Skip to main content

Evaluation of Permeability and P-glycoprotein Interactions: Industry Outlook

  • Chapter

New drug discovery and development is becoming an increasingly risky and costly endeavor.A recent report has tagged the final price of bringing a drug to the market at greater than a billion US dollars with an estimated research time running into multiple years (2004). Despite the considerable investment in terms of finance and resources, the number of drug approvals per year have held steady for the last few years. The advent of combinatorial chemistry, automation, and high-throughput screening (HTS) has afforded the opportunity to test thousands of compounds, but the success rate of progressing from initial clinical testing to final approval has remained disappointingly low. Greater than 90% of the compounds entering Phase-I clinical testing fail to reach the patients and as high as 50% entering Phase-III do not make the cut (Kola and Landis, 2004).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi Y, Suzuki H and Sugiyama Y (2001) Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-gp. Pharmaceutical Research 18:1660-1668.

    Article  PubMed  Google Scholar 

  • Anderle P, Huang Y and Sadee W (2004) Intestinal membrane transport of drugs and nutri-ents: genomic membrane transporters using expression microarray. European Journal of Pharmaceutical Sciences 21:17-24.

    Article  PubMed  Google Scholar 

  • Ano R, Kimura Y, Shima M, Matsuno R, Ueno T and Akamatsu M (2004) Relationship between structure and high-throughput screening permeability of papetide derivatives and related compounds with artificial membranes: application to prediction of Caco-2 cell permeability. Bioorganic & Medicinal Chemistry 12:257-264.

    Article  Google Scholar 

  • Arturrson P (1991) Cell cultures as models for drug absorption across the intestinal mucosa. Critical Reviews in Therapeutic Drug Carrier Systems 8:305-330.

    Google Scholar 

  • Artursson P and Borchardt R (1997) Intestinal drug absorption and metabolism in cell cul-tures: Caco-2 and beyond. Pharmaceutical Research 14:1655-1658.

    Article  PubMed  Google Scholar 

  • Artursson P and Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelia (Caco-2) cells. Biochemical and Biophysical Research Communications 175:880-890.

    Article  PubMed  Google Scholar 

  • Artursson P, Palm K and Luthman K (1996) Caco-2 monolayers in experimental and theo-retical predictions of drug transport. Advanced Drug Delivery Reviews 22:67-84.

    Article  Google Scholar 

  • Aungst B, Nguyen N, Bulgarelli J and Oates-Lenz K (2000) The influence of donor and reservoir additives on Caco-2 permeability and secretory transport of HIV protease inhibitors and other lipophilic compounds. Pharmaceutical Research 17:1175-1180.

    Article  PubMed  Google Scholar 

  • Avdeef A (2001) Physicochemical profiling (solubility, permeability and charge state). Cur-rent Topics in Medicinal Chemistry 1:277-351.

    Article  Google Scholar 

  • Balimane PV and Chong S (2005a) Cell culture-based models for intestinal permeability: a critique. Drug Discovery Today 10:335-343.

    Article  PubMed  Google Scholar 

  • Balimane PV and Chong S (2005b) A combined cell based approach to identify P-glycoprotein substrates and inhibitors in a single assay. International Journal of Pharmaceutics 301:80-88.

    Article  PubMed  Google Scholar 

  • Balimane PV, Chong S and Morrison RA (2000) Current methodologies used for evaluation of intestinal permeability and absorption. Journal of Pharmacological and Toxicological Methods 44:301-312.

    Article  PubMed  Google Scholar 

  • Balimane PV, Han YH and Chong S (2006) Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPSJ 8:E1-13.

    Article  PubMed  Google Scholar 

  • Behrens I, Kamm W, Dantzig A and Kissel T (2004) Variation of peptide transporter (PepT1 and HPT1) expression in Caco-2 cells as a function of cell origin. Journal of Pharmaceutical Sciences 93:1743-1754.

    Article  PubMed  Google Scholar 

  • Beigi F, Yang Q and Lundahl P (1995) Immobilized-liposome chromatographic analysis of drug partitioning into lipid bilayers. Journal of Chromatography A. 704:215-321.

    Article  Google Scholar 

  • Braun A, Hammerle S, Suda K, Rothen-Rutishauser B, Gunthert M and WunderliAllenspach H (2000) Cell cultures as tools in biopharmacy. European Journal of Pharmaceutical Sciences 11:S51-S60.

