Excipients or auxiliary materials are used to formulate a delivery system for a drug to achieve optimal therapeutic effects. They should be able to deliver the drug at the right place at the right time and with the right dose with the optimal delivery characteristics. Basically, an excipient has to fulfill the same safety profile as a drug with the exception that it should not exert a therapeutic effect. Most excipients do comply with these requirements and do have the GRAS (generally regarded as safe, a system used by the US FDA) status when used in those amounts which are normally used to fabricate a drug delivery system.


Tight Junction Ethylene Diamine Tetraacetic Acid Ethylene Diamine Tetraacetic Acid Peptide Drug Absorption Enhancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Accili, D., Menghi, G., Bonacucina, G., Di Martino, P., and Palmieri, G. F. (2004) Mucoad-hesion dependence of pharmaceutical polymers on mucosa characteristics. Eur. J. Pharm. Sci. 22: 225-234.PubMedGoogle Scholar
  2. Amidon, G. L., Lennern äs, H., Shah, V. P., and Crison, J. R. (1995) A theoretical basis for a biopharmaceutics drug classification. The correlation of in vitro product dissolution and in vivo bioavailability. Pharm. Res. 12: 413-420.PubMedGoogle Scholar
  3. Anderberg, E. K. and Artursson, P. (1992) Epithelial transport of drugs in cell culture. VII. Effects of pharmaceutical surfactant excipients and bile acids on transepithelial perme-ability in monolayers of human intestinal epithelia. J. Pharm. Sci. 81: 879-887.PubMedGoogle Scholar
  4. Artursson, P., Lindmark, T., Davis, S. S., and Illum, L. (1994) Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 11: 1358-1361.PubMedGoogle Scholar
  5. Baldrick, P. (2000) Pharmaceutical excipient development: the need for preclinical guidance. Regul. Toxicol. Pharmacol. 32: 210-218.PubMedGoogle Scholar
  6. Bansil, R., Stanley, E., and LaMont, J. T. (1995) Mucin biophysics. Ann. Rev. Physiol. 57: 635-657.Google Scholar
  7. Barry, B. W. (1983) Percutaneous absorption. In: Barry, B. W. (ed.). Dermatological Prepa-rations, Marcel Dekker, New York, pp. 127-233.Google Scholar
  8. Bernkop-Schn ürch, A. and Hopf, T. E. (2001) Synthesis and in vitro evaluation of chitosanthioglycolic acid conjugates. Sci. Pharm. 69: 109-118.Google Scholar
  9. Bernkop-Schn ürch, A. and Scerbe-Saiko, A. (1998) Synthesis and in vitro evaluation of chitosan-EDTA-protease-inhibitor conjugates which might be useful in oral delivery of peptides and proteins. Pharm. Res. 15: 263-269.Google Scholar
  10. Bernkop-Schn ürch, A. and Steiniger, S. (2000) Synthesis and characterization of mucoadhesive thiolated polymers. Int. J. Pharm. 194: 239-247.Google Scholar
  11. Bernkop-Schn ürch, A., Brandt, U. M., and Clausen, A. E. (1999) Synthesis and in vitro evaluation of chitosan-cysteine conjugates. Sci. Pharm. 67: 196-206.Google Scholar
  12. Bernkop-Schn ürch, A., Scholler, S., and Biebel, R. G. (2000) Development of controlled drug release systems based on thiolated polymers. J. Control. Release 66: 39-48.Google Scholar
  13. Bernkop-Schn ürch, A., Hornof, M., and Zoidl, T. (2003) Thiolated polymers - thiomers: modification of chitosan with 2-iminothiolane. Int. J. Pharm. 260: 229-237.Google Scholar
  14. Bernkop-Schn ürch, A., Hornof, M., and Guggi, D. (2004) Thiolated chitosans. Eur. J. Pharm. Biopharm. 57: 9-17.Google Scholar
  15. Bernkop-Schn ürch, A., Pinter, Y., Guggi, D., Kahlbacher, H., Sch öffmann, G., Schuh, M., Schmerold, I., Del Curto, M. D., D’Antonio, M., Esposito, P., and Huck, C. (2005) The use of thiolated polymers as carrier matrix in oral peptide delivery - proof of concept. J. Control. Release 106: 26-33.Google Scholar
