., Meyer, U.A., Mangelsdorf, D.J., Fried, M., Meier, P.J., and Kullak-Ublick, G.A. 2002. Human organic anion transporting polypeptide 8 pro-moter is transactivated by the farnesoid X receptor/bile acid receptor. Gastroenterology 122:1954-1966.PubMedGoogle Scholar
  183. Karlsson, J., Kuo, S.M., Ziemniak, J., and Artursson, P. 1993. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein. Br. J. Pharmacol. 110:1009-1016.PubMedGoogle Scholar
  184. Kassel, D.B. 2004. Applications of high-throughput ADME in drug discovery. Curr. Opin. Chem. Biol. 8(3):339-345.PubMedGoogle Scholar
  185. Kast, H.R., Goodwin, B., Tarr, P.T., Jones, S.A., Anisfeld, A.M., Stoltz, C.M., Tontonoz, P., Kliewer, S., Willson, T.M., and Edwards, P.A. 2002. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor and constitutive androstane receptor. J. Biol. Chem. 277:2908-2915.PubMedGoogle Scholar
  186. Katsura, T., and Inui, K. 2003. Intestinal absorption of drugs mediated by drug trans-porters: mechanisms and regulation. Drug Metab. Pharmacokinet. 18:1-15.PubMedGoogle Scholar
  187. Kauffman, D.W., Kelly, J.P., Rosenberg, L., Anderson, T.E., and Mitchell, A.A. 2002. Recent patterns of medication use in the ambulatory adult population of the United States. JAMA 287:337-344.Google Scholar
  188. Kauffmann, H.M., Keppler, D., Gant, T.W., and Schrenk, D. 1998. Induction of hepatic mrp2 (cmrp/cmoat) gene expression in nonhuman primates treated with rifampicin or tamoxifen. Arch. Toxicol. 72(12):763-768.PubMedGoogle Scholar
  189. Kawasaki, Y., Kato, Y., Sai, Y., and Tsuji, A. 2004. Functional characterization of human organic cation transporter OCTN1 single nucleotide polymorphisms in the Japanese population. J. Pharm. Sci. 93:2920-2926.PubMedGoogle Scholar
  190. Kekuda, R., Prasad, P.D., Wu, X., Wang, H., Fei, Y.J., Leibach, F.H., and Ganapathy, V. 1998. Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J. Biol. Chem. 273:15971-15979.PubMedGoogle Scholar
  191. Keppler, D., Leier, I., and Jedlitschky, G. 1997. Transport of glutathione conjugates and glucuronides by the multidrug resistance proteins MRP1 and MRP2. Biol. Chem. 378 (8):787-791.PubMedGoogle Scholar
  192. Kerb, R., Brinkmann, U., Chatskaia, N., Gorbunov, D., Gorboulev, V., Mornhinweg, E., Keil, A., Eichelbaum, M., and Koepsell, H. 2002. Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Phar-macogenetics 12:591-595.Google Scholar
  193. Kim, R.B. 2003. Organic anion-transporting polypeptide (OATP) transporter family and drug disposition. Eur. J. Clin. Invest. 33(Suppl 2):1-5.PubMedGoogle Scholar
  194. Kim, C.M., Goldstein, J.L., and Brown, M.S. 1992. cDNA cloning of MEV, a mutant pro-tein that facilitates cellular uptake of mevalonate, and identification of the point mutation responsible for its gain of function. J. Biol. Chem. 267:23113-23121.PubMedGoogle Scholar
  195. Kim, R.B., Fromm, M.F., Wandel, C., Leake, B., Wood, A.J., Roden, D.M., and Wilkinson, G.R. 1998. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J. Clin. Invest. 101(2):289-294.PubMedGoogle Scholar
  196. Kim, D.K., Kanai, Y., Chairoungdua, A., Matsuo, H., Cha, S.H., and Endou, H. 2001a. Expression cloning of a Na+-independent aromatic amino acid transporter with struc-tural similarity to H+/monocarboxylate transporters. J. Biol. Chem. 276:17221-17228.PubMedGoogle Scholar
  197. Kim, D.K., Kanai, Y., Matsuo, H., Kim, J.Y., Chairoungdua, A., Kobayashi, Y., Enomoto, A., Cha, S.H., Goya, T., and Endou, H. 2001b. The human T-type amino acid transporter-1: characterization, gene organization, and chromosomal location. Genomics 79:95-103.Google Scholar
  198. Kim, S.J., Masaki, T., Leypoldt, J.K., Kamerath, C.D., Mohammad, S.F., and Cheung, A.K. 2004. Arterial and venous smooth-muscle cells differ in their responses to antiproliferative drugs. J. Lab. Clin. Med. 144(3):156-162.PubMedGoogle Scholar
  199. Kimberlin, D.F., Weller, S., Whitley, R.J., Andrews, W.W., Hauth, J.C., Lakeman, F., and Miller, G. 1998. Pharmacokinetics of oral valacyclovir and acyclovir in late pregnancy. Am. J. Obstet. Gynecol. 179(4):846-851.PubMedGoogle Scholar
  200. Kimura, T., and Higaki, K. 2002. Gastrointestinal transit and drug absorption. Biol. Pharm. Bull. 25(2):149-164.PubMedGoogle Scholar
  201. Kimura, H., Takeda, M., Narikawa, S., Enomoto, A., Ichida, K., and Endou, H. 2002. Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J. Pharmacol. Exp. Ther. 301:293-298.PubMedGoogle Scholar
  202. Kirk, P., Wilson, M.C., Heddle, C., Brown, M.H., Barclay, A.N., and Halestrap, A.P. 2000. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 19:3896-3904.PubMedGoogle Scholar
  203. Kiss, A., Farah, K., Kim, J., Garriock, R.J., Drysdale, T.A., and Hammond, J.R. 2000. Molecular cloning and functional characterization of inhibitor-sensitive (mENT1) and inhibitor-resistant (mENT2) equilibrative nucleoside transporters from mouse brain. Biochem. J. 352(2):363-372.PubMedGoogle Scholar
  204. Klaassen, C.D. 1972. Immaturity of the newborn rat’s hepatic excretory function for ouabain. J. Pharmacol. Exp. Ther. 183:520-526.PubMedGoogle Scholar
  205. Klang, J.E., Burnworth, L.A., Pan, Y.X., Webb, K.E. Jr., and Wong, E.A. 2005. Functional characterization of a cloned pig intestinal peptide transporter (pPepT1). J. Anim. Sci. 83 (1):172-181.PubMedGoogle Scholar
  206. Knipp, G.T., and Herrera-Ruiz, D. (2004). Filing date: 5/31/01, Issued: 1/27/04. US Patent no. 6,683,169: “Nucleic acid encoding the human peptide histidine transporter 1 and methods of use thereof.”Google Scholar
  207. Knipp, G.T., Ho, N.F., Barsuhn, C.L., and Borchardt, R.T. 1997. Paracellular diffusion in Caco-2 cell monolayers: effect of perturbation on the transport of hydrophilic compounds that vary in charge and size. J. Pharm. Sci. 86(10):1105-1110.PubMedGoogle Scholar
  208. Kobayashi, D., Nozawa, T., Imai, K., Nezu, J., Tsuji, A., and Tamai, I. 2003. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. Pharmacol. Exp. Ther. 306:703-708.Google Scholar
  209. Koepsell, H. 2004. Polyspecific organic cation transporters: their functions and interactions with drugs. Trends. Pharmacol. Sci. 25:375-381.PubMedGoogle Scholar
  210. Koepsell, H., and Endou, H. 2004. The SLC22 drug transporter family. Pflugers. Arch. 447:666-676.PubMedGoogle Scholar
  211. Koepsell, H., Schmitt, B.M., and Gorboulev, V. 2003. Organic cation transporters. Rev. Physiol. Biochem. Pharmacol. 150:36-90.PubMedGoogle Scholar
  212. Kong, W., Engel, K., and Wang, J. 2004. Mammalian Nucleoside Transporters. Curr. Drug Metab. 5:63-84.PubMedGoogle Scholar
  213. Konig, J., Nies, A.T., Cui, Y., Leier, I., and Keppler, D. 1999. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim. Biophys. Acta 1461:377-394.PubMedGoogle Scholar
  214. Konig, J., Cui, Y., Nies, A.T., and Keppler, D. 2000a. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am. J. Physiol. Gastrointest. Liver Physiol. 278:G156-G164.PubMedGoogle Scholar
  215. Konig, J., Cui, Y., Nies, A.T., and Keppler, D. 2000b. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J. Biol. Chem. 275:23161-23168.PubMedGoogle Scholar
  216. Kool, M., De Haas, M., Scheffer, G.L., Scheper, R.J., Van Eijk, M.J., Juijn, J.A., Baas, F., and Borst, P. 1997. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer. Res. 57:3537-3547.PubMedGoogle Scholar
  217. Kottra, G., Stamfort, A., and Daniel, H. 2002. PEPT1 as a paradigm for membrane carriers that mediate electrogenic bidirectional transport of anionic, cationic and neutral substrates. J. Biol. Chem. 277(36):32683-32691.PubMedGoogle Scholar
  218. Kovarik, J.M., Rigaudy, L., Guerret, M., Gerbeau, C., and Rost, K.L. 1999. Longitudinal assessment of a P-glycoprotein-mediated drug interaction of valspodar on digoxin. Clin. Pharmacol. Ther. 66(4):391-400.PubMedGoogle Scholar
  219. Kramer, R., Weber, T.K., and Arceci, R. 1995. Inhibition of N-linked glycosylation of P-glycoproptein by tunicamycin results in a reduced multidrug resistance phenotype. Br. J. Cancer. 71:670-676.PubMedGoogle Scholar
  220. Krishna, R., and Mayer, L.D. 2000. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci. 11(4):265-83.PubMedGoogle Scholar
  221. Kruh, G.D., and Belinsky, M.G. 2003. The MRP family of drug efflux pumps. Oncogene 22:7537-7352.PubMedGoogle Scholar
  222. Kubota, T., Furukawa, T., Tanino, H., Suto, A., Otan, Y., Watanabe, M., Ikeda, T., and Kitajima, M. 2001. Resistant mechanisms of anthracyclines-pirarubicin might partly break through the P-glycoprotein-mediated drug-resistance of human breast cancer tis-sues. Breast Cancer 8(4):333-338.PubMedGoogle Scholar
  223. Kulkarni, A.A., Haworth, I.S., and Lee, V.H. 2003a. Transmembrane segment 5 of the dipeptide transporter hPepT1 forms a part of the substrate translocation pathway. Biochem. Biophys. Res. Commun. 306(1):177-185.PubMedGoogle Scholar
  224. Kulkarni, A.A., Haworth, I.S., Uchiyama, T., and Lee, V.H. 2003b. Analysis of transmem-brane segment 7 of the dipeptide transporter hPepT1 by cysteine-scanning mutagenesis. J. Biol. Chem. 278(51):51833-51840.PubMedGoogle Scholar
  225. Kunta, J.R., and Sinko, P.J. 2004. Intestinal drug transporters: in vivo function and clinical importance. Curr. Drug Metab. 5:109-124.PubMedGoogle Scholar
