Skip to main content

Molecular and Physicochemical Properties Impacting OralAbsorptionofDrugs

  • Chapter
Biopharmaceutics Applications in Drug Development

Oral administration is still regarded as the most commonly accepted route of drug administration offering numerous advantages including convenience, ease of compliance, and cost-effectiveness. Not surprisingly, desirable oral bioavailability is one of the most important considerations for the successful development of bioactive molecules. Poor oral bioavailability affects drug performance and leads to high intra- and inter-patient variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguiar A.J., Krc J., Kindel A.W., and Samyn J.C., 1967. Effect of polymorphism on the absorption of chloramphenicol from chloramphenicol palmitate. J. Pharm. Sci., 56, 847-853.

    Article  PubMed  Google Scholar 

  • Amidon G.L., Lennernas H., Shah V.P., and Crison J.R., 1995. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res., 12(3), 413-420.

    Article  PubMed  Google Scholar 

  • Avdeef A., 2001. High throughput measurements of solubility profiles. In Pharmaco-kinetic Optimization in Drug Research; Biological, Physiochemical, and Computa-tional Strategies. Edited by Testa B., et al., Verlag Helvitica Chimica Acta., Zurich, 305-326.

    Google Scholar 

  • Bevan C. and Lloyd R.S., 2000. A high-throughput screening method for the determination of aqueous drug solubility using laser nepholometry in microtiter plates. Anal. Chem., 72,1781-1787.

    Article  PubMed  Google Scholar 

  • Borchardt R.T., Kerns E.H., Hageman M.J., Thakker D.R., and Stevens J.L., 2006. Optimiz-ing the “Drug-Like” Properties of Leads in Drug Discovery. AAPS Press, Arlington, VA.

    Book  Google Scholar 

  • Connors K.A., Amidon G.L., and Stella V.J., 1986. Chemical Stability of Pharmaceuticals. A Handbook for Pharmacists. 2nd Edition. Wiley, New York.

    Google Scholar 

  • Curatolo W., 1998. Physicochemical properties of oral drug candidates in the discovery and exploratory development settings. Pharm. Sci. Technol. Today, 1, 387-393.

    Article  Google Scholar 

  • Dressman J.B., 2000. Dissolution testing of immediate-release products and its application to forcasting in vivo performance. In Oral Drug Absorption, Prediction and Assessment. Edited by Dressman J.B. and Lennernas H., Marcel Dekker, New York, 155-181.

    Google Scholar 

  • Duddu S., Vakilynejad M., Jamili F., and Grant D., 1993. Stereoselective dissolution of propranolol hydrochloride from hydroxypropyl methylcellulose matrices. Pharm. Res., 10,1648-1653.

    Article  PubMed  Google Scholar 

  • Glomme A., M ärz J., and Dressman J.B., 2004. Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated sol-ubilities. J. Pharm. Sci., 94, 1-16.

    Article  Google Scholar 

  • Gomez-Orellana I., 2005. Strategies to improve oral drug bioavailability. Expert Opin. Drug Deliv., 2(3), 419-433.

    Article  PubMed  Google Scholar 

  • Grant D.J.W. and Highuchi T., 1990. Solubility Behavior of Organic Compounds. Wiley, New York.

    Google Scholar 

  • Gu C.H., Rao D., Gandhi R.B., Hilden J., and Raghavan K., 2005. Using a novel multicompartment dissolution system to predict the effect of gastric pH on the oral absorption of weak bases with poor intrinsic solubility. J. Pharm. Sci., 94, 199-208.

    Article  PubMed  Google Scholar 

  • Haleblian J. and McCrone W., 1969. Pharmaceutical applications of polymorphism. J Pharm. Sci., 58, 911-929.

    Article  PubMed  Google Scholar 

  • Hancock B.C. and Parks M., 2000. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res., 17(4), 397-404.

    Article  PubMed  Google Scholar 

  • Hancock B.C. and Zografi G., 1997. Characteristics and significance of the amorphous stage in pharmaceutical systems. J. Pharm. Sci., 86, 1-12.

    Article  PubMed  Google Scholar 

  • Horter D. and Dressman J.B., 1997. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv. Drug Deliv. Rev., 25, 3-14.

    Article  Google Scholar 

  • Huang L.F. and Tong W.Q., 2004. Impact of solid state properties on developability assess-ment of drug candidates. Adv. Drug Deliv. Rev., 56, 321-334.

    Article  PubMed  Google Scholar 

  • Huuskonen J., Salo M., and Taskinen J., 1998. Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. J. Chem. Inf. Comput. Sci., 38, 450-456.

    PubMed  Google Scholar 

  • Jain N. and Yalkowsky S.H., 2000. Estimation of the aqueous solubility I: application to organic non-electrolytes. J. Pharm. Sci., 90, 234-252.

    Article  Google Scholar 

  • Jamali F., 1992. Stereochemistry and bioequivalance. J. Clin. Pharmacol., 32, 930-934.

    PubMed  Google Scholar 

  • Johnson K.C. and Swindell A.C., 1996. Guidance in the setting of drug particle size speci-fications to minimize variability in absorption. Pharm. Res., 13, 1795-1798.

    Article  PubMed  Google Scholar 

  • Kerns E.H., 2001. High throughput physicochemical profiling for drug discovery. J. Pharm. Sci., 90(11), 1838-1858.

    Article  PubMed  Google Scholar 

  • Kerns E.H. and Di L., 2003. Pharmaceutical profiling in drug discovery. Drug Discov. Today, 8(7), 316-323.