  16. BF Goodrich Company. (2002) Carbopol, Noveon, Nomenclature and Chemistry (product information). Bulletins 3 and 12, USA.Google Scholar
  17. Bhat, P. G., Flanagan, D. R., and Donovan, M. D. (1996) Drug binding to gastric mucus glycoproteins. Int. J. Pharm. 134: 15-25.Google Scholar
  18. Borchardt, G., Lueßen, H. L., de Boer, A. G., Verhoef, J. C., Lehr, C.-M., and Junginger, H. E. (1996) The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III. Effects of chitosan glutamate and carbomer on the epithelial tight junctions in vitro. J. Control. Release 39: 131-138.Google Scholar
  19. Caramella, C., Bonferoni, M. C., Rossi, S., and Ferrari, F. (1994) Rheological and tensile test for the assessment of polymer-mucin interaction. Eur. J. Pharm. Biopharm. 40: 213-217.Google Scholar
  20. Carreno-Gomez, B. and Duncan, R. (1997) Evaluation of the biological properties of solu-ble chitosan and chitosan microspheres. Int. J. Pharm. 148: 231-240.Google Scholar
  21. Chae, S. Y., Jang, M.-K., and Nah, J.-W. (2005) Influence of molecular weight on oral absorption of water soluble chitosans. J. Control. Release 102: 383-394.PubMedGoogle Scholar
  22. Chandy, T. and Sharma, C. P. (1990) Chitosan as a biomaterial. Biomater. Artif. Cells Artif. Organs 18: 1-24.PubMedGoogle Scholar
  23. Chickering III, D. E. and Mathiowitz, E. (1999) Definitions, mechanisms, and theories of bioadhesion. In: Mathiowitz, E., Chickering, D. E., and Lehr, C.-M. (eds.). Bioadhesive Drug Delivery Systems: Fundamentals, Novel Approaches, and Development, Marcel Dekker, New York, pp. 1-10.Google Scholar
  24. Citi, S. (1992) Protein kinase inhibitors prevent junction dissociation induced by low extra-cellular calcium in MDCK epithelial cells. J. Cell Biol. 117: 169-178.PubMedGoogle Scholar
  25. Citi, S. and Denisenko, N. (1995) Phosphorylation of the tight junction protein cingulin and the effects of protein kinase inhibitors as activators in MDCK epithelial cells. J. Cell Sci. 108: 2917-2926.PubMedGoogle Scholar
  26. Clausen, A. E. and Bernkop-Schn ürch, A. (2000) In vitro evaluation of permeation-enhancig effect of thiolated polycarbophil. J. Pharm. Sci. 89: 1253-1261.PubMedGoogle Scholar
  27. Collares, B. C., McEwan, G. T., Jepson, M. A., Simmons, N. L., and Hirst, B. H. (1994) Paracellular barrier and junctional protein distribution depend on basolateral extracellular Ca2 in cultured epithelia. Biochim. Biophys. Acta 1222: 147-158.Google Scholar
  28. Denker, B. M. and Nigam, S. K. (1998) Molecular structure and assembly of the tight junction. Am. J. Physiol. 274: F1-F9.PubMedGoogle Scholar
  29. Derjaguin, B. V., Toporov, Y. P., Muller, V. M., and Aleinikova, I. N. (1977) On the relationship between the electrostatics and the molecular component of the adhesion of elastic particles to a solid surface. J. Colloid Interface Sci. 58: 528-533.Google Scholar
  30. Derjaguin, B. V., Aleinikova, I. N., and Toporow, Y. P. (1994) On the role of the electrostatic forces in the adhesion of polymer particles to solid surfaces. Prog. Surf. Sci. 45: 119-123.Google Scholar
  31. Desai, M. A., Mutlu, M., and Vadgama, P. (1992) A study of macromolecular diffusion through native porcine mucus. Experientia 48: 22-26.PubMedGoogle Scholar
  32. Dodane, V. and Vilivalam, V. D. (1998) Pharmaceutical applications of chitosan. Pharm. Sci. Technol. Today 1: 246-253.Google Scholar
  33. Dodane, V., Khan, A. M., and Merwin, J. R. (1999) Effect of chitosan on epithelial permeability and structure. Int. J. Pharm. 182: 21-32.PubMedGoogle Scholar
  34. Dodou, D., Breedveld, P., and Wieringa, P. A. (2005) Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications. Eur. J. Pharm. Biopharm. 60: 1-6.PubMedGoogle Scholar