    Article  PubMed  Google Scholar 

  • Carr K and Toner P (1984) Morphology of the Intestinal Mucosa, in Pharmacology of the Intestine (Csaky T ed) pp 1-50, Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Chen Z, Kawabe T, Ono M, Aoki S, Sumizawa T, Furukawa T, Uchiumi T, Wada M, Kuwano M and Akiyama S (1999) Effect of multidrug resistance-reversing agents on transporting activity of human canalicular multispecific organic anion transporter. Molecular Pharmacology 56:1219-1228.

    PubMed  Google Scholar 

  • Cho M, Thomson D, Cramer C, Vidmar T and Scieszka J (1989) The MDCK epithelial cell monolayer as a model cellular transport barrier. Pharmaceutical Research 6:71-77.

    Article  PubMed  Google Scholar 

  • Chong S, Dando S, Soucek K and Morrison R (1996) In vitro permeability through Caco-2 cells is not quantitatively predictive of in vivo absorption for peptide-like drugs absorbed via the dipeptide transporter system. Pharmaceutical Research 13:120-123.

    Article  PubMed  Google Scholar 

  • Clark D (1999) Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. Journal of Pharmaceutical Sciences 88:807-814.

    Article  PubMed  Google Scholar 

  • Dantzig A, Shepard R, Law K, Tabas L, Pratt S, Gillespie J, Binkley S, Kuhfeld M, Starling J and Wrighton S (1999) Selectivity of the multidrug resistance modulator, LY335979, for P-gp and effect on CYP-450 activities. Journal of Pharmacology and Experimental Therapeutics 290:854-562.

    PubMed  Google Scholar 

  • Daugherty A and Mrsny R (1999) Regulation of the intestinal epithelial paracellular barrier. Pharmaceutical Sciences and Technology Today 2:281-287.

    Article  Google Scholar 

  • Di L, Kerns EH, Fan K, McConnell OJ and Carter GT (2003) High throughput artificial membrane permeability assay for blood-brain barrier. European Journal of Medicinal Chemistry 38:223-232.

    Article  PubMed  Google Scholar 

  • Dimitrijevic D, Shaw A and Florence A (2000) Effects of some non-ionic surfactants on transepithelial permeability in Caco-2 cells. Journal of Pharmacy and Pharmacology 52:157-162.

    Article  PubMed  Google Scholar 

  • Doluisio J, Billups N, Dittert L, Sugita E and Swintosky J (1969) Journal of Pharmaceutical Sciences 58:1196-1200.

    Article  PubMed  Google Scholar 

  • Dressman J (1986) Comparison of canine and human gastrointestinal physiology. Pharma-ceutical Research 3:123-131.

    Article  Google Scholar 

  • Dressman J, Amidon G and Fleisher D (1985) Absorption potential: estimating the fraction absorbed for orally administered compounds. Journal of Pharmaceutical Sciences 74:588-589.

    Article  PubMed  Google Scholar 

  • Dressman J, Berardi R, Dermentzoglou L, Russell T, Schmaltz S, Barnett J and Jarvenpaa K (1990) Upper gastrointestinal (GI) pH in young, healthy men and women. Pharmaceutical Research 7:756-761.

    Article  PubMed  Google Scholar 

  • FDA (2004) Challenges and opportunity on the critical path to new medical products. FDA Report.

    Google Scholar 

  • Grass G and Sweetana S (1989) A correlation for permeabilities of passively transported compounds in monkey and rabbit jejunum. Pharmaceutical Research 6:857-862.

    Article  PubMed  Google Scholar 

  • Gres M, Julian B, Bourrie M, Meunier V, Roques C, Berger M, Boule, Berger Y and Fabre G (1998) Correlation between oral drug absorption in humans, apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line. Pharmaceutical Research 15:726-733.

    Article  PubMed  Google Scholar 

  • Hidalgo I (2001) Assessing the absorption of new pharmaceuticals. Current Topics in Medi-cinal Chemistry 1:385-401.

    Article  Google Scholar 

  • Hillgren K, Kato A and Borchardt R (1995) In vitro systems for studying intestinal drug absorption. Medical Research Reviews 15:83-109.

    Article  Google Scholar 

  • Ho N, Park J, Morozowich W and Higuchi W (1977) Physical model approach to the design of drugs with improved intestinal absorption, in Design of biopharmaceutical properties through prodrugs and analogues. (Roche E ed) pp 136-277, APhA/APS, Washington, DC.

    Google Scholar 

  • Horie K, Tang F and Borchardt R (2003) Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance efflux transporter. Pharmaceutical Research 20:161-168.