  226. Kurata, Y., Ieiri, I., Kimura, M., Morita, T., Irie, S., Urae, A., Ohdo, S., Ohtani, H., Sawada, Y., Higuchi, S., and Otsubo, K. 2002. Role of human MDR1 gene polymor-phism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin. Pharmacol. Ther. 72(2):209–219.PubMedGoogle Scholar
  227. Kusuhara, H., and Sugiyama, Y. (2002). Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J. Control Release 78(1-3):43-54.PubMedGoogle Scholar
  228. Lahjouji, K., Mitchell, G.A., and Qureshi, I.A. 2001. Carnitine transport by organic cation transporters and systemic carnitine deficiency. Mol. Genet. Metab. 73:287-297.PubMedGoogle Scholar
  229. Lai, L., and Tan, T.M. 2002. Role of glutathione in the multidrug resistance protein 4 (MRP4/ABCC4)-mediated efflux of cAMP and resistance to purine analogues. Biochem. J. 361(Pt 3):497-503.PubMedGoogle Scholar
  230. Lai, Y., Bakken, A.H., and Unadkat, J.D. 2002. Simultaneous expression of hCNT1-CFP and hENT1-YFP in Madin-Darby canine kidney cells. Localization and vectorial transport studies. J. Biol. Chem. 277:37711-37717.PubMedGoogle Scholar
  231. Lai, Y., Lee, E.W., Ton, C.C., Vijay, S., Zhang, H., and Unadkat, J.D. 2005. Conserved residues F316 and G476 in the concentrative nucleoside transporter 1 (hCNT1) affect guanosine sensitivity and membrane expression, respectively. Am. J. Physiol. - Cell Physiol. 288(1):C39-C45.PubMedGoogle Scholar
  232. Lambert, D.W., Wood, I.S., Ellis, A., and Shirazi-Beechey, S.P. 2002. Molecular changes in the expression of human colonic nutrient transporters during the transition from nor-mality to malignancy. Br. J. Cancer 86:1262-1269.PubMedGoogle Scholar
  233. Landowski, C., Sun, D., Foster, D., Menon, S.S., Barnett, J.L., Welage, L.S., Ramachandran, C., and Amidon, G.L. 2003. Gene expression in the human intestine and correlation with oral valaciclovir pharmacokinetic parameters. J. Pharmacol. Exp. Ther. 306:778-786.PubMedGoogle Scholar
  234. Landowski, C.P., Vig, B.S., Song, X., and Amidon, G.L. 2005. Targeted delivery to PEPT1-overexpressing cells: acidic, basic, and secondary floxuridine amino acid ester prodrugs. Mol. Cancer Ther. 4(4):659-667.PubMedGoogle Scholar
  235. Lazar, A., Grundemann, D., Berkels, R., Taubert, D., Zimmermann, T., and Schomig, E. 2003. Genetic variability of the extraneuronal monoamine transporter EMT (SLC22A3). J. Hum. Genet. 48:226-230.PubMedGoogle Scholar
  236. Leabman, M.K., Huang, C.C., Kawamoto, M., Johns, S.J., Stryke, D., Ferrin, D.E., De Young, J., Taylor, T., Clark, A.G., Herskowitz, I., and Giacomini, K.M. 2002 Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics. 12(5):395-405.PubMedGoogle Scholar
  237. Lee, V.H.L. 2000. Membrane transporters. Eur. J. Pharm. Sci. 11:S41-S50.PubMedGoogle Scholar
  238. Leibach, F.H., and Ganapathy, V. 1996. Peptide transport in the intestine and the kidney. Annu. Rev. Nutr. 16:99-119.PubMedGoogle Scholar
  239. Leier, I., Jedlitschky, G., Buchholz, U., Cole, S.P., Deeley, R.G., and Keppler, D. 1994. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and struc-turally related conjugates. J. Biol. Chem. 269:27807-27810.PubMedGoogle Scholar
  240. Leier, I., Hummel-Eisenbeiss, J., Cui, Y., and Keppler, D. 2000. ATP-dependent paraaminohippurate transport by apical multidrug resistance protein MRP2. Kidney Int. 57 (4):1636-1642.PubMedGoogle Scholar
  241. Leino, R.L., Gerhart, D.Z., Duelli, R., Enerson, B.E., and Drewes, L.R. 2001. Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem. Int. 38(6):519-527.PubMedGoogle Scholar
  242. Leo, A., Hansch, C., and Elkins, D. 1971. Partition coefficients and their uses. Chem. Rev. 71(6):525-616.Google Scholar
  243. Leslie, E.M., Ito, K., Upadhyaya, P., Hecht, S.S., Deeley, R.G., and Cole, S.P. 2001. Transport of the beta-O-glucuronide conjugate of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) by the multidrug resistance pro-tein 1 (MRP1). Requirement for glutathione or a non-sulfur-containing analog. J. Biol. Chem. 276(30):27846-27854.PubMedGoogle Scholar
  244. Leslie, E.M., Deeley, R.G., and Cole, S.P. 2003. Bioflavonoid stimulation of glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1). Drug Metab. Dispos. 31:11-15.PubMedGoogle Scholar
  245. Leslie, E.M., Deeley, R.G., and Cole, S.P. 2005. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol. Appl. Pharmacol. 204(3):216-237.PubMedGoogle Scholar
  246. Leung, G.P., Man, R.Y., and Tse, C.M. (2005a). d-Glucose upregulates adenosine transport in cultured human aortic smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 288:H2756-H2762.PubMedGoogle Scholar
  247. Leung, G.P., Man, R.Y., and Tse, C.M. 2005b. Effect of thiazolidinediones on equilibra-tive nucleoside transporter-1 in human aortic smooth muscle cells. Biochem. Pharmacol. 70 (3):355-362.PubMedGoogle Scholar
  248. Leveille-Webster, C.R., and Arias, I.M. 1995. The biology of the P-glycoproteins. J. Membr. Biol. 143(2):89-102.PubMedGoogle Scholar
  249. Li, L., Lee, T.K., Meier, P.J., and Ballatori, N. 1998. Identification of glutathione as a driving force and leukotriene C4 as a substrate for oatp1, the hepatic sinusoidal organic solute transporter. J. Biol. Chem. 273:16184-16191.PubMedGoogle Scholar
  250. Li, Y.H., Ito, K., Tsuda, Y., Kohda, R., Yamada, H., and Itoh, T. 1999. Mechanism of intestinal absorption of an orally active beta-lactam prodrug: uptake and transport of carindacillin in Caco-2 cells. J. Pharmacol. Exp. Ther. 290:958-964.PubMedGoogle Scholar
  251. Li, L., Meier, P.J., and Ballatori, N. 2000. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol. Pharmacol. 58:335-340.PubMedGoogle Scholar
  252. Li, N., Hartley, D.P., Cherrington, N.J., and Klaassen, C.D. 2002. Tissue expression, ontogeny, and inducibility of rat organic anion transporting polypeptide 4. J. Pharma-col. Exp. Ther. 301:551-560.Google Scholar
  253. Liang, R., Fei, Y.J., Prasad, P.D., Ramamoorthy, S., Han, H., Yang-Feng, T.L., Hediger, M.A., Ganapathy, V., and Leibach, F.H. 1995. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J. Biol. Chem. 270:6456-6463.PubMedGoogle Scholar
  254. Lin, R.Y., Vera, J.C., Chaganti, R.S., and Golde, D.W. 1998. Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. J. Biol. Chem. 273: 28959-28965.PubMedGoogle Scholar
  255. Lincke, C.R., Smit, J.J., van der Velde-Koerts, T., and Borst, P. 1991. Structure of the human MDR3 gene and physical mapping of the human MDR locus. J. Biol. Chem. 266 (8):5303-5310.PubMedGoogle Scholar
  256. Lipinski, C.A. 2000. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44(1):235-249.PubMedGoogle Scholar
  257. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3-25.Google Scholar
  258. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46(1-3):3-26.PubMedGoogle Scholar
  259. Loe, D.W., Deeley, R.G., and Cole, S.P. 2000a. Verapamil stimulates glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1). J. Pharmacol. Exp. Ther. 293:530-538.PubMedGoogle Scholar
  260. Loe, D.W., Oleschuk, C.J., Deeley, R.G., and Cole, S.P. 2000b. Structure-activity stud-ies of verapamil analogs that modulate transport of leukotriene C(4) and reduced glutathione by multidrug resistance protein MRP1. Biochem. Biophys. Res. Commun. 275 (3):795-803.PubMedGoogle Scholar
  261. Loewen, S.K., Ng, A.M., Yao, S.Y., Cass, C.E., Baldwin, S.A., and Young, J.D. 1999. Identification of amino acid residues responsible for the pyrimidine and purine nucle-oside specificities of human concentrative Na+nucleoside cotransporters hCNT1 and hCNT2. J. Biol. Chem. 274:24475-24484.PubMedGoogle Scholar
  262. Lu, R., Kanai, N., Bao, Y., Wolkoff, A.W., and Schuster, V.L. 1996. Regulation of renal oatp mRNA expression by testosterone. Am. J. Physiol. 270:F332-F337.PubMedGoogle Scholar
  263. Luo, G., Guenthner, T., Gan, L.S., and Humphreys, W.G. 2004. CYP3A4 induction by xenobiotics: biochemistry, experimental methods and impact on drug discovery and development. Curr. Drug Metab. 5:483-505.PubMedGoogle Scholar
  264. MacDougall, C., and Guglielmo, B.J. 2004. Pharmacokinetics of valaciclovir. J. Antimicrob. Chemother. 53(6):899-901.PubMedGoogle Scholar
  265. Mackenzie, B., Loo, D.D., Fei, Y., Liu, W.J., Ganapathy, V., Leibach, F.H., and Wright, E.M. 1996. Mechanisms of the human intestinal H+-coupled oligopeptide transporter hPEPT1. J. Biol. Chem. 271(10):5430-5437.PubMedGoogle Scholar
  266. Mackey, J.R., Mani, R.S., Selner, M., Mowles, D., Young, J.D., Belt, J.A., Crawford, C.R., and Cass, C.E. 1998. Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res. 58(19):4349-4357.PubMedGoogle Scholar
  267. Mackey, J.R., Yao, S.Y., Smith, K.M., Karpinski, E., Baldwin, S.A., Cass, C.E., and Young, J.D. 1999. Gemcitabine transport in Xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters. J. Natl Cancer Inst. 91 (21):1876-1881.PubMedGoogle Scholar
  268. Madon, J., Eckhardt, U., Gerloff, T., Stieger, B., and Meier, P.J. 1997. Functional expression of the rat liver canalicular isoform of the multidrug resistance-associated protein. FEBS Lett. 406:75-78.PubMedGoogle Scholar
  269. Maher, J.M., Cheng, X., Slitt, A.L., Dieter, M.Z., and Klaassen, C.D. 2005. Induction of the multidrug resistance-associated protein family of transporters by chemical activators of receptor-mediated pathways in mouse liver. Drug Metab. Dispos. 33(7):956-962.PubMedGoogle Scholar