  35. Domard, A., Rinaudo, M., and Terrassin, C. (1986) New method for quaternization of chi-tosan. Int. J. Biol. Macromol. 8: 105-107.Google Scholar
  36. Dorkoosh, F. A., Verhoef, J. C., Verheijden, J. H. M., Rafiee-Tehrani, M., Borchardt, G., and Junginger, H. E. (2002) Peroral absorption of octreotide in pigs formulated in delivery systems on the basis of superporous hydrogel polymers. Pharm. Res. 19: 1532-1536.PubMedGoogle Scholar
  37. Dorkoosh, F. A., Stokkel, M. P. M., Blok, D., Borchardt, G., Rafiee-Tehrani, M., Verhoef, J.C., and Junginger, H. E. (2004) Feasibility study on the retention of superporous hydrogel (SPH) composite polymer in the intestinal tract of man using scintigraphy. J. Control. Release 99: 199-206.PubMedGoogle Scholar
  38. Duch êne, D. and Ponchel, G. (1992) Principle and investigation of the bioadhesive mecha-nism of solid dosage forms. Biomaterials 13: 709-714.Google Scholar
  39. Duch êne, D., Touchard, F., and Peppas, N. A. (1988) Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Dev. Ind. Pharm. 14: 283-318.Google Scholar
  40. Duch êne, D., Wouessidjewe, D., and Ponchel, G. (1999) Cyclodextrins as carrier systems. J. Control Release 62: 263-268.Google Scholar
  41. Duffey, M. E. Hainau, B., Ho, S., and Bentzel, C. J. (1981) Regulation of epithelial tight junction permeability by cyclic AMP. Nature 294: 451-453.PubMedGoogle Scholar
  42. Elsenhans, B., Blume, R. R., Lembcke, B., and Caspary, W. F. (1983) Polycations. A new class of inhibitors for in vitro small intestinal transport of sugars and amino acids in the rat. Biochim. Biophys. Acta (BBA) - Biomembranes 727: 135-143.Google Scholar
  43. Fasano, W. (1998) Innovative strategy for the oral delivery of drugs and peptides. Trends Biotechnol 16: 152-157.PubMedGoogle Scholar
  44. Gonzales-Mariscal, L. and Nava, P. (2005) Tight junctions, from tight intercellular seals to sophisticated protein complexes involved in drug delivery, pathogen interaction and cell proliferation. Adv. Drug Deliv. Rev. 57: 811-814.Google Scholar
  45. Good, R. J. and Girrfalco, L. A. (1960) A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data. J. Phys. Chem. 64: 561-565.Google Scholar
  46. Gu, J. M., Robinson, J. R., and Leung, S. H. S. (1988) Binding of acrylic polymers to mucin epithelial surfaces - structure-property relationship. Crit. Rev. Ther. Drug Carrier Syst. 5: 21-67.PubMedGoogle Scholar
  47. Guggi, D. and Bernkop-Schn ürch, A. (2003) In vitro evaluation of polymeric excipients protecting calcitonin against degradation by intestinal serine proteases. Int. J. Pharm. 252: 187-196.PubMedGoogle Scholar
  48. Guggi, D., Kast, C. E., and Bernkop-Schn ürch, A. (2002) In vitro evaluation of an oral calcitonin delivery system for rats based on a thiolated chitosan matrix. Proceed. 11th Int. Pharm. Technol. Symp. pp. 41-42.Google Scholar
  49. Gutowska, A., Berk, J. S., Kwon, I. C., Bae, Y. H., Cha, Y., and Kim, S. W. (1997) Squeez-ing hydrogels for controlled oral drug delivery. J. Control. Release 48: 141-148.Google Scholar
  50. H ägerstr öm, H., Paulsson, M., and Edman, K. (2000) Evaluation of mucoadhesion for two polyelectrolyte gels in simulated physiological conditions using a rheological method. Eur. J. Pharm. Sci. 9: 301-309.Google Scholar
  51. Hayashi, M., Tomita, M., and Awazu, S. (1997) Transcellular and paracellular contribution to transport processes in the colorectal route. Adv. Drug Deliv. Rev. 28: 191-204.Google Scholar
  52. Helfland, E. and Tagami, Y. (1972) Theory of the interface between immiscible polymers. J. Chem. Phys. 57: 1812-1813.Google Scholar
  53. Hirano, S. and Noishiki, Y. (1985) The blood compatibility of chitosan and N-acetylchitosans. J. Biomed. Mater. Res. 19: 413-417.PubMedGoogle Scholar
