In Vitro–In Vivo Correlation on Parenteral Dosage Forms

  • Banu S. Zolnik
  • Diane J. Burgess

In vitro and in vivo correlation (IVIVC) for drug products, especially for solid oral dosage forms, has been developed to predict product bioavailability from in vitro dissolution. Biological properties such as Cmax, or AUC have been used to correlate with in vitro dissolution behavior such as percent drug release in order to establish IVIVC. IVIVC can be used to set product dissolution specifications; and as a surrogate for in vivo bioequivalence in the case of any changes with respect to formulation, process, or manufacturing site.


Drug Release PAMAM Dendrimers PLGA Microsphere Drug Release Mechanism Solid Oral Dosage Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, C. M., Huang, D., Schmitz, J. P., and Athanasiou, K. A. (1997). Elevated temper-ature degradation of a 50: 50 copolymer of PLA-PGA. Tissue Engineering 3: 345-352.CrossRefGoogle Scholar
  2. Anderson M. and Omri, A. (2004). The effect of different lipid components on the in vitrostability and release kinetics of liposome formulations. Drug Delivery 11: 33-39.CrossRefPubMedGoogle Scholar
  3. Aso, Y., Yoshioka, S., Li Wan Po, A., and Terao, T. (1994). Effect of temperature on mechanisms of drug release and matrix degradation of poly(-lactide) microspheres. Journal of Controlled Release 31: 33-39.CrossRefGoogle Scholar
  4. Blanco-Prieto, M. J., Besseghir, K., Orsolini, P., Heimgartner, F., Deuschel, C., Merkle, H. P., Nam-Tran, H., and Gander, B. (1999). Importance of the test medium for the release kinetics of a somatostatin analogue from poly(-lactide-co-glycolide) microspheres. International Journal of Pharmaceutics 184: 243-250.CrossRefPubMedGoogle Scholar
  5. Blanco-Prieto, M. J., Campanero, M. A., Besseghir, K., Heimgatner, F., and Gander, B. (2004). Importance of single or blended polymer types for controlled in vitro release and plasma levels of a somatostatin analogue entrapped in PLA/PLGA microspheres. Journal of Controlled Release 96: 437-448.CrossRefPubMedGoogle Scholar
  6. Bochot, A., Fattal, E., Gulik, A., Couarraze, G., and Couvreur, P. (1998). Liposomes dispersed within a thermosensitive gel: a new dosage form for ocular delivery of oligonucleotides. Pharmaceutical Research 15: 1364-1369.CrossRefPubMedGoogle Scholar
  7. Boschi, G. and Scherrmann, J. (2000). Microdialysis in mice for drug delivery research. Advanced Drug Delivery Reviews 45: 271-281.CrossRefPubMedGoogle Scholar
  8. Brunner, A., Mader, K., and Gopferich, A. (1999). pH and Osmotic pressure inside biodegradable microspheres during erosion. Pharmaceutical Research 16: 847-853.CrossRefPubMedGoogle Scholar
  9. Burgess, D. J. and Hickey, A. J. (1994). Microsphere technology and applications. In Swarbrick, J., Boylan, J. C. (eds.), Encyclopedia of Pharmaceutical Technology, Vol. 10, Marcel Dekker, New York, pp. 1-29.Google Scholar
  10. Burgess, D. J., Crommelin, D. J. A., Hussain, A. J., and Chen, M.-L. (2004). EUFEPS workshop report, assuring quality and performance of sustained and controlled release parenterals. European Journal of Pharmaceutical Sciences 21: 679-690.CrossRefPubMedGoogle Scholar
  11. Cheung, R. Y., Kuba, R., Rauth, A. M., and Wu, X. Y. (2004). A new approach to the in vivo and in vitro investigation of drug release from locoregionally delivered microspheres. Journal of Controlled Release 100: 121-133.CrossRefPubMedGoogle Scholar
  12. Chidambaram, N. and Burgess, D. J. (1999). A novel in vitro release method for submicronsized dispersed systems. AAPS pharmSci 1: Article 11.Google Scholar
  13. Cleland, J. L. (1997). Protein delivery from biodegradable micropsheres. In Sanders, L. M., Hendren, R. W. (eds.), Protein Delivery: Physical Systems, Plenum Press, New York, pp. 1-41.Google Scholar