  270. Maliepaard, M., van Gastelen, M.A., de Jong, L.A., Pluim, D., van Waardenburg, R.C., Ruevekamp-Helmers, M.C., Floot, B.G., and Schellens, J.H. 1999. Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res. 59 (18):4559-4563.PubMedGoogle Scholar
  271. Maliepaard, M., Scheffer, G.L., Faneyte, I.F., van Gastelen, M.A., Pijnenborg, A.C., Schinkel, A.H., van De Vijver, M.J., Scheper, R.J., and Schellens, J.H. 2001. Subcel-lular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 61(8):3458-3464.PubMedGoogle Scholar
  272. Mangravite, L.M., Lipschutz, J.H., Mostov, K.E., and Giacomini, K.M. 2001. Localization of GFP-tagged concentrative nucleoside transporters in a renal polarized epithelial cell line. Am. J. Physiol. Renal Physiol. 280(5):F879-F885.PubMedGoogle Scholar
  273. Mangravite, L.M., Xiao, G., and Giacomini, K.M. 2003. Localization of human equilibra-tive nucleoside transporters, hENT1 and hENT2, in renal epithelial cells. Am. J. Physiol. Renal. Physiol. 284:F902-F910.PubMedGoogle Scholar
  274. Mani, R.S., Hammond, J.R., Marjan, J.M., Graham, K.A., Young, J.D., Baldwin, S.A., and Cass, C.E. 1998. Demonstration of equilibrative nucleoside transporters (hENT1 and hENT2) in nuclear envelopes of cultured human choriocarcinoma (BeWo) cells by functional reconstitution in proteoliposomes. J. Biol. Chem. 273:30818-30825.PubMedGoogle Scholar
  275. Martin, C., Berridge, G., Higgins, C.F., and Callaghan, R. 1997. The multi-drug resistance reversal agent SR33557 and modulation of vinca alkaloid binding to P-glycoprotein by an allosteric interaction. Br. J. Pharmacol. 122:765-771.PubMedGoogle Scholar
  276. Masaki, T., Kamerath, C.D., Kim, S.J., Leypoldt, J.K., Mohammad, S.F., and Cheung, A.K. 2004. In vitro pharmacological inhibition of human vascular smooth muscle cell pro-liferation for the prevention of hemodialysis vascular access stenosis. Blood Purif. 22 (3):307-312.PubMedGoogle Scholar
  277. McAleer, M.A., Breen, M.A., White, N.L., and Matthews, N. (1999). pABC11 (also known as MOAT-C and MRP5), a member of the ABC family of proteins, has anion transporter activity but does not confer multidrug resistance when overexpressed in human embryonic kidney 293 cells. J. Biol. Chem. 274:23541-23548.PubMedGoogle Scholar
  278. Mehrens, T., Lelleck, S., Cetinkaya, I., Knollmann, M., Hohage, H., Gorboulev, V., Boknik, P., Koepsell, H., and Schlatter, E. 2000. The affinity of the organic cation trans-porter rOCT1 is increased by protein kinase C-dependent phosphorylation. J. Am. Soc. Nephrol. 11:1216-1224.PubMedGoogle Scholar
  279. Meier, P.J., and Stieger, B. 2002. Bile salt transporters. Annu. Rev. Physiol. 64:635-661.PubMedGoogle Scholar
  280. Meredith, D. 2004. Site-directed mutation of arginine 282 to glutamate uncouples the movement of peptides and protons by the rabbit proton-peptide cotransporter PepT1. J. Biol. Chem. 279(16):15795-15798.PubMedGoogle Scholar
  281. Meredith, D., and Boyd, C.A.R. 2000. Structure and function of eukaryotic peptide transporters. Cell Mol. Life Sci. 57:754-778.PubMedGoogle Scholar
  282. Merlin, D., Steel, A., Gewirtz, A.T., Si-Tahar, M., Hediger, M.A., and Madara, J.L. (1998). hPepT1-mediated epithelial transport of bacteria-derived chemotactic peptides enhances neutrophil-epithelial interactions. J. Clin. Invest. 102:2011-2018.PubMedGoogle Scholar
  283. Merlin, D., Si-Tahar, M., Sitaraman, S.V., Eastburn, K., Williams, I., Liu, X., Hediger, M.A., and Madara, J.L. 2001. Colonic epithelial hPepT1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of MHC class 1 molecules. Gastroenterology 120:1666-1679.PubMedGoogle Scholar
  284. Mickley, A.L., Bates, S.S., Richert, N.D., Currier, S., Tanaka, S., Foss, F., Rosen, N., and Fojo, A.T. 1989. Modulation of the expression of a multidrug resistance gene (mdr-1/P-glycoprotein) by differentiating agents. J. Biol. Chem. 264:18031-18040.PubMedGoogle Scholar
  285. Mikkaichi, T., Suzuki, T., Tanemoto, M., Ito, S., and Abe, T. 2004. The organic anion transporter (OATP) family. Drug Metab. Pharmacokinet. 19(3):171-179.PubMedGoogle Scholar
  286. Mizuno, N., Niwa, T., Yotsumoto, Y., and Sugiyama, Y. 2003. Impact of drug transporter studies on drug discovery and development. Pharmacol. Rev. 55:425-461.PubMedGoogle Scholar
  287. van Montfoort, J.E., Hagenbuch, B., Groothuis, G.M., Koepsell, H., Meier, P.J., and Meijer, D.K. 2003. Drug uptake systems in liver and kidney. Curr. Drug Metab. 4:185-211.PubMedGoogle Scholar
  288. Moriya, Y., Nakamura, T., Horinouchi, M., Sakaeda, T., Tamura, T., Aoyama, N., Shirakawa, T., Gotoh, A., Fujimoto, S., Matsuo, M., Kasuga, M., and Okumura, K. 2002. Effects of polymorphisms of MDR1, MRP1, and MRP2 genes on their mRNA expression levels in duodenal enterocytes of healthy Japanese subjects. Biol. Pharm. Bull. 25(10):1356-1359.PubMedGoogle Scholar
  289. Mouly, S., and Paine, M.F. 2003. P-glycoprotein increases from proximal to distal regions of human small intestine. Pharm. Res. 20(10):1595-1599.PubMedGoogle Scholar
  290. Muller, U., Brandsch, M., Prasad, P.D., Fei, Y.-J., Ganapathy, V., and Leibach, F.H. 1996. Inhibition of the H+/peptide cotransporter in the human intestinal cell line Caco-2 by cyclic AMP. Biochem. Biophys. Res. Commun. 218:461-465.PubMedGoogle Scholar
  291. Nagel, G., Volk, C., Friedrich, T., Ulzheimer, J.C., Bamberg, E., and Koepsell, H. (1997). A reevaluation of substrate specificity of the rat cation transporter rOCT1. J. Biol. Chem. 272:31953-31956.Google Scholar
  292. Nakatomi, I., Yoshikawa, M., Oka, M., Ikegami, Y., Hayasaka, S., Sano, K., Shiozawa, K., Kawabata, S., Soda, H., Ishikawa, T., Tanabe, S., and Kohno, S. 2001. Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. Biochem. Biophys. Res. Commun. 288:827-832.PubMedGoogle Scholar
  293. Naruhashi, K., Tamai, I., Inoue, N., Muraoka, H., Sai, Y., Suzuki, N., and Tsuji, A. 2002. Involvement of multidrug resistance-associated protein 2 in intestinal secretion of grepafloxacin in rats. Antimicrob. Agents Chemother. 46:344-349.PubMedGoogle Scholar
  294. Nerurkar, M.M., Burton, P.S., and Borchardt, R.T. 1996. The use of surfactants to enhance the permeability of peptides through Caco-2 cells by inhibition of an apically polarized efflux system. Pharm. Res. 13:528-534.PubMedGoogle Scholar
  295. Nerurkar, M.M., Ho, N.F., Burton, P.S., Vidmar, T.J., and Borchardt, R.T. 1997. Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells. J. Pharm. Sci. 86:813-821.PubMedGoogle Scholar
  296. Nezu, J., Tamai, I., Oku, A., Ohashi, R., Yabuuchi, H., Hashimoto, N., Nikaido, H., Sai, Y., Koizumi, A., Shoji, Y., Takada, G., Matsuishi, T., Yoshino, M., Kato, H., Ohura, T., Tsu-jimoto, G., Hayakawa, J., Shimane, M., and Tsuji, A. 1999. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat. Genet. 21:91-94.PubMedGoogle Scholar
  297. Ngo, L.Y., Patil, S.D., and Unadkat, J.D. 2001. Ontogenic and longitudinal activity of Na+-nucleoside transporters in the small intestine. Am. J. Physiol. 280:G475-G481.Google Scholar
  298. Nielsen, C.U., Brodin, B., Jorgensen, F., Frokjaer, S., and Steffansen, B. 2002. Human peptide transporters: therapeutic applications. Expert Opin. 12:1329-1350.Google Scholar
  299. Nies, A.T., Cantz, T., Brom, M., Leier, I., and Keppler, D. 1998. Expression of the apical conjugate export pump, Mrp2, in the polarized hepatoma cell line, WIF-B. Hepatology 28 (5):1332-1340.PubMedGoogle Scholar
  300. Nozawa, T., Nakajima, M., Tamai, I., Noda, K., Nezu, J., Sai, Y., Tsuji, A., and Yokoi, T. 2002. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. Pharmacol. Exp. Ther. 302:804-813.Google Scholar
  301. Nozawa, T., Toyobuku, H., Kobayashi, D., Kuruma, K., Tsuji, A., and Tamai, I. 2003. Enhanced intestinal absorption of drugs by activation of peptide transporter PEPT1 using proton-releasing polymer. J. Pharm. Sci. 92(11):2208-2216.PubMedGoogle Scholar
  302. Nozawa, T., Imai, K., Nezu, J., Tsuji, A., and Tamai, I. 2004. Functional characterization of pH-sensitive organic anion transporting polypeptide OATP-B in human. J. Pharmacol. Exp. Ther. 308:438-445.PubMedGoogle Scholar
  303. Nussberger, S., Steel, A., and Hediger, M. 1997a. Structure and pharmacology of protonlinked peptide transporters. J. Control Rel. 46:31-38.Google Scholar
  304. Nussberger, S., Steel, A., Trott, D., Romero, M., Boron, W.F., and Hediger, M. 1997b. Symmetry of H+ binding to the intra- and extracellular side of the H+-coupled oligopeptide cotransporter PepT1. J. Biol. Chem. 272:7777-7785.PubMedGoogle Scholar
  305. Ogihara, H., Suzuki, T., Nagamachi, Y., Inui, K.-I., and Takata, K. 1999. Peptide transporter in the rat small intestine: ultrastructural localization and the effect of starvation and administration of amino acids. Histochem. J. 31:169-174.PubMedGoogle Scholar
  306. Oh, D.-M., and Amidon, G.L. 1999. Overview of membrane transport. In Membrane Transporters as Drug Targets. Edited by , Kluwer Acad-emic/Plenum Publishers, New York, NY, pp. 1-27.Google Scholar
  307. Ohashi, R., Tamai, I., Yabuuchi, H., Nezu, J.I., Oku, A., Sai, Y., Shimane, M., and Tsuji, A. 1999. Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J. Pharmacol. Exp. Ther. 291:778-784.PubMedGoogle Scholar
  308. Okamura, A., Emoto, A., Koyabu, N., Ohtani, H., and Sawada, Y. 2002. Transport and uptake of nateglinide in Caco-2 cells and its inhibitory effect on human monocarboxylate transporter MCT1. Br. J. Pharmacol. 137:391-399.PubMedGoogle Scholar