  54. Hornof, M. D., Kast, C. E., and Bernkop-Schn ürch, A. (2003) In vitro evaluation of the viscoelastic behavior of chitosan-thioglycolic acid conjugates. Eur. J. Pharm. Biopharm. 55: 185-190.PubMedGoogle Scholar
  55. Huang,Y., Leobandung, W., Foss, A., and Peppas, N. A. (2000) Molecular aspects of muco-and bioadhesion: tethered structures and site-specific surfaces. J. Control. Release 65: 63-71.PubMedGoogle Scholar
  56. Illum, L. (1998) Chitosan and its use as a pharmaceutical excipient. Pharm. Res. 15: 1326-1331.PubMedGoogle Scholar
  57. Illum, L., Farraj, N. F., and Davis, S. S. (1994) Chitosan as a novel nasal delivery system for peptide drugs. Pharm. Res. 11: 1186-1189.PubMedGoogle Scholar
  58. Jabbari, E., Wisniewski, N., and Peppas, N. A. (1993) Evidence of mucoadhesion by chain interpenetration at a poly(acrylic acid)/mucin interface using ATR-FTIR spectroscopy. J. Control. Release 26: 99-108.Google Scholar
  59. Junginger, H. E. and Verhoef, J. C. (1998) Macromolecules as safe penetration enhancers for hydrophilic drugs - a fiction? Pharm. Sci. Technol. Today 1: 370-376.Google Scholar
  60. Junginger, H. E., Thanou, M., and Verhoef, J. C. (2002) Mucoadhesive hydrogels in drug delivery. In: Swarbrick, J. (ed.). Encyclopedia of Pharmaceutical Technology, Marcel Dekker, New York, pp. 1848-1863.Google Scholar
  61. Kaelble, D. H. and Moacanin, J. (1977) A surface energy analysis of bioadhesion. Polymer 18: 475-482.Google Scholar
  62. Kast, C. E. and Bernkop-Schn ürch, A. (2001) Thiolated polymers - thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 22: 2345-2352.PubMedGoogle Scholar
  63. Kerec, M., Bogataj, M., Verani, P., and Mrhar, A. (2005) Permeability of pig urinary bladder wall: the effect of chitosan and the role of calcium. Eur. J. Pharm. Sci. 25: 113-121.PubMedGoogle Scholar
  64. Kinloch, A. J. (1979) Interfacial fracture mechanical aspects of adhesive bonded joints -review. J. Adhes. 10: 193-219.Google Scholar
  65. Kinloch, A. J. (1980) The science of adhesion. I. Surface and interfacial aspects. J. Mater. Sci. 15: 2141-2166.Google Scholar
  66. Kotzé , A. F., Lueßen, H. L., de Leeuw, B. J., de Boer, A. G., Verhoef, J. C., and Junginger, H. E. (1997) N -trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: in vitro evaluation in intestinal epithelial cells (Caco-2). Pharm. Res. 14: 1197-1202.PubMedGoogle Scholar
  67. Kotzé , A. F., Lueßen, H. L., de Leeuw, B. J., de Boer, A. G., Verhoef, J. C., and Junginger, H. E. (1998) Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J. Control. Release 51: 35-46.PubMedGoogle Scholar
  68. Kotzé , A. F., Thanou, M. M., Lueßen, H. L., de Boer, A. G., Verhoef, J. C., and Junginger, H. E. (1999) Enhancement of paracellular drug transport with highly quaternized N -trimethyl chitosan chloride in neutral environment: in vitro evaluation in intestinal epithelial cells (Caco-2). J. Pharm. Sci. 88: 253-257.PubMedGoogle Scholar
  69. LeCluise, E. L. and Sutton, S. C. (1997) In vitro models for selection of development candidates. Permeability studies to define mechanisms of absorption enhancement. Adv. Drug Deliv. Rev. 23: 163-183.Google Scholar
  70. Lee, J. W., Park, J. H., and Robinson, J. R. (2000) Bioadhesive-based dosage forms: the next generation. J. Pharm. Sci. 89: 850-866.PubMedGoogle Scholar
  71. Lehr, C.-M., Poelma, F. G. J., Junginger, H. E., and Tukker, J. J. (1991) An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop. Int. J. Pharm. 70: 235-240.Google Scholar
  72. Lehr, C.-M., Bouwstra, J. A., Boddé , H. E., and Junginger, H. E. (1992a) A surface energy analysis of mucoadhesion: contact angle measurements on polycarbophil and pig intesti-nal mucosa in physiologically relevant fluids. Pharm. Res. 9: 70-75.PubMedGoogle Scholar