    Article  PubMed  Google Scholar 

  • Houston J, Upshall D and Bridges J (1974) A Reevaluation of the importance of partition coefficients in the gastrointestinal absorption of nutrients. The Journal of Pharmacology and Experimental Therapeutics 189:244-254.

    PubMed  Google Scholar 

  • Irvine J, Takahashi L, Lockhart K, Cheong J, Tolan J, Selick H and Grove J (1999) MDCK cells: a tool for membrane permeability screening. Journal of Pharmaceutical Sciences 88:28-33.

    Article  PubMed  Google Scholar 

  • Kansy M, Senner F and Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry 41:1007-1010.

    Article  PubMed  Google Scholar 

  • Kararli T (1995) Comparison of the gastrointestinal anatomy, physiology and biochemistry of humans and commonly used laboratory animals. Biopharmaceutics & Drug Disposition 16:351-380.

    Article  Google Scholar 

  • Kerns E, Di L, Petusky S, Farris M, Ley R and Jupp P (2004) Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. Journal of Pharmaceutical Sciences 93:1440-1453.

    Article  PubMed  Google Scholar 

  • Kim R, Wendel C, Leake B, Cvetkovic M, Fromm M, Dempsey P, Roden M, Belas F, Chaudhary A, Roden D, Wood A and Wilkinson G (1999) Interrelationship between sub-strates and inhibitors of human CYP3A and P-gp. Pharmaceutical Research 16:408-414.

    Article  PubMed  Google Scholar 

  • Kola I and Landis J (2004) Can pharmaceutical industry reduce attrition rates? Nature Reviews: Drug Discovery 3:711-715.

    Article  PubMed  Google Scholar 

  • Komiya I, Park J, Yamani A, Ho N and Higuchi W (1980) International Journal of Phar-maceutics 4:249-262.

    Article  Google Scholar 

  • Krause E, Dathe M, Wieprecht T and Bienert M (1999) Noncovalent immobilized artifi-cial membrane chromatography, an improved method for describing peptide-lipid bilayer interactions. Journal of Chromatography 849:125-133.

    Article  PubMed  Google Scholar 

  • Krishna R and Mayer LD (2000). Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. European Journal of Pharmaceutical Sciences 11 (4):265-83.

    Article  PubMed  Google Scholar 

  • Krishna G, Chen K, Lin C and Nomeir A (2001) Permeability of lipophilic compounds in drug discovery using in vitro human absorption model, Caco-2. International Journal of Pharmaceutics 222:77-89.

    Article  PubMed  Google Scholar 

  • Lee K, Brower K and Thakker D (2002) Secretory transport of ranitidine and famotidine across Caco-2 cell monolayers. Journal of Pharmacological and Toxicological Methods 303:574-580.

    Google Scholar 

  • Lennernas H (1998) Human intestinal permeability. Journal of Pharmaceutical Sciences 87:403-410.

    Article  PubMed  Google Scholar 

  • Lennernas H, Nylander S and Ungell A (1997) Jejunal permeability: a comparison between the Ussing chamber technique and the single pass perfusion in humans. Pharmaceutical Research 14:667-671.

    Article  PubMed  Google Scholar 

  • Lin JH (1995) Species similarities and differences in pharmacokinetics. Drug Metabolism and Disposition: the Biological Fate of Chemicals 23:1008-1021.

    Google Scholar 

  • Lin J (2003) Drug-drug interaction mediated by inhibition and induction of P-glycoprotein. Advanced Drug Delivery Reviews 55:53-81.

    Article  PubMed  Google Scholar 

  • Lin J and Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics. Clinical Pharmacokinetics 42:59-98.

    Article  PubMed  Google Scholar 

  • Lipinski T, Lombardo F, Dominy B and Feeney P (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 23:3-25.

    Article  Google Scholar 

  • Maliepaard M, van Gastelen M, Tohgo A, Hauseer F, van Waardengurg R, de Jong L, Pluim D, Beijnen J and Schellens J (2001) Circumvention of BCRP-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clinical Caner Research 7:935-941.

    Google Scholar 

  • Murer H and Kinne R (1980) The use of isolated vesicles to study epithelial transport processes. The Journal of Membrane Biology 55:81-95.

    Article  PubMed  Google Scholar 

  • Palm K, Luthman K, Ungell AL, Strandlund G, Beigi F, Lundahl P and Artursson P (1998) Evaluation of dynamic polar molecular surface area as predictor of drug absorption: comparison with other computational and experimental predictors. Journal of Medical Chemistry 41:5382-5392.