  309. Okuda, M., Saito, H., Urakami, Y., Takano, M., and Inui, K. (1996). cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem. Biophys. Res. Commun. 224:500-507.PubMedGoogle Scholar
  310. Okuda, M., Urakami, Y., Saito, H., and Inui, K.I. 1999. Molecular mechanisms of organic cation transport in OCT2-expressing Xenopus oocytes. Biochim. Biophys. Acta 1417:224-231.PubMedGoogle Scholar
  311. Owen, M.R., Doran, E., and Halestrap, A.P. 2000. Evidence that metformin exerts its antidiabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348:607-614.PubMedGoogle Scholar
  312. Ozvegy, C., Litman, T., Szakacs, G., Nagy, Z., Bates, S., Varadi, A., and Sarkadi, B. 2001. Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem. Biophys. Res. Commun. 285(1):111-117.PubMedGoogle Scholar
  313. Pan, Y.X., Wong, E.A., Bloomquist, J.R., and Webb, K.E., Jr. 2001. Expression of a cloned ovine gastrointestinal peptide transporter (oPepT1) in Xenopus oocytes induces uptake of oligopeptides in vitro. J. Nutr. 131:1264-1270.PubMedGoogle Scholar
  314. Pastor-Anglada, M., Casado, F.J., Valdes, R., Mata, J., Garcia-Manteiga, J., and Molina, M. 2001. Complex regulation of nucleoside transporter expression in epithelial and immune system cells. Mol. Memb. Bio. 18:81-85.Google Scholar
  315. Paulusma, C.C., Bosma, P.J., Zaman, G.J., Bakker, C.T., Otter, M., Scheffer, G.L., Scheper, R.J., Borst, P., and Oude Elferink, R.P. 1996. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science 271:1126-1128.PubMedGoogle Scholar
  316. Pavlova, A., Sakurai, H., Leclercq, B., Beier, D.R., Yu, A.S., and Nigam, S.K. 2000. Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and Roct. Am. J. Physiol. Renal Physiol. 278:F635-F643.PubMedGoogle Scholar
  317. Pawelczyk, T., Podgorska, M., and Sakowicz, M. 2003. The effect of insulin on expression level of nucleoside transporters in diabetic rats. Mol. Pharmacol. 63(1):81-88.PubMedGoogle Scholar
  318. Peltekova, V.D., Wintle, R.F., Rubin, L.A., Amos, C.I., Huang, Q., Gu, X., Newman, B., Van Oene, M., Cescon, D., Greenberg, G., Griffiths, A.M., St George-Hyslop, P.H., and Siminovitch, K.A. 2004. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat. Genet. 36:471-475.PubMedGoogle Scholar
  319. Peng, K.C., Cluzeaud, F., Bens, M., Van Huyen, J.P., Wioland, M.A., Lacave, R., and Vandewalle, A. 1999. Tissue and cell distribution of the multidrug resistance-associated protein (MRP) in mouse intestine and kidney. J. Histochem. Cytochem. 47:757-768.PubMedGoogle Scholar
  320. Pennycooke, M., Chaudary, N., Shuralyova, I., Zhang, Y., and Coe, I.R. 2001. Differential expression of human nucleoside transporters in normal and tumor tissue. Biochem. Biophys. Res. Commun. 280:951-959.PubMedGoogle Scholar
  321. Phan, D., Chin-Hong, P., Lin, E., Anderle, P., Sadee, W., and Guglielmo, B.J. 2003. Intraand interindividual variabilities of valaciclovir oral bioavailability and effect of coadministration of an hPEPT1 inhibitor. Antimicrob. Agents Chemother. 47:2351-2353.PubMedGoogle Scholar
  322. Phillis, J.W., and Wu, P.H. 1981. The role of adenosine and its nucleotides in central synaptic transmission. Prog. Neurobiol. 16:187-239.PubMedGoogle Scholar
  323. Philp, N.J., Yoon, H., and Grollman, E.F. 1998. Monocaroxylate transporter (MCT1) is located in the apical membrane and MCT3 in the basal membrane of rat RPE. Am. J. Physiol. 274:R1824-R1828.PubMedGoogle Scholar
  324. Philp, N.J., Ochrietor, J.D., Rudoy, C., Muramatsu, T., and Linser, P.J. 2003. Loss of MCT1, MCT3 and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse. Invest. Ophthalmol. Vis. Sci. 44(3):1305-1311.PubMedGoogle Scholar
  325. Pisoni, R.L., and Thoene, J.G. 1989. Detection and characterization of a nucleoside trans-port system in human fibroblast lysosomes. J. Biol. Chem. 264:4850-4856.PubMedGoogle Scholar
  326. Plagemann, P.G., and Aran, J.M. 1990. Characterization of Na+-dependent, active nucle-oside transport in rat and mouse peritoneal macrophages, a mouse macrophage cell line and normal rat kidney cells. Biochim. Biophys. Acta 1028:289-298.PubMedGoogle Scholar
  327. Pons, R., Carrozzo, R., Tein, I., Walker, W.F., Addonizio, L.J., Rhead, W., Miranda, A.F., Dimauro, S., and De Vivo, D.C. 1997. Deficient muscle carnitine transport in primary carnitine deficiency. Pediatr. Res. 42:583-587.PubMedGoogle Scholar
  328. Poole, R.C., and Halestrap, A.P. 1993. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol. 264:C761-C782.PubMedGoogle Scholar
  329. Poole, R.C., Sansom, C.E., and Halestrap, A.P. 1996. Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1). Biochem. J. 320:817-824.PubMedGoogle Scholar
  330. Pressacco, J., Wiley, J.S., Jamieson, G.P., Erlichman, C., and Hedley, D.W. 1995. Modu-lation of the equilibrative nucleoside transporter by inhibitors of DNA-synthesis. Br. J. Cancer 72:939-942.PubMedGoogle Scholar
  331. Price, N.T., Jackson, V.N., and Halestrap, A.P. 1998. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem. J. 329(Pt 2):321-328.PubMedGoogle Scholar
  332. Prime-Chapman, H.M., Fearn, R.A., Cooper, A.E., Moore, V., and Hirst, B.H. 2004. Differential multidrug resistance-associated protein 1 through 6 isoform expression and function in human intestinal epithelial Caco-2 cells. J. Pharmacol. Exp. Ther. 311 (2):476-484.PubMedGoogle Scholar
  333. Pulaski, L., Kania, K., Ratajewski, M., Uchiumi, T., Kuwano, M., and Bartosz, G. 2005. Differential regulation of the human MRP2 and MRP3 gene expression by glucocorticoids. J. Steroid Biochem. Mol. Biol. 96(3-4):229-234.PubMedGoogle Scholar
  334. Rabindran, S.K., He, H., Singh, M., Brown, E., Collins, K.I., Annable, T., and Greenberger, L.M. 1998. Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res. 58(24):5850-5858.PubMedGoogle Scholar
  335. Rahman, B., Schneider, H.P., Broer, A., Beitmer, J.W., and Broer, S. (1999). Helix 8 and helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1. Biochemistry 38:11577-11584.PubMedGoogle Scholar
  336. Rausch-Derra, L.C., Hartley, D.P., Meier, P.J., and Klaassen, C.D. 2001. Differential effects of microsomal enzyme-inducing chemicals on the hepatic expression of rat organic anion transporters, Oatp1 and Oatp2. Hepatology 33:1469-1478.PubMedGoogle Scholar
  337. Reid, G., Wielinga, P., Zelcer, N., De Haas, M., Van Deemter, L., Wijnholds, J., Balzarini, J., and Borst, P. 2003. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol. Pharmacol. 63 (5):1094-1103.PubMedGoogle Scholar
  338. Ritzel, M.W., Yao, S.Y., Huang, M.Y., Elliott, J.F., Cass, C.E., and Young, J.D. 1997. Molecular cloning and functional expression of cDNAs encoding a human Na+-nucleoside cotransporter (hCNT1). Am. J. Physiol. 272:C707-C714.PubMedGoogle Scholar
  339. Ritzel, M.W., Ng, A.M., Yao, S.Y., Graham, K., Loewen, S.K., Smith, K.M., Ritzel, R.G., Mowles, D.A., Carpenter, P., Chen, X.Z., Karpinski, E., Hyde, R.J., Baldwin, S.A., Cass, C.E., and Young, J.D. 2001. Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J. Biol. Chem. 276:2914-2927.PubMedGoogle Scholar
  340. Rome, S., Barbot, L., Windsor, E., Kapel, N., Tricottet, V., Huneau, J.F., Reynes, M., Gobert, J.G., and Tomé , D. 2002. The regionalization of PepT1, NBAT and EAAC1 transporters in the small intestine of rats are uncharged from birth to adulthood. J. Nutr. 132:1009-1011.PubMedGoogle Scholar
  341. Rost, D., Mahner, S., Sugiyama, Y., and Stremmel, W. 2002. Expression and localization of the multidrug resistance-associated protein 3 in rat small and large intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 282(4):G720-G726.PubMedGoogle Scholar
  342. Rost, D., Kopplow, K., Gehrke, S., Mueller, S., Friess, H., Ittrich, C., Mayer, D., and Stiehl, A. 2005. Gender-specific expression of liver organic anion transporters in rat. Eur. J. Clin. Invest. 35:635-643.PubMedGoogle Scholar
  343. Rubin, L.J., Johnson, L.R., Dodam, J.R., Dhalla, A.K., Magliola, L., Laughlin, M.H., and Jones, A.W. 2000. Selective transport of adenosine into porcine coronary smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 279(3):H1397-H1410.PubMedGoogle Scholar
  344. Rubio-Aliaga, I., and Daniel, H. 2002. Mammalian peptide transporters as targets for drug delivery. Trends Pharm. Sci. 23(9):434-440.PubMedGoogle Scholar
  345. Sai, Y., and Tsuji, A. 2004. Transporter-mediated drug delivery: recent progress and experimental approaches. Drug Discov. Today 9:712-720.PubMedGoogle Scholar
  346. Saier, M.H., Jr. 2000. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 64(2):354-411.PubMedGoogle Scholar
  347. Saier, M.H., Jr., Eng, B.H., Fard, S., Garg, J., Haggerty, D.A., Hutchinson, W.J., Jack, D.L., Lai, E.C., Liu, H.J., Nusinew, D.P., Omar, A.M., Pao, S.S., Paulsen, I.T., Quan, J.A., Sliwinski, M., Tseng, T.T., Wachi, S., and Young, G.B. 1999. Phylogenetic characteris-tics of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422:1-56.PubMedGoogle Scholar
  348. Saito, H., Okuda, M., Terada, T., Sasaki, S., and INRI, K.-I. 1995. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney. J. Pharmacol. Exp. Ther. 275:1631-1637.PubMedGoogle Scholar
  349. Sakata, K., Yamashita, T., Maeda, M., Moriyama, Y., Shimada, S., and Tohyama, M. 2001. Cloning of a lymphatic peptide/histidine transporter. Biochem. J. 356:53-60.PubMedGoogle Scholar