  73. Lehr, C.-M., Bouwstra, J. A., Kok, W., de Boer, A. G., Tukker, J. J., Verhoef, J. C., Breimer, D. D., and Junginger, H. E. (1992b) Effects of the mucoadhesive polymer polycarbophil on the intestinal absorption of a peptide drug in the rat. J. Pharm. Pharmacol. 44: 402-407.PubMedGoogle Scholar
  74. Lehr, C.-M., Bouwstra, J. A., Spies, F., Onderwater, J., Noordeinde, C., Vermeij-Keers, C., van Munsteren, C. J., and Junginger, H. E (1992c) Visualization studies of the mucoadhesive interface. J. Control. Release 18: 249-260.Google Scholar
  75. Lehr, C.-M., Bouwstra, J. A., Schacht, E. H., and Junginger, H. E. (1992d) In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J. Pharm. 78: 43-48.Google Scholar
  76. Lehr, C.-M., Boddé , H. E., Bouwstra, J. A., and Junginger, H. E. (1993) A surface energy analysis of mucoadhesion - the combined spreading coefficient as a new criterion for adhesion in a three phase (solid-liquid-solid) system. Eur. J. Pharm. Sci. 1: 19-30.Google Scholar
  77. Leitner, V. M., Walker, G. F., and Bernkop-Schn ürch, A. (2003a) Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. Eur. J. Pharm. Biopharm. 56: 207-214.PubMedGoogle Scholar
  78. Leitner, V. M., Marsch ütz, M. K., and Bernkop-Schn ürch, A. (2003b) Mucoadhesive and cohesive properties of poly(acrylic acid)-cysteine conjugates with regard to their molecular mass. Eur. J. Pharm. Sci. 18: 89-96.PubMedGoogle Scholar
  79. Lichtenberger, L. M. (1992) The hydrophobic barrier properties of gastrointestinal mucus. Ann. Rev. Physiol. 57: 565-583.Google Scholar
  80. Lichtenberg, D., Robson, R. J., and Dennis, E. A. (1983). Solubilization of phospholipids by detergents: structural and kinetic aspects. Biochim. Biophys. Acta 737: 285-304.PubMedGoogle Scholar
  81. Lueßen, H.L., Verhoef, J.C., Borchardt, G., Lehr, C.-M., de Boer, A.G., and Junginger, H.E. (1995) Mucoadhesive polymers in peroral drug delivery II. Carbomer and Polycarbophil are potent inhibitors of the intestinal proteolytic enzyme trypsin. Pharm. Res. 12: 1293-1298.PubMedGoogle Scholar
  82. Lueßen, H. L., de Leeuw, B. J., P érard, D., Lehr, C.-M., de Boer, A. G., Verhoef, J. C., and Junginger, H. E. (1996a) Mucoadhesive polymers in peroral drug delivery. I. Influence of mucoadhesive excipients on the proteolytic activity of intestinal enzymes. Eur. J. Pharm. Sci. 4: 117-128.Google Scholar
  83. Lueßen, H. L., Bohner, V., P érard, D., Langguth, P., de Boer, A. G., Merkle, H. P., and Junginger, H. E. (1996b) Mucoadhesive polymers in peroral peptide drug delivery. V. Effect of poly(acrylates) on the enzymatic degradation of peptide drugs by intestinal brush border membrane vesicles. Int. J. Pharm. 141: 39-52.Google Scholar
  84. Lueßen, H. L., de Leeuw, B. J., Langemeijer, M. W. E., de Boer, A. G., Verhoef, J. C., and Junginger, H. E. (1996c) Mucoadhesive polymers in peroral drug delivery. VI. Carbomer and chitosan improve the intestinal absorption of the peptide drug buserelin in vivo. Pharm. Res. 13: 1668-1672.PubMedGoogle Scholar
  85. Lueßen, H. L., Rentel, C.-O., Kotzé, A. F., de Boer, A. G., Verhoef, J. C., and Junginger, H. E. (1997) Mucoadhesive polymers in peroral peptide drug delivery. IV. Polycarbophil and chitosan are potent enhancers of peptide transport across intestinal mucosae in vitro. J. Control. Release 45: 15-23.Google Scholar
  86. Madara, J. L. (1987) Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am. J. Physiol. 253: C171-C175.PubMedGoogle Scholar