    Article  Google Scholar 

  • Perloff M, Stromer E, von Moltke L and Greenblatt D (2003) Rapid assessment of P-gp inhibition and induction in vitro. Pharmaceutical Research 20:1177-1183.

    Article  PubMed  Google Scholar 

  • Pidgeon C (1990a) Immobilized artificial membranes, in US patent p 498.

    Google Scholar 

  • Pidgeon C (1990b) Solid phase membrane mimetics: immobilized artificial membranes. Enzyme and Microbial Technology 12:149-150.

    Article  PubMed  Google Scholar 

  • Polli J, Jerrett J, Studenberg J, Humphreys J, Dennis S, Brower K and Wooley J (1999) Role of P-gp on CNS disposition of amprenavir, an HIV protease inhibitor. Pharmaceutical Research 16:1206-1212.

    Article  PubMed  Google Scholar 

  • Polli J, Wring S, Humphreys J, Huang L, Morgan J, Webster L and Serabjit-Singh C (2001) Rational use of in vitro P-gp assays in drug discovery. The Journal of Pharmacology and Experimental Therapeutics 299:620-628.

    PubMed  Google Scholar 

  • Quastel J (1961) Methods of study of Intestinal absorption and Metabolism, in Methods in Medical Research (Quastel J ed) pp 255-259, Year Book Medical Publishers, Chicago.

    Google Scholar 

  • Rege B, Yu L, Hussain A and Polli J (2001) Effect of common excipients on caco-2 trans-port of low-permeability drugs. Journal of Pharmaceutical Sciences 90:1776-1786.

    Article  PubMed  Google Scholar 

  • Rege B, Kao J and Polli J (2002) Effect of non-ionic surfactants on membrane transport in Caco-2 cell monolayers. European Journal of Pharmaceutical Sciences 16:237-246.

    Article  PubMed  Google Scholar 

  • Rubas W, Jezyk N and Grass GM (1993) Comparison of the permeability characteristics of a human colonic epithelial (Caco-2) cell line to colon of rabbit, monkey, and dog intestine and human drug absorption. Pharmaceutical Research 10:113-118.

    Article  PubMed  Google Scholar 

  • Rubas W, Cromwell M, Shahrokh Z, Villagran J, Nguyen T, Welton M, Nguyen T and Mrsny R (1996) Flux measurements across Caco-2 monolayers may predict transport in human large intestinal tissue. Journal of Pharmaceutical Sciences 85:165-169.

    Article  PubMed  Google Scholar 

  • Ruell JA, Tsinman KL and Avdeef A (2003) PAMPA - a drug absorption in vitro model. 5. Unstirred water layer in iso-pH mapping assays and pK a(flux) - optimized design (pOD-PAMPA). European Journal of Pharmaceutical Sciences 20:393-402.

    Article  PubMed  Google Scholar 

  • Russell T, Berardi R, Barnett J, Dermentzoglou L, Jarvenpaa K, Schmaltz S and Dressman J (1993) Upper gastrointestinal pH in 79 healthy, elderly, north American men and women. Pharmaceutical Research 10:187-196.

    Article  PubMed  Google Scholar 

  • Saha P and Kou J (2002) Effect of bovine serum albumin on drug permeability estimation across Caco-2 monolayers. European Journal of Pharmaceutics and Biopharmaceutics 54:319-324.

    Article  PubMed  Google Scholar 

  • Schanker L, Tocco D, Brodie B and Hogben C (1958) Absorption of drugs from the rat small intestine. The Journal of Pharmacology and Experimental Therapeutics. 123:81-88.

    PubMed  Google Scholar 

  • Schurgers N and DeBlaey C (1984) International Journal of Pharmaceutics 19:283-295.

    Article  Google Scholar 

  • Simpson K and Jarvis B (2000) Fexofenadine: a review of its use in the management of seasonal allergic rhinitis and chronic idiopathic urticaria. Drugs 59:301-321.

    Article  PubMed  Google Scholar 

  • Sinko PJ, Hu P, Waclawski AP and Patel NR (1995) Oral absorption of anti-AIDS nucleo-side analogues. 1. Intestinal transport of didanosine in rat and rabbit preparations. Journal of Pharmaceutical Sciences 84:959-965.

    Article  PubMed  Google Scholar 

  • Stenberg P, Luthman K, Ellens H, Lee CP, Smith PL, Lago A, Elliott JD and Artursson P (1999) Prediction of the intestinal absorption of endothelin receptor antagonists using three theoretical methods of increasing complexity. Pharmaceutical Research 16:1520-1526.