  350. Sarkadi, B., Ozvegy-Laczka, C., Nemet, K., and Varadi, A. 2004. ABCG2 - a transporter for all seasons. FEBS Lett. 567(1):116-120.PubMedGoogle Scholar
  351. Satlin, L.M., Amin, V., and Wolkoff, A.W. 1997. Organic anion transporting polypeptide mediates organic anion/HCO3-exchange. J. Biol. Chem. 272:26340-26345.PubMedGoogle Scholar
  352. Sawada, K., Terada, T., Saito, H., Hashimoto, Y., and Inui, K. 1999. Effects of glibenclamide on glycylsarcosine transport by the rat peptide transporters PEPT1 and PEPT2. Br. J. Pharmacol. 128(6):1159-1164.PubMedGoogle Scholar
  353. Schaub, T.P., Kartenbeck, J., K önig, J., Vogel, O., Witzgall, R., Kriz, W., and Keppler, D. 1997. Expression of the conjugate export pump encoded by the mrp2 gene in the apical membrane of kidney proximal tubules. J. Am. Soc. Nephrol. 8:1213-1221.PubMedGoogle Scholar
  354. Scheffer, G.L., Maliepaard, M., Pijnenborg, A.C., van Gastelen, M.A., de Jong, M.C., Schroeijers, A.B., van der Kolk, D.M., Allen, J.D., Ross, D.D., van der Valk, P., Dalton, W.S., Schellens, J.H., and Scheper, R.J. 2000. Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines. Cancer Res. 60(10):2589-2593.PubMedGoogle Scholar
  355. Scheffer, G.L., Kool, M., De Haas, M., De Vree, J.M., Pijnenborg, A.C., Bosman, D.K., Elferink, R.P., Van Der Valk, P., Borst, P., and Scheper, R.J. 2002. Tissue distribution and induction of human multidrug resistant protein 3. Lab. Invest. 82:193-201.PubMedGoogle Scholar
  356. Schinkel, A.H., and Jonker, J.W. 2003. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv. Drug Deliv. Rev. 55:3-29.PubMedGoogle Scholar
  357. Schrenk, D., Gant, T.W., Preisegger, K.H., Silverman, J.A., Marino, P.A., and Thorgeirsson, S.S. 1993. Induction of multidrug resistance gene expression during cholestasis in rats and nonhuman primates. Hepatology 17:854-860.PubMedGoogle Scholar
  358. Schuster, V.L., Lu, R., Kanai, N., Bao, Y., Rosenberg, S., Prie, D., Ronco, P., and Jennings, M.L. 1996. Cloning of the rabbit homologue of mouse ‘basigin’ and rat ‘OX-47’: kidney cell type-specific expression, and regulation in collecting duct cells. Biochim. Biophys. Acta 1311(1):13-19.PubMedGoogle Scholar
  359. Seelig, A., and Landwojtowicz, E. 2000. Structure-activity relationship of P-glycoprotein substrates and modifiers. Eur. J.Pharm. Sci. 12:31-40.PubMedGoogle Scholar
  360. Sekine, T., Cha, S.H., Tsuda, M., Apiwattanakul, N., Nakajima, N., Kanai, Y., and Endou, H. 1998. Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett. 429:179-182.PubMedGoogle Scholar
  361. SenGupta, D.J., Lum, P.Y., Lai, Y., Shubochkina, E., Bakken, A.H., Schneider, G., and Unadkat, J.D. 2002. A single glycine mutation in the equilibrative nucleoside trans-porter gene, hENT1, alters nucleoside transport activity and sensitivity to nitrobenzylth-ioinosine. Biochemistry 41:1512-1519.PubMedGoogle Scholar
  362. Shapiro, A.B., Fox, K., Lam, P., and Ling, V. 1999. Stimulation of P-glycoprotein mediated drug transport by prazosin and progesterone. Evidence for a third drug-binding site. Eur. J. Biochem. 259:841-850.PubMedGoogle Scholar
  363. Sharom, F.J. 1997. The P-glycoprotein efflux pump: how does it transport drugs? J. Membr. Biol. 160:161-175.PubMedGoogle Scholar
  364. Shen, H., Smith, D.E., and Brosius, F.C., III. 2001. Developmental expression of PepT1 and PepT2 in rat small intestine, colon, and kidney. Pediatr. Res. 49:789-795.PubMedGoogle Scholar
  365. Shi, X., Bai, S., Ford, A.C., Burk, R.D., Jacquemin, E., Hagenbuch, B., Meier, P.J., and Wolkoff, A.W. 1995. Stable inducible expression of a functional rat liver organic anion transport protein in HeLa cells. J. Biol. Chem. 270:25591-25595.PubMedGoogle Scholar
  366. Shimakura, J., Terada, T., Katsura, T., and Inui, K.I. 2005. Characterization of the Human Peptide Transporter PEPT1 promoter: Sp1 Functions as a Basal Transcriptional Regula-tor of Human PEPT1. Am. J. Physiol. Gastrointest. Liver Physiol. 289(3):G471-G477.PubMedGoogle Scholar
  367. Shiraga, T., Miyamoto, K., Tanaka, H., Yamamoto, H., Taketani, Y., Morita, K., Tamai, I., Tsuji, A., and Takeda, E. 1999. Cellular and molecular mechanism of dietary regulation on rat intestinal H+/peptide transporter PepT1. Gastroenterology 116:354-362.PubMedGoogle Scholar
  368. Shore, P.A., Brodie, B.B., and Hogben, C.A.M. 1957. The gastric secretion of drugs: a pH partition hypothesis. J. Pharmacol. Exp. Ther. 119:361-369.PubMedGoogle Scholar
  369. Shu, C., Shen, H., Hopfer, U., and Smith, D.E. 2001. Mechanism of intestinal absorption and renal reabsorption of an orally active ace inhibitor: uptake and transport of fosinopril in cell cultures. Drug Metab. Dispos. 29(10):1307-1315.PubMedGoogle Scholar
  370. Shu, Y., Leabman, M.K., Feng, B., Mangravite, L.M., Huang, C.C., Stryke, D., Kawamoto, M., Johns, S.J., DeYoung, J., Carlson, E., Ferrin, T.E., Herskowitz, I., and Giacomini, K.M. 2003. Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc. Natl Acad. Sci. USA 100:5902-5907.PubMedGoogle Scholar
  371. Sikic, B.I. 1997. Pharmacologic approaches to reversing multidrug resistance. Semin Hematol. 34(4 Suppl 5):40-47.PubMedGoogle Scholar
  372. Simon, F.R., Fortune, J., Iwahashi, M., Bowman, S., Wolkoff, A., and Sutherland, E. 1999. Characterization of the mechanisms involved in the gender differences in hepatic taurocholate uptake. Am. J. Physiol. 276:G556-G565.PubMedGoogle Scholar
  373. Slitt, A.L., Cherrington, N.J., Hartley, D.P., Leazer, T.M., and Klaassen, C.D. 2002. Tissue distribution and renal developmental changes in rat organic cation transporter mRNA levels. Drug Metab. Dispos. 30:212-219.Google Scholar
  374. Smit, J.J., Schinkel, A.H., Oude, R.P., Groen, A.K., Wagenaar, E., van, D.L., Mol, C.A., Ottenhoff, R., van der Lugt, N.M., and van Roon, M.A. 1993. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75(3):451-462.PubMedGoogle Scholar
  375. Soler, C., Felipe, A., Mata, J.F., Casado, F.J., Celada, A., and Pastor-Anglada, M. 1998. Regulation of nucleoside transport by lipopolysaccharide, phobol esters, and tumor necrosis factor-alpha in human B-lymphocytes. J. Biol. Chem. 273:26939-26945.PubMedGoogle Scholar
  376. Soler, A.P., Gilliard, G., Xiong, Y., Knudsen, K.A., Martin, J.L., DeSuarez, G.B., Mota Gamboa, J.D., Mosca, W., and Zoppi, L.B. 2001. Overexpression of neural cell adhesion molecule in Chagas’ myocarditis. Hum. Pathol. 32:149-155.PubMedGoogle Scholar
  377. Song, X., Lorenzi, P.L., Landowski, C.P., Vig, B.S., Hilfinger, J.M., and Amidon, G.L. 2005. Amino acid ester prodrugs of the anticancer agent gemcitabine: synthesis, bioconversion, metabolic bioevasion, and hPEPT1-mediated transport. Mol. Pharm. 2 (2):157-167.PubMedGoogle Scholar
  378. Sorensen, M., Steenberg, B., Knipp, G.T., Wang, W., Steffansen, B., Frokjaer, S., and Borchardt, R.T. 1997. The effect of beta-turn structure on the permeation of pep-tides across monolayers of bovine brain microvessel endothelial cells. Pharm. Res. 14 (10):1341-1348.PubMedGoogle Scholar
  379. Soul-Lawton, J., Seaber, E., On, N., Wootton, R., Rolan, P., and Posner, J. 1995. Absolute bioavailability and metabolic disposition of valaciclovir, the L-valyl ester of aciclovir, following oral administration to humans. Antimicrob. Agents Chemother. 39:2759-2764.PubMedGoogle Scholar
  380. Spahn-Langguth, H., and Langguth, P. 2001. Grapefruit juice enhances intestinal absorp-tion of the P-glycoprotein substrate talinolol. Eur. J. Pharm. Sci. 12(4):361-367.PubMedGoogle Scholar
  381. Stanley, C.A., DeLeeuw, S., Coates, P.M., Vianey-Liaud, C., Divry, P., Bonnefont, J.P., Saudubray, J.M., Haymond, M., Trefz, F.K., Breningstall, G.N., Wappner, R.S., Byrd, D.J., Sansaricq, C., Tein, I., Grover, W., Valle, D., Rutledge, S.L., and Treem, W.R. 1991. Chronic cardiomyopathy and weakness or acute coma. Ann. Neurol. 30 (5):709-716.PubMedGoogle Scholar
  382. Staud, F., and Pavek, P. 2005. Breast cancer resistance protein (BCRP/ABCG2). Int. J. Biochem. Cell. Biol. 37(4):720-725.PubMedGoogle Scholar
  383. Staudinger, J.L., Goodwin, B., Jones, S.A., Hawkins-Brown, D., MacKenzie, K.I., LaTour, A., Liu, Y., Klaassen, C.D., Brown, K.K., Reinhard, J., Willson, T.M., Koller, B.H., and Kliewe, S.A. 2001. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl Acad. Sci. USA 98:3369-3374.PubMedGoogle Scholar
  384. Steffansen, B., Nielsen, C.U., Brodin, B., Eriksson, A.H., Andersen, R., and Frokjaer, S. 2004. Intestinal solute carriers: an overview of trends and strategies for improving oral drug absorption. Eur. J. Pharm. Sci. 21:3-16.PubMedGoogle Scholar
  385. Steffansen, B., Nielsen, C.U., and Frokjaer, S. 2005. Delivery aspects of small peptides and substrates for peptide transporters. Eur. J. Pharm. Biopharm. 60(2):241-245.PubMedGoogle Scholar
  386. Steiner, H.Y., Naider, F., and Becker, J.M. 1995. The PTR family: a new group of peptide transporters. Mol. Microbiol. 16:825-834.PubMedGoogle Scholar
  387. Steingrimsdottir, H., Gruber, A., Palm, C., Grimfors, G., Kalin, M., and Eksborg, S. 2000. Bioavailability of aciclovir after oral administration of aciclovir and its prodrug valaci-clovir to patients with leukopenia after chemotherapy. Antimicrob. Agents Chemother. 44 (1):207-209.PubMedGoogle Scholar
  388. Stewart, B.H., Chan, O.H., Jezyk, N., and Fleisher, D. 1997. Discrimination between drug candidates using models for evaluation of intestinal absorption. Adv. Drug Deliv. Rev. 23 (1):27-45.Google Scholar