  87. Madara, J. L., Barenberg, D., and Carlson, S. (1986) Effects of cytochalasin D on occluding junctions of intestinal absorptive cells - further evidence that the cytoskeleton may influ-ence paracellular permeability and junctional charge activity. J. Cell Biol. 102: 2125-2136.PubMedGoogle Scholar
  88. Madsen, F., Eberth, K., and Smart, J. D. (1998) A rheological examination of the mucoadhesive/mucus interaction: the effect of mucoadhesive type and concentration. J. Control. Release 50: 167-178.PubMedGoogle Scholar
  89. Mannila, J., J ärvinen, T., J ärvinen, K., Tarvainen, M., and Jarho, P. (2005) Effects of RM-β-CD on sublingual bioavailability of 9-tetrahydrocannabinol in rabbits. Eur. J. Pharm. Sci. 26: 71-77.PubMedGoogle Scholar
  90. Marriott, C. and Gregory, N. P. (1990). Mucus physiology and pathology. In: Lenaerts, V. and Gurny. R. (eds.). Bioadhesive Drug Delivery systems, CRC Press, Baco Raton, pp. 1-24.Google Scholar
  91. Martin, G. P., Marriott, C., and Kellaway, I. W. (1978) Direct effect of bile salts and phospholipids on the physical properties of mucus. Gut 19: 1103-1107.Google Scholar
  92. Marttin, E., Romeijn, S. G., Verhoef, J. C., and Merkus, F. W. H. M. (1997) Nasal absorption of dihydroergotamine from liquid and powder formulations in rabbits. J. Pharm. Sci. 86: 802-807.PubMedGoogle Scholar
  93. Mikos, A. G. and Peppas, N. A. (1986) Systems for controlled release of drugs. V. Bioadhesive systems. STP Pharma. 2: 705-716.Google Scholar
  94. Mikos, A. G. and Peppas, N. A. (1989) Measurement of the surface tension of mucin solutions. Int. J. Pharm. 53: 1-5.Google Scholar
  95. Mortazavi, S. A. and Smart, J. D. (1993) An investigation into the role of water movement and mucus gel dehydration in mucoadhesion. J. Control. Release 3: 197-203.Google Scholar
  96. Muzzarelli, R. A. A., Tanfani, F., Emmanueli, S., and Mariotti, S. (1982) N -(carboxymethylidene)-chitosans and N-(carboxymethyl)-chitosans: novel chelating polyampholytes obtained from chitosan glyoxylate. Carbohydr. Res. 107: 199-214.Google Scholar
  97. Palant, C. E., Duffey, M. E., Mookerjee, B. K., Ho, S., and Bentzel, C. J. (1983) Ca2+ regulation of tight-junction permeability and structure in Necturus gallbladder. Am. J. Physiol. Cell Physiol. 245: C203-C212.Google Scholar
  98. Park, H. and Robinson, J. R. (1985) Physico-chemical properties of water insoluble poly-mers important to mucin/epithelial adhesion. J. Control Release 2: 47-57.Google Scholar
  99. Peppas, N. A. and Buri, P. A. (1985) Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J. Control. Release 2: 257-275.Google Scholar
  100. Peppas, N. A. and Huang, Y. (2004). Nanoscale technology of mucoadhesive interactions. Adv. Drug Deliv. Rev. 56: 1675-1687.PubMedGoogle Scholar
  101. Peppas, N. A. and Stahlin, J. J. (1996) Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 17: 1553-1561.PubMedGoogle Scholar
  102. Polli, J. E., Yu, L. X., et al. (2004) Summary workshop report: biopharmaceutics classification system - implementation challenges and extension opportunities. J. Pharm. Sci. 93: 1375-1381.PubMedGoogle Scholar
  103. Polnok, A., Borchardt, G., Verhoef, J. C., Sarisuta, N., and Junginger, H. E. (2004) Influence on methylation process on the degree of quaternization of N -trimethyl chitosan chloride. Eur. J. Pharm. Biopharm. 57: 77-83.PubMedGoogle Scholar
  104. Ponchel, G., Touchard, D., Duch êne, D., and Peppas, N. A. (1987) Bioadhesive analysis of controlled-release systems. I. Fracture and interpenetration analysis in poly(acrylicacid)-containing systems. J. Control. Release 5: 129-141.Google Scholar
  105. Qiu, Y. and Perk, K. (2001) Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53: 321-339.PubMedGoogle Scholar