  14. Crommelin, D. J. and Storm, G. (2003). Liposomes: from the bench to the bed. Journal of Liposome Research 13: 33-36.CrossRefPubMedGoogle Scholar
  15. Dash, A. K., Haney, P. W., and Garavalia, M. J. (1999). Development of an in vitro dissolution method using microdialysis sampling technique for implantable drug delivery systems. Journal of Pharmaceutical Sciences 88: 1036-1040.CrossRefPubMedGoogle Scholar
  16. Diaz, R. V., Llabres, M., and Evora, C. (1999). One-month sustained release microspheres of 125I-bovine calcitonin. In vitro-in vivo studies. Journal of Controlled Release 59: 55-62.CrossRefPubMedGoogle Scholar
  17. Faisant, N., Siepmann, J., and Benoit, J. P. (2002). PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release. European Journal of Pharmaceutical Sciences 15: 355-366.CrossRefPubMedGoogle Scholar
  18. FDA Draft Guidance: Liposome Drug Products. (August 2002).Google Scholar
  19. Flynn, G. L., Yalkowsky, S. H., and Roseman, T. J. (1974). Mass transport phenomena and models: theoretical concepts. Journal of Pharmaceutical Sciences 63: 479-510.CrossRefPubMedGoogle Scholar
  20. Frechet, J. M. J. and Tomalia, D. A. (2002). Dendrimers and other Dendritic Polymers, Wiley, Chichester, UK.Google Scholar
  21. Galeska, I., Kim, T.-K., Patil, S., Bhardwaj, U., Chatttopadhyay, D., Papadimitrakopou-los, F., and Burgess, D. J. (2005). Controlled release of dexamethasone from plga microspheres embedded within polyacid-containing PVA hydrogels. AAPS Journal 7: Article 22.Google Scholar
  22. Gillies, E. R. and Frechet, J. M. (2002). Designing macromolecules for therapeutic applications: polyester dendrimer-poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Journal of the American Chemical Society 124: 14137-14146.CrossRefPubMedGoogle Scholar
  23. Gillies, E. R., Dy, E., Frechet, J. M. J., and Szoka, F. C. (2005). Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Molecular Pharmaceutics 2: 129-138.CrossRefPubMedGoogle Scholar
  24. Gopferich, A. (1996). Polymer degradation and erosion: mechanisms and applications. European Journal of Pharmaceutics and Biopharmaceutics 42: 1-11.Google Scholar
  25. Hakkarainen, M., Albertsson, A.-C., and Karlsson, S. (1996). Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degra-dation of homo- and copolymers of PLA and PGA. Polymer Degradation and Stability 52: 283-291.CrossRefGoogle Scholar
  26. Herben, V. M., ten Bokkel Huinink, W. W., Schot, M. E., Hudson, I., and Beijnen, J. H. (1998). Continuous infusion of low-dose topotecan: pharmacokinetics and pharmacody-namics during a phase II study in patients with small cell lung cancer. Anti-Cancer Drugs 9: 411-418.CrossRefPubMedGoogle Scholar
  27. Heya, T., Okada, H., Ogawa, Y., and Toguchi, H. (1994a). In vitro and in vivo evaluation of thyrotrophin releasing hormone release from copoly(dl-lactic/glycolic acid) microspheres. Journal of Pharmaceutical Sciences 83: 636-640.CrossRefPubMedGoogle Scholar
  28. Heya, T., Mikura, Y., Nagai, A., Miura, Y., Futo, T., Tomida, Y., Shimizu, H., and Toguchi, H. (1994b). Controlled release of thyrotropin releasing hormone from microspheres: evaluation of release profiles and pharmacokinetics after subcutaneous administration. Journal of Pharmaceutical Sciences 83: 798-801.CrossRefPubMedGoogle Scholar
  29. Hochster, H., Liebes, L., Speyer, J., Sorich, J., Taubes, B., Oratz, R., Wernz, J., Chachoua, A., Raphael, B., and Vinci, R. Z., et al. (1994). Phase I trial of low-dose continuous topotecan infusion in patients with cancer: an active and well-tolerated regimen. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 12: 553-559.Google Scholar
  30. Hoffman, A. S. (2001). Hydrogels for biomedical applications. Annals of the New York Academy of Sciences 944: 62-73.PubMedCrossRefGoogle Scholar