  389. Strausberg, R.L., Feingold, E.A., Grouse, L.H., Derge, J.G., Klausner, R.D., Collins, F.S., Wagner, L., Shenmen, C.M., Schuler, G.D., Altschul, S.F., Zeeberg, B., Buetow, K.H., Schaefer, C.F., Bhat, N.K., Hopkins, R.F., Jordan, H., Moore, T., Max, S.I., Wang, J., Hsieh, F., Diatchenko, L., Marusina, K., Farmer, A.A., Rubin, G.M., Hong, L., Stapleton, M., Soares, M.B., Bonaldo, M.F., Casavant, T.L., Scheetz, T.E., Brownstein, M.J., Usdin, T.B., Toshiyuki, S., Carninci, P., Prange, C., Raha, S.S., Loquellano, N.A., Peters, G.J., Abramson, R.D., Mullahy, S.J., Bosak, S.A., McEwan, P.J., McKernan, K.J., Malek, J.A., Gunaratne, P.H., Richards, S., Worley, K.C., Hale, S., Garcia, A.M., Gay, L.J., Hulyk, S.W., Villalon, D.K., Muzny, D.M., Sodergren, .J., Lu, X., Gibbs, R.A., Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodrigues, S., Sanchez, A., Whiting, M., Young, A.C., Shevchenko, Y., Bouffard, G.G., Blakesley, R.W., Touchman, J.W., Green, E.D., Dickson, M.C., Rodriguez, A.C., Grimwood, J., Schmutz, J., Myers, R.M., Butterfield, Y.S., Krzywinski, M.I., Skalska, U., Smailus, D.E., Schnerch, A., Schein, J.E., Jones, S.J., and Marra, M.A. (2002). Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl Acad. Sci. USA 99(26):16899-16903.PubMedGoogle Scholar
  390. Sugawara, I., Kataoka, I., Morishita, Y., Hamada, H., Tsuruo, T., Itoyama, S., and Mori, S. 1988. Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. Cancer Res. 48(7):1926-1929.PubMedGoogle Scholar
  391. Sugawara, M., Huang, W., Fei, Y.J., Leibach, F.H., Ganapathy, V., and Ganapathy, M.E. 2000. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J. Pharm. Sci. 89(6):781-789.PubMedGoogle Scholar
  392. Sun, D., Landowski, C.P., Chu, X., Wallsten, R., Fleisher, D., and Amidon, G.L. 2001. Drug inhibition of Gly-Sar uptake and hPepT1 localization using hPepT1-GFP fusion protein. AAPS PharmSci 3:Article 2.Google Scholar
  393. Sun, D., Yu, L.X., Hussain, M.A., Wall, D.A., Smith, R.L., and Amidon, G.L. 2004. In vitro testing of drug absorption for drug ‘developability’ assessment: forming an inter-face between in vitro preclinical data and clinical outcome. Curr. Opin. Drug Discov. Devel. 7(1):75-85.PubMedGoogle Scholar
  394. Sundaram, M., Yao, S.Y., Ng, A.M., Cass, C.E., Baldwin, S.A., and Young, J.D. 2001. Equilibrative nucleoside transporters: mapping regions of interaction for the substrate analogue nitrobenzylthioinosine (NBMPR) using rat chimeric proteins. Biochemistry 40 (27):8146-8151.PubMedGoogle Scholar
  395. Suzuki, H., and Sugiyama, Y. 1998. Excretion of GSSG and glutathione conjugates mediated by MRP1 and cMOAT/MRP2. Semin. Liver Dis. 18(4):359-376.PubMedGoogle Scholar
  396. Suzuki, H., and Sugiyama, Y. 1999. Transporters for bile acids and organic anions. Pharm. Biotechnol. 12:387-439.PubMedGoogle Scholar
  397. Swaan, P.W., and Tukker, J.J. 1997. Molecular determinants of recognition for the intesti-nal peptide carrier. J. Pharm. Sci. 86:596-602.PubMedGoogle Scholar
  398. Taipalensuu, J., Tornblom, H., Lindberg, G., Einarsson, C., Sjoqvist, F., Melhus, H., Garberg, P., Sjostrom, B., Lundgren, B., and Artursson, P. 2001. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Ther. 299:164-170.PubMedGoogle Scholar
  399. Takahashi, K., Masuda, S., Nakamura, N., Saito, H., Futami, T., Doi, T., and Inui, K.-I. 2001. Upregulation of the H+-peptide cotransporter PepT2 in rat remnant kidney. Am. J. Physiol. Renal Physiol. 281:F1109-F1116.PubMedGoogle Scholar
  400. Tamai, I., Yabuuchi, H., Nezu, J., Sai, Y., Oku, A., Shimane, M., and Tsuji, A. 1997. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 419:107-111.PubMedGoogle Scholar
  401. Tamai, I., Ohashi, R., Nezu, J.I., Yabuuchi, H., Oku, A., Shimane, M., Sai, Y., and Tsuji, A. 1998. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 273:20378-20382.PubMedGoogle Scholar
  402. Tamai, I., Nezu, J., Uchino, H., Sai, Y., Oku, A., Shimane, M., and Tsuji, A. 2000a. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun. 273:251-260.PubMedGoogle Scholar
  403. Tamai, I., Ohashi, R., Nezu, J.I., Sai, Y., Kobayashi, D., Oku, A., Shimane, M., and Tsuji, A. (2000b). Molecular and functional characterization of organic cation/carnitine transporter family in mice. J. Biol. Chem. 275:40064-40072.PubMedGoogle Scholar
  404. Tamai, I., China, K., Sai, Y., Kobayashi, D., Nezu, J.I., Kawahara, E., and Tsuji, A. 2001. Na(+)-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. Biochim. Biophys. Acta 1512:273-284.PubMedGoogle Scholar
  405. Tanaka, H., Miyamoto, K.-I., Morita, K., Haga, H., Segawa, H., Shiraga, T., Fujioka, A., Kouda, T., Taketani, Y., Hisano, S., Fukiji, Y., Kitagawa, K., and Takeda, E. 1998. Regulation of the PepT1 peptide transporter in the rat small intestine in response to 5-fluorouracil-induced injury. Gastroenterology 114:714-723.PubMedGoogle Scholar
  406. Tanaka, T., Uchiumi, T., Hinoshita, E., Inokuchi, A., Toh, S., Wada, M., Takano, H., Kohno, K., and Kuwano, M. 1999. The human multidrug resistance protein 2 gene: functional characterization of the 5-flanking region and expression in hepatic cells. Hepatology 30:1507-1712.PubMedGoogle Scholar
  407. Tein, I. 2003. Carnitine transport: pathophysiology and metabolism of known molecular defects. J. Inherit. Metab. Dis. 26:147-169.PubMedGoogle Scholar
  408. Tein, I., De Vivo, D.C., Bierman, F., Pulver, P., De Meirleir, L.J., Cvitanovic-Sojat, L., Pagon, R.A., Bertini, E., Dionisi-Vici, C., Servidei, S., and DiMauro, S. 1990. Impaired skin fibroblast carnitine uptake in primary systemic carnitine deficiency manifested by childhood carnitine-responsive cardiomyopathy. Pediatr. Res. 28:247-255.PubMedGoogle Scholar
  409. Temple, C.S., Bronk, J.K., Bailey, P.D., and Boyd, C.A. 1995. Substrate charge dependence of stoichiometry shows membrane potential is driving force for proton-peptide cotransport in rat renal cortex. Pflugers Arch. Eur. J. Physiol. 430:825-829.Google Scholar
  410. Temple, C.S., Bailey, P.D., Bronk, J.R., and Boyd, C.A.R. 1996. A model for the kinetics of neutral and anionic dipeptide-proton cotransport by the apical membrane of rat kidney cortex. J. Physiol. 494(Pt 3):795-808.PubMedGoogle Scholar
  411. Terada, T., Sawada, K., Saito, H., Hashimoto, Y., and Inui, K.-I. 1999. Functional charac-teristics of basolateral peptide transporter in the human intestinal cell line Caco-2. Am. J. Physiol. 276:G1435-G1441.PubMedGoogle Scholar
  412. Terada, T., Saito, H., Sawada, K., Hashimoto, Y., and Inui, K.-I. 2000a. N-terminal halves of rat H+/peptide transporters are responsible for their substrate recognition. Pharm. Res. 17:15-20.PubMedGoogle Scholar
  413. Terada, T., Sawada, K., Tatsuya, I., Saito, H., Hashimoto, Y., and Inui, K.-I. 2000b. Functional expression of novel peptide transporter in renal basolateral membranes. Am. J. Physiol. Renal. Physiol. 279:F851-F857.PubMedGoogle Scholar
  414. Terao, T., Hisanaga, E., Sai, Y., Tamai, I., and Tsuji, A. 1996. Active secretion of drugs from the small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier. J. Pharm. Pharmacol. 48(10):1083-1089.PubMedGoogle Scholar
  415. Thamotharan, M., Bawani, S.Z., Zhou, X., and Adibi, S.A. 1998. Mechanism of dipeptide stimulation of its own transport in a human intestinal cell line. Proc. Assoc. Am. Physicians 110:361-368.PubMedGoogle Scholar
  416. Thamotharan, M., Bawani, S.Z., Zhou, X., and Adibi, S.A. 1999a. Functional and molecular expression of intestinal oligopeptide transporter (PepT-1) after a brief fast. Metabolism 48:681-684.PubMedGoogle Scholar
  417. Thamotharan, M., Bawani, S.Z., Zhou, X., and Adibi, S.A. 1999b. Hormonal regulation of oligopeptide transporter pept-1 in a human intestinal cell line. Am J. Physiol. 276:C821-C826.PubMedGoogle Scholar
  418. Theis, S., Doring, F., and Daniel, H. 2001. Expression of the myc/His-tagged human peptide transporter hPepT1 in yeast for protein purification and functional analysis. Protein Exp. Purif. 22:436-442.Google Scholar
  419. Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M.M., Pastan, I., and Willingham, M.C. 1987. Cellular localization of the multidrug resistance gene product P-glycoprotein in normal human tissues. Proc. Natl Acad. Sci. USA 84:7735-7738.PubMedGoogle Scholar
  420. Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M.M., Pastan, I., and Willingham, M.C. 1989. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and cross-reactivity of one antibody with a muscle protein. J. Histochem. Cytochem. 37(2):159-164.PubMedGoogle Scholar
  421. Tian, Q., Zhang, J., Tan, T.M., Chan, E., Duan, W., Chan, S.Y., Boelsterli, U.A., Ho, P.C., Yang, H., Bian, J.S., Huang, M., Zhu, Y.Z., Xiong, W., Li, X., and Zhou, S. (2005). Human multidrug resistance associated protein 4 confers resistance to camptothecins. Pharm. Res. 22(11):1837-1853;PubMedGoogle Scholar
  422. Tirona, R.G., and Kim, R.B. 2002. Pharmacogenomics of organic anion-transporting polypeptides (OATP). Adv. Drug Deliv. Rev. 54:1343-1352.PubMedGoogle Scholar
  423. Tirona, R.G., Leake, B.F., Merino, G., and Kim, R.B. 2001. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J. Biol. Chem. 276:35669-35675.PubMedGoogle Scholar