  106. Rege, B. D., Yu, L. X., Hussain, A. S., and Polli, J. E. (2001) Effect of common excipients on Caco-2 transport of low-permeability drug. J. Pharm. Sci. 90: 1776-1786.PubMedGoogle Scholar
  107. Rege, B. D., Kao, J. P. Y., and Polli, J. E. (2002) Effects of nonionic surfactants on mem-brane transporters in Caco-2 cell monolayers. Eur. J. Pharm. Sci. 16: 237-246.PubMedGoogle Scholar
  108. Roldo, M., Hornof, M., Caliceti, P., and Bernkop-Schn ürch, A. (2004) Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm. 57: 115-121.PubMedGoogle Scholar
  109. Rossi, S., Bonferoni, M. C., Caramella, C., and Colombo, P. (1994) A rheometric method for assessing the sucralfate-mucin interaction. Eur. J. Pharm. Biopharm. 40: 179-182.Google Scholar
  110. Rossi, S., Ferrari, F. Bonferoni, M. C., and Caramella, C. (2000) Charaterization of chitosan hydrochlorde-mucin interactions by means of viscosimetric and turbidimetric measurements. Eur. J. Pharm. Sci. 10: 251-257.PubMedGoogle Scholar
  111. Rossi, S., Ferrari, F., Bonferoni, M. C., and Caramella, C. (2001) Characterization of chitosan hydrochloride-mucin rheological interactions influence of polymer concentration and polymer weight ratio. Eur. J. Pharm. Sci. 12: 479-485.PubMedGoogle Scholar
  112. Sahlin, J. J. and Peppas, N. A. (1996) An investigation of polymer diffusion in hydrogel laminates using near-field FTIR microscopy. Macromolecules 29: 7124-7129.Google Scholar
  113. Schipper, N. G. M., Varum, K. M., and Artursson, P. (1996) Chitosans as absorption enhancers for poorly absorbable drugs. 1. Influence of molecular weight and degree of deacetylation on drug transport across human intestinal epithelial (Caco-2) cells. Pharm. Res. 13: 1686-1692.PubMedGoogle Scholar
  114. Schipper, N. G. M., Olsson, S., Hoogstraate, J. A., de Boer, A. G., Varum, K. M., and Artursson, P. (1997) Chitosans as absorption enhancers for poorly absorbable drugs. 2. Mechanism of absorption enhancement. Pharm. Res. 14: 923-929.PubMedGoogle Scholar
  115. Schipper, N. A., V årum, K. M., Sternberg, P., Ocklind, G., Lennern äs, H., and Artursson, P. (1999) Chitosans as absorption enhancers of poorly absorbable drugs. 3. Influence of mucus on absorption enhancement. Eur. J. Pharm. Sci. 8: 335-343.PubMedGoogle Scholar
  116. Scott Swenson, E. and Curatolo, W. J. (1992). Intestinal permeability enhancement for proteins, peptides and other polar drugs: mechanisms and potential toxicity. Adv. Drug Deliv. Rev. 8: 39-92.Google Scholar
  117. Sieval, A. B., Thanou, M., Kotzé , A. F., Verhoef, J. C., Brussee, J., and Junginger, H. E. (1998) Preparation and NMR-characterization of highly substituted N -trimethyl chitosan hydrochloride. Carbohydr. Polym. 36: 157-165.Google Scholar
  118. Snyman, D., Hamman, J. H., Kotzé , J. S., Rollings, J. E., and Kotzé , A. F. (2002) The relationship between the absolute molecular weight and the degree of quaternization of N -trimethyl chitosan chloride. Carbohydr. Polym. 50: 145-150.Google Scholar
  119. Snyman, D., Hamman, J. H., and Kotzé , A. F. (2003) Evaluation of the mucoadhesive prop-erties of N -trimethyl chitosan chloride. Drug Dev. Ind. Pharm. 29: 59-67.Google Scholar
  120. Solomonidou, D., Cremer, K., Krumme, M., and Kreuter, J. (2001) Effect of carbomer concentration and degree of neutralization on the mucoadhesive properties of polymer films. J. Biomater. Sci. Polym. Ed. 12: 1191-1205.PubMedGoogle Scholar
  121. Strous, G. J. and Dekker, J. (1992) Mucin-type glycoproteins. Crit. Rev. Biochem. Mol. Biol. 27: 57-92.PubMedGoogle Scholar
  122. Suh, J. K. F. and Matthew, H. W. T. (2000) Application of chitosan-based polysaccharide material in cartilage tissue engineering: a review. Biomaterials 21: 2589-2598.PubMedGoogle Scholar