  31. Jain, S., Jain, R., Chourasia, M., Jain, A., Chalasani, K., Soni, V., and Jain, A. (2005). Design and development of multivesicular liposomal depot delivery system for controlled systemic delivery of acyclovir sodium. AAPS PharmSciTech 06: E35-E41.CrossRefGoogle Scholar
  32. Jevprasesphant, R., Penny, J., Jalal, R., Attwood, D., McKeown, N. B., and D’Emanuele, A. (2003). The influence of surface modification on the cytotoxicity of PAMAM dendrimers. International Journal of Pharmaceutics 252: 263-266.CrossRefPubMedGoogle Scholar
  33. Jiang, G., Woo, B. H., Kang, F., Singh, J., and DeLuca, P. P. (2002). Assessment of pro-tein release kinetics, stability and protein polymer interaction of lysozyme encapsulated poly(d,l-lactide-co-glycolide) microspheres. Journal of Controlled Release 79: 137-145.CrossRefPubMedGoogle Scholar
  34. Jiang, G., Qiu, W., and DeLuca, P. P. (2003). Preparation and in vitro/in vivo evaluation of insulin-loaded poly(acryloyl-hydroxyethyl starch)-PLGA composite microspheres. Pharmaceutical Research 20: 452-459.CrossRefPubMedGoogle Scholar
  35. Kadir, F., Oussoren, C., and Crommelin, D. J. (1999). Liposomal formulations to reduce irritation of intramuscularly and subcutaneously administered drugs. In Gupta, P. K., Brazeau, G. A. (eds.), Injectable Drug Development. Techniques to Reduce Pain and Irritation, Interpharm Press, Denver, Colorado, pp. 337-354.Google Scholar
  36. Kim, T.-K. and Burgess, D. J. (2002). Pharmacokinetic characterization of 14 C-vascular endothelial growth factor controlled release microspheres using a rat model. Journal of Pharmacy and Pharmacology 54: 897-905.CrossRefPubMedGoogle Scholar
  37. Kim, T. I., Seo, H. J., Choi, J. S., Jang, H. S., Baek, J. U., Kim, K., and Park, J. S. (2004). PAMAM-PEG-PAMAM: novel triblock copolymer as a biocompatible and efficient gene delivery carrier. Biomacromolecules 5: 2487-2492.CrossRefPubMedGoogle Scholar
  38. Kobayashi, H. and Brechbiel, M. W. (2004). Dendrimer-based nanosized MRI contrast agents. Current Pharmaceutical Biotechnology 5: 539-549.CrossRefPubMedGoogle Scholar
  39. Kukowska-Latallo, J. F., Bielinska, A. U., Johnson, J., Spindler, R., Tomalia, D. A., and Baker, Jr., J. R. (1996). Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proceedings of the National Academy of Sciences of the United States of America 93: 4897-4902.CrossRefPubMedGoogle Scholar
  40. Kukowska-Latallo, J. F., Candido, K. A., Cao, Z., Nigavekar, S. S., Majoros, I. J., Thomas, T. P., Balogh, L. P., Khan, M. K., and Baker, Jr., J. R. (2005). Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Research 65: 5317-524.CrossRefPubMedGoogle Scholar
  41. Kulkarni, R. K., Moore, E. G., Hegyeli, A. F., and Leonard, F. (1971). Biodegradable poly (lactic acid) polymers. Journal of Biomedical Materials Research 5: 169-181.CrossRefPubMedGoogle Scholar
  42. Kurihara, A., Shibayama, Y., Mizota, A., Yasuno, A., Ikeda, M., and Hisaoka, M. (1996). Pharmacokinetics of highly lipophilic antitumor agent palmitoyl rhizoxin incorporated in lipid emulsions in rats. Biological & Pharmaceutical Bulletin 19: 252-258.Google Scholar
  43. Lalloo, A., Chao, P., Hu, P., Stein, S., and Sinko, P. J. (2006). Pharmacokinetic and phar-macodynamic evaluation of a novel in situ forming poly(ethylene glycol)-based hydro-gel for the controlled delivery of the camptothecins. Journal of Controlled Release 112: 333-342.CrossRefPubMedGoogle Scholar
  44. Lee, C. C., MacKay, J. A., Frechet, J. M., and Szoka, F. C. (2005). Designing dendrimers for biological applications. Nature Biotechnology 23: 1517-1526.CrossRefPubMedGoogle Scholar
  45. Lemaire, V., Belair, J., and Hildgen, P. (2003). Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process. International Journal of Pharmaceutics 258: 95-107.CrossRefPubMedGoogle Scholar