  424. Torok, M., Gutmann, H., Fricker, G., and Drewe, J. 1999. Sister of P-gp expression in different tissues. Biochem. Pharmacol. 57(7):833-835.PubMedGoogle Scholar
  425. Torok, H.P., Glas, J., Tonenchi, L., Lohse, P., Muller-Myhsok, B., Limbersky, O., Neugebauer, C., Schnitzler, F., Seiderer, J., Tillack, C., Brand, S., Brunnler, G., Jagiello, P., Epplen, J.T., Griga, T., Klein, W., Schiemann, U., Folwaczny, M., Ochsenkuhn, T., and Folwaczny, C. 2005. Polymorphisms in the DLG5 and OCTN cation transporter genes in Crohn’s disease. Gut 54:1421-1427.PubMedGoogle Scholar
  426. Tortora, G.J., and Grabowski., S.R. 1993. Principles of Anatomy and Physiology, Harper Collins College Publishers, New York, p. 768.Google Scholar
  427. Triscari, J., O’Donnell, D., Zinny, M., and Pan, H.Y. 1995. Gastrointestinal absorption of pravastatin in healthy subjects. J. Clin. Pharmacol. 35:142-144.PubMedGoogle Scholar
  428. Trompier, D., Baubichon-Cortay, H., Chang, X.B., Maitrejean, M., Barron, D., Riordon, J.R., and Di Pietro, A. 2003. Multiple flavonoid-binding sites within multidrug resistance protein MRP1. Cell Mol. Life Sci. 60:2164-2177.PubMedGoogle Scholar
  429. Urakami, Y., Nakamura, N., Takahashi, K., Okuda, M., Saito, H., Hashimoto, Y., and Inui, K. 1999. Gender differences in expression of organic cation transporter OCT2 in rat kidney. FEBS Lett. 461(3):339-342.PubMedGoogle Scholar
  430. Urakami, Y., Okuda, M., Saito, H., and Inui, K. 2000. Hormonal regulation of organic cation transporter OCT2 expression in rat kidney. FEBS Lett. 473(2):173-176.PubMedGoogle Scholar
  431. Utoguchi, N., and Audus, L.L. 2000. Carrier-mediated transport of valproic acid in BeWo cells, a human trophoblast cell line. Int. J. Pharm. 195:115-124.PubMedGoogle Scholar
  432. Vaidyanathan, J.B., and Walle, T. 2001. Transport and metabolism of the tea flavonoid (−)-epicatechin by the human intestinal cell line Caco-2. Pharm. Res.18(10): 1420-1425.PubMedGoogle Scholar
  433. Valdes, R., Ortega, M.A., Casado, F.J., Felipe, A., Gil, A., Sanchez-Pozo, A., and Pastor-Anglada, M. 2000. Nutritional regulation of nucleoside transporter expression in rat small intestine. Gastroenterology 119:1623-1630.PubMedGoogle Scholar
  434. Valdes, R., Casado, F.J., and Pastor-Anglada, M. 2002. Cell-cycle-dependent regula-tion of CNT1, a concentrative nucleoside transporter involved in the uptake of cell-cycle-dependent nucleoside-derived anticancer drugs. Biochem. Biophys. Res. Commun. 296:575-579.PubMedGoogle Scholar
  435. Van, L., Pan, Y.X., Bloomquist, J.R., Webb, K.E., Jr., and Wong, E.A. 2005. Developmen-tal regulation of a turkey intestinal peptide transporter (PepT1). Poult. Sci. 84(1):75-82.PubMedGoogle Scholar
  436. Van Aubel, R.A., Hartog, A., Bindels, R.J., Van Os, C.H., and Russel, F.G. 2000. Expres-sion and immunolocalization of multidrug resistance protein 2 in rabbit small intestine. Eur. J. Pharmacol. 400(2-3):195-198.PubMedGoogle Scholar
  437. Van Aubel, R.A., Smeets, P.H., Peters, J.G., Bindels, R.J., and Russel, F.G. 2002. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kid-ney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J. Am. Soc. Nephrol. 13:595-603.PubMedGoogle Scholar
  438. Velpandian, T., Jasuja, R., Bhardwaj, R.K., Jaiswal, J., and Gupta, S.K. 2001. Piperine in food: interference in the pharmacokinetics of phenytoin. Eur. J. Drug Metab. Pharmacokinit. 26:241-247.Google Scholar
  439. Vickers, M.F., Mani, R.S., Sundaram, M., Hogue, D.L., Young, J.D., Baldwin, S.A., and Cass, C.E. 1999. Functional production and reconstitution of the human equilibrative nucleoside transporter (hENT1) in Saccharomyces cerevisiae. Interaction of inhibitors of nucleoside transport with recombinant hENT1 and a glycosylation-defective derivative (hENT1/N48Q). Biochem. J. 339(1):21-32.PubMedGoogle Scholar
  440. Vickers, M.F., Kumar, R., Visser, F., Zhang, J., Charania, J., Raborn, R.T., Baldwin, S.A., Young, J.D., and Cass, C.E. 2002. Comparison of the interaction of uridine, cytidine, and other pyrimidine nucleoside analogs with recombinant human equilibrative nucleo-side transporter 2 (hENT2) produced in Saccharomyces cerevisiae. Biochem. Cell. Biol. 80 (5):639-644.PubMedGoogle Scholar
  441. Vig, B.S., Lorenzi, P.J., Mittal, S., Landowski, C.P., Shin, H.C., Mosberg, H.I., Hilfinger, J.M., and Amidon, G.L. 2003. Amino acid ester prodrugs of floxuridine: synthesis and effects of structure, stereochemistry, and site of esterification on the rate of hydrolysis. Pharm. Res. 20(9):1381-1388.PubMedGoogle Scholar
  442. Vijayalakshmi, D., and Belt, J.A. 1988. Sodium-dependent nucleoside transport in mouse intestinal epithelial cells. Two transport systems with differing substrate specificities. J. Biol. Chem. 263:19419-19423.PubMedGoogle Scholar
  443. Visser, F., Vickers, M.F., Ng, A.M., Baldwin, S.A., Young, J.D., and Cass, C.E. 2002. Mutation of residue 33 of human equilibrative nucleoside transporters 1 and 2 alters sen-sitivity to inhibition of transport by dilazep and dipyridamole. J. Biol. Chem. 277:395-401.PubMedGoogle Scholar
  444. Wagner, C.A., L ükewille, U., Kaltenbach, S., Moschen, I., Broer, A., Risler, T., Broer, S., and Lang, F. 2000. Functional and pharmacological characterization of the human Na+/carnitine cotransporter hOCTN2. Am. J. Physiol. Renal. Physiol. 279:F584-F591.PubMedGoogle Scholar
  445. Walker, D., Thwaites, D.T., Simmons, N.L., Gilbert, H.J., and Hirst, B.H. 1998. Sub-strate upregulation of the human small intestinal peptide transporter, hPepT1. J. Physiol. 507:697-706.PubMedGoogle Scholar
  446. Walters, H.C., Craddock, A.L., Fusegawa, H., Willingham, M.C., and Dawson, P.A. 2000. Expression, transport properties, and chromosomal location of organic anion transporter subtype 3. Am. J. Physiol. Gastrointest. Liver Physiol. 279:G1188-G1200.PubMedGoogle Scholar
  447. Walter-Sack, I., and Klotz, U. 1996. Influence of diet and nutritional status on drug metabolism. Clin. Pharmacokinet. 31(1):47-64.PubMedGoogle Scholar
  448. Wang, J., and Giacomini, K.M. 1999. Serine 318 is essential for the pyrimidine selectivity of the N2 Na+-nucleoside transporter. J. Biol. Chem. 274:2298-2302.PubMedGoogle Scholar
  449. Wang, J., Su, S.F., Dresser, M.J., Schaner, M.E., Wahington, C.B., and Giacomini, K.M. 1997. Na+-dependent purine nucleoside transporter from human kidney: cloning and functional characterization. Am. J. Physiol. 273:F1058-F1065.PubMedGoogle Scholar
  450. Wang, D.S., Jonker, J.W., Kato, Y., Kusuhara, H., Schinkel, A.H., and Sugiyama, Y. 2002. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J. Pharmacol. Exp. Ther. 302:510-515.PubMedGoogle Scholar
  451. Wang, D.S., Kusuhara, H., Kato, Y., Jonker, J.W., Schinkel, A.H., and Sugiyama, Y. 2003. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol. Pharmacol. 63:844-888.PubMedGoogle Scholar
  452. Wang, Q., Bhardwaj, R.K., Herrera-Ruiz, D., Hanna, N.N., Gudmundsson, O.S., Buranachokpaisan, T., Hidalgo, I.J., and Knipp, G.T. 2004. Expression of multiple drug resistance conferring proteins in normal Chinese and Caucasian small and large intestinal tissue samples. Mol. Pharm. 1(6):447-454.PubMedGoogle Scholar
  453. Ward, J.L., Leung, G.P.H., Toan, S.V., and Tse, C.M. 2003. Functional analysis of sitedirected glycosylation mutants of the human equilibrative nucleoside transporter-2. Arch. Biochem. Biophys. 411(1):19-26.PubMedGoogle Scholar
  454. Watanabe, K., Sawano, T., Jinriki, T., and Sato, J. 2004. Studies on intestinal absorption of sulpiride (3): intestinal absorption of sulpiride in rats. Biol. Pharm. Bull. 27:77-81.PubMedGoogle Scholar
  455. van de Waterbeemd, H. 2002. High-throughput and in silico techniques in drug meta-bolism and pharmacokinetics. Curr. Opin. Drug Discov. Devel. 5(1):33-43.PubMedGoogle Scholar
  456. Watkins, P.B. 1997. The barrier function of CYP3A4 and P-glycoprotein in the small bowel. Adv. Drug Deliv. Rev. 27:161-170.PubMedGoogle Scholar
  457. Weller, S., Blum, M., Doucette, M., Burnette, T., Cederberg, D.M., de Miranda, P., and Smiley, M.L. 1993. Pharmacokinetics of the aciclovir pro-drug valaciclovir after esca-lating single- and multiple-dose administration to normal volunteers. Clin. Pharmacol. Ther. 54:595-605.PubMedGoogle Scholar
  458. Wenzel, U., Gebert, I., Weintraut, H., Weber, W.M., Clauss, W., and Daniel, H. 1996. Transport characteristics of differently charged cephalosporin antibiotics in oocytes expressing the cloned intestinal peptide transporter PepT1 and in human intestinal Caco-2 cells. J. Pharmacol. Exp. Ther. 277(2):831-839.PubMedGoogle Scholar
  459. Wenzel, U., Diehl, D., Herget, M., Kuntz, S., and Daniel, H. 1999. Regulation of the high-affinity H+/peptide cotransporter in renal LLC-PK1 cells. J. Cell. Physiol. 178:341-348.PubMedGoogle Scholar
  460. Wenzel, U., Kuntz, S., Diestel, S., and Daniel, H. 2002. PepT1-mediated cefixime uptake into human intestinal epithelial cells is increased by Ca2+ channels blockers. Antimicrob. Agents. Chemother. 46:1375-1380.PubMedGoogle Scholar
  461. Wielinga, P.R., Reid, G., Challa, E.E., van der Heijden, I., van Deemter, L., de Haas, M., Mol, C., Kuil, A.J., Groeneveld, E., Schuetz, J.D., Brouwer, C., De Abreu, R.A., Wijnholds, J., Beijnen, J.H., and Borst, P. 2002. Thiopurine metabolism and identi-fication of the thiopurine metabolites transported by MRP4 and MRP5 overexpressed in human embryonic kidney cells. Mol. Pharmacol. 62:1321-1331.PubMedGoogle Scholar