  123. Szejtli, J. (1988) Cyclodextrin Technology, Kluwer Academic Publishers, Boston. Google Scholar
  124. Tamburic, S. and Craig, D. Q. M. (1997) A comparison of different in vitro methods for measuring mucoadhesive performance. Eur. J. Pharm. Biopharm. 44: 159-167.Google Scholar
  125. Thanou, M., Verhoef, J. C., Romeijn, S. G., Nagelkerke, J. F., Merkus, F. W. H. M., and Junginger, H. E. (1999) Effects of N -trimethyl chitosan chloride, a novel absorption enhancer, on Caco-2 intestinal epithelia and the ciliary beat frequency of chicken embryo trachea. Int. J. Pharm. 185: 73-82.PubMedGoogle Scholar
  126. Thanou, M. (2000) Chitosan derivatives in drug delivery. Trimethylated and carboxymethylated chitosan as safe enhancers for the intestinal absorption of hydrophilic drugs, PhD Thesis, Leiden University, Leiden, pp. 91-108.Google Scholar
  127. Thanou, M. M., Kotzé , A. F., Scharringhausen, T., Lueßen, H. L., de Boer, A. G., Verhoef, J. C., and Junginger, H. E. (2000a). Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J. Control. Release 64: 15-25.PubMedGoogle Scholar
  128. Thanou, M., Florea, B. I., Langemeijer, M. W. E., Verhoef, J. C., and Junginger, H. E. (2000b) N -trimethylated chitosan chloride (TMC) improves the intestinal permeation of the peptide drug buserelin in vitro (Caco-2 cells) and in vivo (rats). Pharm. Res. 17: 27-31.PubMedGoogle Scholar
  129. Thanou, M., Verhoef, J. C., Marbach, P., and Junginger, H. E. (2000c) N -trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J. Pharm. Sci. 89: 951-957.PubMedGoogle Scholar
  130. Thanou, M., Verhoef, J. C., Verheijden, J. H. M., and Junginger, H. E. (2001a) Intestinal absorption of octreotide using trimethyl chitosan chloride: studies in pigs. Pharm. Res. 18: 823-828.PubMedGoogle Scholar
  131. Thanou, M., Verhoef, J. C., Nihot, M. T., Veheijden, J. H. M., and Junginger, H. E. (2001b) Enhancement of the intestinal absorption of low molecular weight heparin (LMWH) in rats and pigs using carbopol 934P. Pharm. Res. 18: 1638-1641.PubMedGoogle Scholar
  132. Thanou, M., Verhoef, J. C., and Junginger, H. E. (2001c) Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev. 52: 117-126.PubMedGoogle Scholar
  133. Thanou, M., Nihot, M. T., Jansen, M., Verhoef, J. C., and Junginger, H. E. (2001d) Mono-N -caboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J. Pharm. Sci. 90: 38-46.PubMedGoogle Scholar
  134. Uekama, K., Fujinaga, T., Hirayama, F., Otagiri, M., and Yamasaki, M. (1982) Inclusion complexations of steroid hormones with cyclodextrins in water and in solid phase. Int. J. Pharm. 10: 1-15.Google Scholar
  135. Van der Merwe, S. M., Verhoef, J. C., Verheijden, J. H. M., Kotzé , A. F., and Junginger, H. E. (2004a) Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur. J. Pharm. Biopharm. 58: 225-235.PubMedGoogle Scholar
  136. Van der Merwe, S. M., Verhoef, J. C., Kotzé , A. F., and Junginger, H. E. (2004b) N-Trimethyl chitosan chloride as absorption enhancer in oral peptide drug delivery. Development and characterization of minitablet and granule formulations. Eur. J. Pharm. Biopharm. 57: 85-91.PubMedGoogle Scholar
  137. Verhoef, J. C., Schipper, N. G. M., Romeijn, S. G., and Merkus, F. W. H. M. (1994) The potential of cyclodextrins as absorption enhancers in nasal delivery of peptide drugs. J. Control. Release 29: 35-360.Google Scholar
  138. Voyutskii, S. S. (1963) Autoadhesion and Adhesion of High Polymers, Wiley, New York.Google Scholar
  139. Wool, R. P. (1995) Polymer Interfaces: Structure and Strength, Hanser Publishing, Munich.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hans E. Junginger
    • 1
  1. 1.Faculty of Pharmaceutical SciencesNaresuan UniversityThailand

Personalised recommendations