    Article  PubMed  Google Scholar 

  • Stewart BH and Chan OH (1998) Use of immobilized artificial membrane chromatography for drug transport applications. Journal of Pharmaceutical Sciences 87:1471-1478.

    Article  PubMed  Google Scholar 

  • Sun D, Lennernas H, Welage L, Barnett J, Landowski C, Foster D, Fleisher D, Lee K and Amidon G (2002) Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequence tags and correlation with permeability of 26 drugs. Pharmaceutical Research 19:1400-1416.

    Article  PubMed  Google Scholar 

  • Tavelin S, Taipalensuu J, Hallbook F, Vellonen K, Moore V and Artursson P (2003) An improved cell culture model based on 2/4/A1 cell monolayers for studies of intestinal drug transport: characterization of transport routes. Pharmaceutical Research 20:373-381.

    Article  PubMed  Google Scholar 

  • Uhing M and Kimura R (1995) The effect of surgical bowel manipulation and anesthesia on intestinal glucose absorption in rats. The Journal of Clinical Investigation 95:2790-2798.

    Article  PubMed  Google Scholar 

  • Ungell A-L (2004) Caco-2 replace or refine? Drug Discovery Today 1:423-430.

    Article  Google Scholar 

  • Ungell A, Nylander S, Bergstrand S, Sjoberg A and Lennernas H (1998) Membrane transport of drugs in different regions of the intestinal tract of the rat. Journal of Pharmaceutical Sciences 87:360-366.

    Article  PubMed  Google Scholar 

  • Ussing H and Zerahn K (1951) Active transport of sodium as a source of electric current in the short-circuited isolated frog skin. Acta Physiologica Scandinavica 23:110-127.

    Article  PubMed  Google Scholar 

  • Van Rees H, De Wolff F and Noach E (1974) European Journal of Pharmacology 28:310-315.

    Article  PubMed  Google Scholar 

  • Volk E and Schneider E (2003) Wild type BCRP is a methotrexate ployglutamate transporter. Cancer Research 63:5538-5543.

    PubMed  Google Scholar 

  • Walter E and Kissel T (1995) Heterogeneity in the human intestinal cell line Caco-2 leads to differences in transepithelial transport. European Journal of Pharmaceutical Sciences 3:215-230.

    Article  Google Scholar 

  • Watanabe T, Miyauchi S, Sawada Y, Iga T, Hanano M, Inaba M and Sugiyama Y (1992) Kinetic analysis of hepatobiliary transport of vincristine in perfused rat liver: possible roles of P-gp in biliary excretion of vincristine. Journal of Hepatology 16:77-88.

    Article  PubMed  Google Scholar 

  • Wessel M, Jurs P, Tolan J and Muskal S (1998) Prediction of human intestinal absorption of drug compounds. Journal of Chemical Information and Computer Sciences 38:726-735.

    PubMed  Google Scholar 

  • Wilson T and Wiseman G (1954) The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. The Journal of Physiology 123:116-125.

    PubMed  Google Scholar 

  • Woehlecke H, Pohl A, Alder-Berens N, Lage H and Herrmann A (2003) Enhanced exposure of phosphatidylserine in human gastric carcinoma cells overexpressing the half-size ABC transporter BCRP (ABCG2). Biochemical Journal 376:489-495.

    Article  PubMed  Google Scholar 

  • Yamazaki M, Neway W, Ohe T, Chen I, Rowe J, Hochman J, Chiba M and Lin J (2001) In vitro substrate identification studies for P-gp mediated transport: Species difference and predictability of in vivo results. The Journal of Pharmacology and Experimental Therapeutics 296:723-735.

    PubMed  Google Scholar 

  • Yang C, Cai S, Liu H and Pidgeon C (1996) Immobilized artificial membranes - screens for drug membrane interactions. Advanced Drug Delivery Reviews 23:229-256.

    Article  Google Scholar 

  • Zhang S, Yang X and Morris M (2004) Flavonoids are inhibitors of BCRP-mediated transport. Molecular Pharmacology 65:1208-1216.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Balimane, P.V., Chong, S. (2008). Evaluation of Permeability and P-glycoprotein Interactions: Industry Outlook. In: Krishna, R., Yu, L. (eds) Biopharmaceutics Applications in Drug Development. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72379-2_5

Download citation

Publish with us

Policies and ethics