  462. Wijnholds, J., Mol, C.A., van Deemter, L., de Haas, M., Scheffer, G.L., Baas, F., Beijnen, J.H., Scheper, R.J., Hatse, S., De Clercq, E., Balzarini, J., and Borst, P. (2000).Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc. Natl Acad. Sci. USA 97:7476-7481.PubMedGoogle Scholar
  463. Williams, J.B., Rexer, B., Sirripurapu, S., John, S., Goldstein, R., Phillips, J.A., Haley, L.L., Sait, N., Shows, T.B., Smith, C.M., and Gerhard, D.S. 1997. The human HNP36 gene is localized to chromosome 11q13 and produces alternative transcripts that are not mutated in multiple endocrine neoplasia, type 1 (MEN I) syndrome. Genomics 42(2):325-330.PubMedGoogle Scholar
  464. Wu, X., Yuan, G., Brett, C.M., Hui, A.C., and Giacomini, K.M. 1992. Sodium-dependent nucleoside transport in choroids plexus from rabbit. Evidence for a single transporter for purine and pyrimidine nucleosides. J. Biol. Chem. 267:8813-8818.PubMedGoogle Scholar
  465. Wu, X., Prasad, P.D., Leibach, F.H., and Ganapathy, V. (1998). cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem. Biophys. Res. Commun. 246:589-595.PubMedGoogle Scholar
  466. Wu, X., Huang, W., Prasad, P.D., Seth, P., Rajan, D.P., Leibach, F.H., Chen, J., Conway, S.J., and Ganapathy, V. 1999. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J. Pharmacol. Exp. Ther. 290:1482-1492.PubMedGoogle Scholar
  467. Wu, X., George, R.L., Huang, W., Wang, H., Conway, S.J., Leibach, F.H., and Ganapathy, V. 2000a. Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim. Biophys. Acta 1466:315-327.PubMedGoogle Scholar
  468. Wu, X., Huang, W., Ganapathy, M.E., Wang, H., Kekuda, R., Conway, S.J., Leibach, F.H., and Ganapathy, V. 2000b. Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. Am. J. Physiol. Renal. Physiol 279:F449-F458.PubMedGoogle Scholar
  469. Wu, X.C., Whitfield, L.R., and Stewart, B.H. 2000c. Atorvastatin transport in the Caco- 2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid cotransporter. Pharm. Res. 17:209-215.PubMedGoogle Scholar
  470. Xia, C.Q., Liu, N., Yang, D., Miwa, G., and Gan, L.S. 2005. Expression, localization, and functional characteristics of breast cancer resistance protein in Caco-2 cells. Drug Metab. Dispos. 33(5):637-643.PubMedGoogle Scholar
  471. Xie, W., Radominska-Pandya, A., Shi, Y., Simon, C.M., Nelson, M.C., Ong, E.S., Waxman, D.J., and Evans, R.M. 2001. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc. Natl Acad. Sci. USA 98:3375-3380.PubMedGoogle Scholar
  472. Xu, J., Liu, Y., Yang, Y., Bates, S., and Zhang, J.T. 2004. Characterization of oligomeric human half-ABC transporter ATP-binding cassette G2. J. Biol. Chem. 279:19781-19789.PubMedGoogle Scholar
  473. Yabuuchi, H., Shimizu, H., Takayanagi, S., and Ishikawa, T. 2001. Multiple splicing variants of two new human ATP-binding cassette transporters, ABCC11 and ABCC12. Biochem. Biophys. Res. Commun. 288(4):933-999.PubMedGoogle Scholar
  474. Yamashita, T., Shimada, S., Guo, W., Sato, K., Kohmura, E., Hayakawa, T., Takagi, T., and Tohyama, M. 1997. Cloning and functional expression of a brain peptide/histidine transporter. J. Biol. Chem. 272:10205-10211.PubMedGoogle Scholar
  475. Yang, C.Y. (1998). Studies on the human intestinal di-/tripeptide transporter HPT-1 as a potential carrier for orally administered drugs. Thesis, Purdue University.Google Scholar
  476. Yang, C.Y., Dantzing, A.H., and Pidgeon, C. (1999). Intestinal peptide transport of systems and oral drug availability. Pharm. Res. 16:1331-1343.PubMedGoogle Scholar
  477. Yao, S.Y., Ng, A.M., Muzyka, W.R., Griffiths, M., Cass, C.E., Baldwin, S.A., and Young, J.D. 1997. Molecular cloning and functional characterization of nitrobenzylth-ioinosine (NBMPR)-sensitive (es) and NBMPR-insensitive (ei) equilibrative nucleoside transporter proteins (rENT1 and rENT2) from rat tissues. J. Biol. Chem. 272(45):28423-28430.PubMedGoogle Scholar
  478. Yao, S.Y., Ng, A.M., Sundaram, M., Cass, C.E., Baldwin, S.A., and Young, J.D. 2001a. Transport of antiviral 3 -deoxy-nucloside drugs by recombinant human and rat equi-librative, nitriobenzylthioinosine (NBMPR)-insensitive (ENT2) nucleoside transporter proteins produced in Xenopus oocytes. Mol. Membr. Biol. 18:161-167.PubMedGoogle Scholar
  479. Yao, S.Y., Sundaram, M., Chomey, E.G., Cass, E.E., Baldwin, S.A., and Young, J.D. 2001b. Identification of Cys140 in helix 4 as an exofacial cysteine residue within the substrate-translocation channel of rat equilibrative nitrobenzylthioinosine (NBMPR)-insensitive nucleoside transporter rENT2. Biochem. J. 353(Pt 2):387-393.PubMedGoogle Scholar
  480. Yao, W.Y., Ng, A.M., Vickers, M.F., Sundaram, M., Cass, C.E., Baldwin, S.A., and Young, J.D. (2002). Functional and molecular characterization of nucleobase transport by recombinant human and rat equilibrative nucleoside transporters 1 and 2. Chimeric. constructs reveal a role for the ENT2 helix 5-6 region in nucleobase translocation. J. Biol. Chem. 277:24938-24948.Google Scholar
  481. Yeung, A.K., Basu, S.K., Wu, S., Chu, C., Okamoto, C.T., Hamm-Alvarez, S., von Grafenstein, H., Shen, W.C., Kim, K.J., Bolger, M.B., Haworth, I.S., Ann, D., and Lee,V.H. 1998. Molecular identification of a role for tyrosine 167 in the function of the human intestinal proton-coupled dipeptide transporter (hPepT1). Biochem. Biophys. Res. Commun. 250:103-107.PubMedGoogle Scholar
  482. Yoon, H., Fanelli, A., Grollman, E.F., and Philp, N.J. 1997. Identification of a unique monocaroxylate transporter (MCT3) in retinal pigment epithelium. Biochem. Biophys. Res. Commun. 234:90-94.PubMedGoogle Scholar
  483. You, G. 2004. The role of organic ion transporters in drug disposition: an update. Curr. Drug Metab. 5:55-62.PubMedGoogle Scholar
  484. Zelcer, N., Saeki, T., Reid, G., Beijnen, J.H., and Borst, P. 2001. Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J. Biol. Chem. 276:46400-46407.PubMedGoogle Scholar
  485. Zelcer, N., Reid, G., Wielinga, P., Kuil, A., van der Heijden, I., Schuetz, J.D., and Borst, P. 2003. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem. J. 371(Pt 2):361-367.PubMedGoogle Scholar
  486. Zeng, H., Liu, G., Rea, P.A., and Kruh, G.D. 2000. Transport of amphipathic anions by human multidrug resistance protein 3. Cancer Res. 60(17):4779-4784.PubMedGoogle Scholar
  487. Zhang, L., Dresser, M.J., Chun, J.K., Babbitt, P.C., and Giacomini, K.M. 1997a. Cloning and functional characterization of a rat renal organic cation transporter isoform (rOCT1A). J. Biol. Chem. 272:16548-16554.PubMedGoogle Scholar
  488. Zhang, L., Dresser, M.J., Gray, A.T., Yost, S.C., Terashita, S., and Giacomini, K.M. 1997b. Cloning and functional expression of a human liver organic cation transporter. Mol. Pharmacol. 51:913-921.PubMedGoogle Scholar
  489. Zhang, L., Schaner, M.E., and Giacomini, K.M. 1998. Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J. Pharmacol. Exp. Ther. 286:354-361.PubMedGoogle Scholar
  490. Zhang, Y., Han, H., Elmquist, W.F., and Miller, D.W. 2000. Expression of various mul-tidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain. Res. 876:148-153.PubMedGoogle Scholar
  491. Zhang, E.Y., Knipp, G.T., Ekins, S., and Swaan, P.W. 2002a. Structural biology and function of solute transporters: implications for identifying and designing substrates. Drug Metab. Rev. 34(4):709-750.PubMedGoogle Scholar
  492. Zhang, E.Y., Mitch, A.P., Cheng, C., Ekis, S., and Swaan, P.W. 2002b. Modeling of active transport systems. Adv. Drug Del. Rev. 54:329-354.Google Scholar
  493. Zhang, E.Y., Fu, D.J., Pak, Y.A., Stewart, T., Mukhopadhyay, N., Wrighton, S.A., and Hillgren, K.M. 2004. Genetic polymorphisms in human proton-dependent dipeptide transporter PEPT1: implications for the functional role of Pro586. J. Pharmacol. Exp. Ther. 310(2):437-445.PubMedGoogle Scholar
  494. Zhao, C., Wilson, M.C., Schuit, F., Halestrap, A.P., and Butter, G.A. 2001. Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas. Diabetes 50:361-366.PubMedGoogle Scholar
  495. Zhou, X., Thamotharan, M., Gangopadhyay, A., Serdikoff, C., and Adibi, S.A. 2000. Characterization of an oligopeptide transporter in renal lysosomes. Biochim. Biophys. Acta 1466:372-378.PubMedGoogle Scholar
  496. Ziegler, T.R., Fernandez-Estivariz, C., Gu, L.H., Bazargan, N., Umeakunne, K., Wallace, T.M., Diaz, E.E., Rosado, K.E., Pascal, R.R., Galloway, J.R., Wilcox, J.N., and Leader, L.M. 2002. Distribution of the H+/peptide transporter PepT1 in human intestine: up-regulated expression in the colonic mucosa of patients with short-bowel syndrome. Am. J. Clin. Nutr. 75:922-930.PubMedGoogle Scholar
  497. Zimmermann, C., Gutmann, H., Hruz, P., Gutzwiller, J.P., Beglinger, C., and Drewe, J. 2005. Mapping of multidrug resistance gene 1 and multidrug resistance-associated pro-tein isoform 1 to 5 mRNA expression along the human intestinal tract. Drug Metab. Dispos. 33(2):219-224.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rajinder K. Bhardwaj
    • 1
  • Dea R. Herrera-Ruiz
    • 2
  • Yan Xu
    • 1
  • Stephen M. Carl
    • 1
  • Thomas J. Cook
    • 1
  • Nicholi Vorsa
    • 1
  • Gregory T. Knipp
    • 1
  1. 1.Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayUSA
  2. 2.Facultad de FarmaciaUniversidad Autónoma del Estado de MorelosMéxico

Personalised recommendations