  46. Lewis, D. H. (1990). Controlled release of bioactive agents from lactide glycolide polymers, Marcel Dekker, New York.Google Scholar
  47. Li, S., Girard, A., Garreau, H., and Vert, M. (2000). Enzymic degradation of polylactide stereocopolymers with predominant D-lactyl contents. Polymer Degradation and Stability 71: 61-67.CrossRefGoogle Scholar
  48. Liu, M., Kono, K., and Frechet, J. M. (2000). Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. Journal of Controlled Release 65: 121-131.CrossRefPubMedGoogle Scholar
  49. Liu, F. I., Kuo, J. H., Sung, K. C., and Hu, O. Y. (2003). Biodegradable polymeric microspheres for nalbuphine prodrug controlled delivery: in vitro characterization and in vivo pharmacokinetic studies. International Journal Pharmaceutics 257: 23-31.CrossRefGoogle Scholar
  50. Mader, K., Bittner, B., Li, Y., Wohlauf, W., and Kissel, T. (1998). Monitoring microviscos-ity and microacidity of the albumin microenvironment inside degrading microparticles from poly(lactide-co-glycolide) (PLG) or ABA-triblock polymers containing hydropho-bic poly(lactide-co-glycolide) A blocks and hydrophilic poly(ethyleneoxide) B blocks. Pharmaceutical Research 15: 787-793.CrossRefPubMedGoogle Scholar
  51. Maeda, H., Sawa, T., and Konno, T. (2001). Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. Journal of Controlled Release 74: 47-61.CrossRefPubMedGoogle Scholar
  52. Magenheim, B., Levy, M. Y., and Benita, S. (1993). A new in vitro technique for the evaluation of drug release profile from colloidal carriers - ultrafiltration technique at low pressure. International Journal of Pharmaceutics 94: 115-123.CrossRefGoogle Scholar
  53. Makino, K., Ohshima, H., and Kondo, T. (1986). Mechanism of hydrolytic degradation of poly(lactide) microcapsules: effects of pH, ionic strength and buffer concentration. Journal of Microencapsulation 3: 203-212.CrossRefPubMedGoogle Scholar
  54. Malik, N., Wiwattanapatapee, R., Klopsch, R., Lorenz, K., Frey, H., Weener, J. W., Meijer, E. W., Paulus, W., and Duncan, R. (2000). Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. Journal of Controlled Release 65: 133-148.CrossRefPubMedGoogle Scholar
  55. McDonald, S., Faibushevich, A. A., Garnick, S., McLaughlin, K., and Lunte, C. (2002). Determination of local tissue concentrations of bupivacaine released from biodegradable microspheres and the effect of vasoactive compounds on bupivacaine tissue clearance studied by microdialysis sampling. Pharmaceutical Research 19: 1745-1752.CrossRefPubMedGoogle Scholar
  56. Moghimi, S. M., Hunter, A. C., and Murray, J. C. (2001). Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Reviews 53: 283-318.PubMedGoogle Scholar
  57. Morita, T., Sakamura, Y., Horikiri, Y., Suzuki, T., and Yoshino, H. (2001). Evaluation of in vivo release characteristics of protein-loaded biodegradable microspheres in rats and severe combined immunodeficiency disease mice. Journal of Controlled Release 73: 213-221.CrossRefPubMedGoogle Scholar
  58. Moussy, F., Kreutzer, D., Burgess, D., Koberstein, J., Papadimitrakopoulos, F., and Huang, S. (2003). US Patent: apparatus and method for control of tissue/implant interactions.Google Scholar
  59. Negrin, C. M., Delgado, A., Llabres, M., and Evora, C. (2001). In vivo-in vitro study of biodegradable methadone delivery systems. Biomaterials 22: 563-570.CrossRefPubMedGoogle Scholar
  60. Negrin, C. M., Delgado, A., Llabres, M., and Evora, C. (2004). Methadone implants for methadone maintenance treatment. In vitro and in vivo animal studies. Journal of Con-trolled Release 95: 413-421.CrossRefGoogle Scholar
  61. Newkome, G. R., Moorefield, C. N., and Vogtle, F. (2001). Dendrimers and Dendrons: Concepts, Syntheses, Applications, Wiley-VCH, Weinheim, Germany.Google Scholar