    Article  PubMed  Google Scholar 

  • Kostewicz E.S., Wunderlich M., Brauns U., Becker R., Bock T., and Dressman J.B., 2004. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J. Pharm. Pharmacol., 56, 43-51.

    Article  PubMed  Google Scholar 

  • Leeson P.D. and Davis A.M., 2004. Time-related differences in the physical properties of oral drugs. J. Med. Chem., 47, 6338-6348.

    Article  PubMed  Google Scholar 

  • Li S.F., Wong S.M., Sethia S., Almoazen H., Joshi Y., and Serajuddin A.T.M., 2005. Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH. Pharm. Res., 22(4), 628-635.

    Article  PubMed  Google Scholar 

  • Lipinski C.A., Lombardo F., Dominy B.W., and Feeney P.J., 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 23, 3-25.

    Article  Google Scholar 

  • Lobenberg R., Amidon G.L., and Vieira M., 2000. Solubility as a limiting factor to drug absorption. In Oral Drug Absorption, Prediciton and Assessment. Edited by Dressman J.B and Lennernas H., Marcel Dekker, New York, 137-153.

    Google Scholar 

  • Macheras P., Reppas C., and Dressman J.B., 1995. Biopharmaceutics of Orally Administered Drugs. Ellis Horwood Limited.

    Google Scholar 

  • Nystrom C., 1998. Dissolution properties of poorly soluble drugs: theoretical background and possibilities to improve the dissolution behavior. In Emulsions and Nalosuspensions for the Formulation of Poorly Soluble Drugs. Edited by Muller R.H., Benita S., and Bohm B., Medpharm Scientific Publishers, Stuttgart.

    Google Scholar 

  • Pudipeddi M., Serajuddin A.T.M., Grant D.J.W., and Stahl P.H., 2002. Solubility and dis-solution of weak acids, bases and salts. In Handbook of Pharmaceutical Salts, Properties, Selection, and Use. Edited by Stahl P.H. and Wermuth C.G., Verlag Helvetica Chimica Acta, Zurich, 19-39.

    Google Scholar 

  • Rabinow B.E., 2004. Nanosuspensions in drug delivery. Nature Rev., 3(9), 785-796.

    Article  Google Scholar 

  • Ran Y., Jain N., and Yalkowsky S.H., 2001. Prediction of aqueous solubility of organic compounds by the general solubility equition (GSE). J. Chem. Inf. Comput. Sci., 41, 1280-1217.

    Google Scholar 

  • Shanker R., 2005. Current concepts in the science of solid dispersions. Second Annual Simonelli Conference in Pharmaceutical Sciences. Long Island University.

    Google Scholar 

  • Taskinen J. and Yliruusi J., 2003. Prediction of physicochemical properties based on neutal network modelling. Adv. Drug Deliv. Rev., 55, 1163-1183.

    Article  PubMed  Google Scholar 

  • Tong W.Q., 2000. Preformulation aspects of insoluble compounds. In Water Insoluble Drug Formulation. Edited by Liu R., Interpharm Press, Denver, Colorado, 65-95.

    Google Scholar 

  • Tong W.Q. and Whitesell G., 1998. In situ salt screening - a useful technique for discovery support and preformulation studies. Pharm. Dev. Tech., 3(2), 215-213.

    Article  Google Scholar 

  • Vasanthavada M., Tong W.Q., Joshi Y., and Kislalioglu M.S., 2004. Phase behavior of amorphous molecular dispersions I: determination of the degree and mechanism of solid solubility. Pharm. Res., 21(9), 1589-1597.

    Article  Google Scholar 

  • Vasanthavada M., Tong W.Q., Joshi Y., and Kislalioglu M.S., 2005. Phase behavior of amorphous molecular dispersions II: role of hydrogen bonding in solid solubility and phase separation kinetics. Pharm. Res., 22(3), 440-448.

    Article  PubMed  Google Scholar 

  • Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., and Kopple K.D., 2002. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 45, 2615-2623.

    Article  PubMed  Google Scholar 

  • Vieth M., Siegel M.G., Higgs R.E., Watson I.A., Robertson D.H., Savin K.A., Durst G.L., and Hipskind P.A., 2004. Characteristic physical properties and structural fragments of marketed oral drugs. J. Med. Chem., 47, 224-232.

    Article  PubMed  Google Scholar 

  • Waterbeemd H., Smith D.A., and Jones B.C., 2001. Lipophilicity in PK design: methyl, ethyl, futile. J. Comput. Aided Mol. Des., 15(3), 273-286.

    Article  PubMed  Google Scholar 

  • Wenlock M.C., Austin R.P., Barton P., Davis A.M., and Lesson P., 2003. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem., 46, 1250-1256.

    Article  PubMed  Google Scholar 

  • Winnike R., 2005. Solubility assessment in pharmaceutical development, practical con-siderations for solubility profiling and solubilization techniques. AAPS Short Course on Fundamentals of Preformulation in Pharmaceutical Product Development. Nashville, TN, Nov. 5, 2005.

    Google Scholar 

  • Yalkowsky S.H., 1999. Solubility and Solubilization in Aqueous Media. American Chemi-cal Society, Washington D.C.

    Google Scholar 

  • Yalkowsky S.H. and Valvani S.C., 1980. Solubility and partitioning I: solubility of nonelectrolytes in water. J. Pharm. Sci., 69, 912-922.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tong, WQ.(. (2008). Molecular and Physicochemical Properties Impacting OralAbsorptionofDrugs. In: Krishna, R., Yu, L. (eds) Biopharmaceutics Applications in Drug Development. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72379-2_2

Download citation

Publish with us

Policies and ethics