  62. Okada, H. (1997). One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Advanced Drug Delivery Reviews 28: 43-70.CrossRefPubMedGoogle Scholar
  63. PadillaDeJesus, O. L., Ihre, H. R., Gagne, L., Frechet, J. M. J., and Szoka, F. C. (2002). Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjugate Chemistry 13: 453-461.CrossRefGoogle Scholar
  64. Patil, S. D., Papadimitrakopoulos, F., and Burgess, D. J. (2004). Dexamethasone-loaded poly(lactic-co-glycolic) acid microspheres/poly(vinyl alcohol) hydrogel composite coat-ings for inflammation control. Diabetes Technology & Therapeutics 6: 887-897.CrossRefGoogle Scholar
  65. Patri, A. K., Majoros, I. J., and Baker, J. R. (2002). Dendritic polymer macromolecular carriers for drug delivery. Current Opinion in Chemical Biology 6: 466-471.CrossRefPubMedGoogle Scholar
  66. Patri, A. K., Kukowska-Latallo, J. F., and Baker, Jr., J. R. (2005). Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Advanced Drug Delivery Reviews 57: 2203-2214.CrossRefPubMedGoogle Scholar
  67. de la Pena, A., Liu, P., and Derendorf, H. (2000). Microdialysis in peripheral tissues. Advanced Drug Delivery Reviews 45: 189-216.CrossRefPubMedGoogle Scholar
  68. Peppas, N. A., Bures, P., Leobandung, W., and Ichikawa, H. (2000). Hydrogels in pharma-ceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics 50: 27-46.CrossRefPubMedGoogle Scholar
  69. Perugini, P., Genta, I., Conti, B., Modena, T., Cocchi, D., Zaffe, D., and Pavanetto, F. (2003). PLGA microspheres for oral osteopenia treatment: preliminary “in vitro”/“in vivo” evaluation. International Journal of Pharmaceutics 256: 153-160.CrossRefPubMedGoogle Scholar
  70. Porter, C. J. and Charman, S. A. (2000). Lymphatic transport of proteins after subcutaneous administration. Journal of Pharmaceutical Sciences 89: 297-310.CrossRefPubMedGoogle Scholar
  71. Ritger, P. L. and Peppas, N. A. (1987). A simple equation for description of solute release: I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release 5: 23-36.CrossRefGoogle Scholar
  72. Ruel-Gariepy, E., Leclair, G., Hildgen, P., Gupta, A., and Leroux, J. C. (2002). Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. Journal of Controlled Release 82: 373-383.CrossRefPubMedGoogle Scholar
  73. Shabbits, J. A., Chiu, G. N., and Mayer, L. D. (2002). Development of an in vitro drug release assay that accurately predicts in vivo drug retention for liposome-based delivery systems. Journal of Controlled Release 84: 161-170.CrossRefPubMedGoogle Scholar
  74. Shenderova, A., Burke, T. G., and Schwendeman, S. P. (1999). The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharmaceutical Research 16: 241-248.CrossRefPubMedGoogle Scholar
  75. Siepmann, J. and Gopferich, A. (2001). Mathematical modeling of bioerodible, polymeric drug delivery systems. Advanced Drug Delivery Reviews 48: 229-247.CrossRefPubMedGoogle Scholar
  76. Simoes, S., Moreira, J. N., Fonseca, C., Duzgunes, N., and de Lima, M. C. (2004). On the formulation of pH-sensitive liposomes with long circulation times. Advanced Drug Delivery Reviews 56: 947-965.CrossRefPubMedGoogle Scholar
  77. Takino, T., Konishi, K., Takakura, Y., and Hashida, M. (1994). Long circulating emulsion carrier systems for highly lipophilic drugs. Biological & Pharmaceutical Bulletin 17: 121-125.Google Scholar
  78. ten Tije, A. J., Verweij, J., Loos, W. J., and Sparreboom, A. (2003). Pharmacological effects of formulation vehicles: implications for cancer chemotherapy. Clinical Pharmacokinetics 42: 665-685.CrossRefPubMedGoogle Scholar
  79. Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery 4: 145-160.CrossRefPubMedGoogle Scholar
  80. Torchilin, V. P. and Levchenko, T. S. (2003). TAT-liposomes: a novel intracellular drug carrier. Current Protein & Peptide Science 4: 133-140.CrossRefGoogle Scholar
  81. Torchilin, V. P. and Lukyanov, A. N. (2003). Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discovery Today 8: 259-266.CrossRefPubMedGoogle Scholar
  82. Twyman, L. J., Beezer, A. E., Esfand, R., Hardy, M. J., and Mitchell, J. C. (1999). The synthesis of water soluble dendrimers, and their application as possible drug delivery systems. Tetrahedron Letters 40: 1743-1746.CrossRefGoogle Scholar
  83. Ueda, K., Ishida, M., Inoue, T., Fujimoto, M., Kawahara, Y., Sakaeda, T., and Iwakawa, S. (2001). Effect of injection volume on the pharmacokinetics of oil particles and incorpo-rated menatetrenone after intravenous injection as O/W lipid emulsions in rats. Journal of Drug Targeting 9: 353-360.PubMedGoogle Scholar
  84. Ueda, K., Yamazaki, Y., Noto, H., Teshima, Y., Yamashita, C., Sakaeda, T., and Iwakawa, S. (2003). Effect of oxyethylene moieties in hydrogenated castor oil on the pharmacokinet-ics of menatetrenone incorporated in O/W lipid emulsions prepared with hydrogenated castor oil and soybean oil in rats. Journal of Drug Targeting 11: 37-43.CrossRefPubMedGoogle Scholar
  85. van Dijkhuizen-Radersma, R., Wright, S. J., Taylor, L. M., John, B. A., de Groot, K., and Bezemer, J. M. (2004). In vitro/in vivo correlation for 14C-methylated lysozyme release from poly(ether-ester) microspheres. Pharmaceutical Research 21.Google Scholar
  86. Wang, F., Bronich, T. K., Kabanov, A. V., Rauh, R. D., and Roovers, J. (2005). Synthesis and evaluation of a star amphiphilic block copolymer from poly(epsilon-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjugate Chemistry 16: 397-405.CrossRefPubMedGoogle Scholar
  87. Yang, H. and Lopina, S. T. (2006). In vitro enzymatic stability of dendritic peptides. Journal of Biomedical Materials Research A 76: 398-407.CrossRefGoogle Scholar
  88. Yenice, I., Calis, S., Atilla, B., Kas, H. S., Ozalp, M., Ekizoglu, M., Bilgili, H., and Hin-cal, A. A. (2003). In vitro/in vivo evaluation of the efficiency of teicoplanin-loaded biodegradable microparticles formulated for implantation to infected bone defects. Journal of Microencapsulation 20: 705-717.CrossRefPubMedGoogle Scholar
  89. Young, D., Farrell, C., and Shepard, T. (2005). In vitro/in vivo correlation for modified release injectable drug delivery systems. In Burgess, D. J. (ed.), Injectable Dispersed Systems: Formulation, Processing and Performance, Vol. 149, Taylor & Francis, Boca Raton, pp. 159-176.Google Scholar
  90. Zhong, H., Deng, Y., Wang, X., and Yang, B. (2005). Multivesicular liposome formulation for the sustained delivery of breviscapine. International Journal of Pharmaceutics 301: 15–24.CrossRefPubMedGoogle Scholar
  91. Zolnik, B. S. (2005). In vitro and in vivo release testing of control release parenteral microspheres. PhD Dissertation.Google Scholar
  92. Zolnik, B. S., Raton, J. L., and Burgess, D. J. (2005). Application of USP Apparatus 4 and in situ fiber optic analysis to microsphere release testing. Dissolution Technologies 12:11–14.Google Scholar
  93. Zolnik, B. S., Leary, P. E., and Burgess, D. J. (2006). Elevated temperature accelerated release testing of PLGA microspheres. Journal of Controlled Release 112: 293–300.CrossRefPubMedGoogle Scholar
  94. Zuidema, J., Kadir, F., Titulaer, H. A. C., and Oussoren, C. (1994). Release and absorption rates of intramuscularly and subcutaneously injected pharmaceuticals (II). International Journal of Pharmaceutics 105: 189–207.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Banu S. Zolnik
    • 1
  • Diane J. Burgess
    • 2
  1. 1.National Cancer InstituteFrederickUSA
  2. 2.School of PharmacyUniversity of ConnecticutStorrsUSA

Personalised recommendations