Introduction to Biopharmaceutics and its Role in Drug Development

  • Nancy P. Barbour
  • Robert A. Lipper

In the world of drug development, the meaning of the term “biopharmaceutics” often evokes confusion, even among scientists and professionals who work in the field. “Pharmaceutics” narrowly defined is a field of science that involves the preparation, use, or dispensing of medicines (Woolf, 1981). Addition of the pre- fix “bio,” coming from the Greek “bios,” relating to living organisms or tissues (Woolf, 1981), expands this field into the science of preparing, using, and administering drugs to living organisms or tissues. Inherent in the concept of biopharmaceutics as discussed here is the interdependence of biological aspects of the living organism (the patient) and the physical–chemical principles that govern the preparation and behavior of the medicinal agent or drug product.


Dissolution Rate Dosage Form Drug Product Solid Dispersion Active Pharmaceutical Ingredient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adessi, C. and Soto, C. (2002). Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr. Med. Chem. 9:963-978.CrossRefPubMedGoogle Scholar
  2. Agharkar, S., Lindenbaum, S., and Higuchi, T. (1976). Enhancement of solubility of drug salts by hydrophilic counterions: properties of organic salts of an antimalarial drug. J. Pharm. Sci. 65:747-749.CrossRefPubMedGoogle Scholar
  3. Ahr, G., Voith, B., and Kuhlmann, J. (2000). Guidances related to bioavailability and bioequivalence: European industry perspective. Eur. J. Drug Metab. Pharmacokinet. 25:25-27.PubMedCrossRefGoogle Scholar
  4. Amidon, G. L., Lennernas, H., Shah, V. P., and Crison, J. R. (1995). A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413-420.CrossRefPubMedGoogle Scholar
  5. Anderson, P. M. and Sorenson, M. A. (1994). Effects of route and formulation on clinical pharmacokinetics of interleukin-2. Clin. Pharmacokinet. 27:19-31.CrossRefPubMedGoogle Scholar
  6. Berridge, M. S., Lee, Z., and Heald, D. L. (2000). Regional distribution and kinetics of inhaled pharmaceuticals. Curr. Pharm. Des. 6:1631-1651.CrossRefPubMedGoogle Scholar
  7. Blume, H. H. and Schug, B. S. (1999). The biopharmaceutics classification system (BCS): class III drugs - better candidates for BA/BE waiver? Eur. J. Pharm. Sci. 9:117-121.CrossRefPubMedGoogle Scholar
  8. Chen, L. and Waxman, D. J. (2002). Cytochrome P450 gene-directed enzyme prodrug ther-apy (GDEPT) for cancer. Curr. Pharm. Des. 8:1405-1416.CrossRefPubMedGoogle Scholar
  9. Chen, J., Jiang, X. G., Jiang, W. M., Gao, X. L., and Mei, N. (2005). Intranasal absorption of rizatriptan - in vivo pharmacokinetics and bioavailability study in humans. Pharmazie 60:39-41.PubMedGoogle Scholar
  10. Curatolo, W. (1998). Physical chemical properties of oral drug candidates in the discovery and exploratory development settings. Pharm. Sci. Technol. Today 1:387-393.CrossRefGoogle Scholar
  11. Dannenfelser, R. M., He, H., Joshi, Y., Bateman, S., and Serajuddin, A. T. (2004). Development of clinical dosage forms for a poorly water soluble drug I: application of polyethylene glycol-polysorbate 80 solid dispersion carrier system. J. Pharm. Sci. 93:1165-1175.CrossRefPubMedGoogle Scholar
  12. Dressman, J. B., Amidon, G. L., Reppas, C., and Shah, V. P. (1998). Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm. Res. 15:11-22.CrossRefPubMedGoogle Scholar
  13. FDA (U.S. Food and Drug Administration) Guidance Documents for Industry, 1995, Rockville. Guidance for Industry. Immediate Release Solid Oral Dosage Forms. Scale-Up and Postapproval Changes: Chemistry, Manufacturing, and Controls, In Vitro Dissolution Testing, and In Vivo Bioequivalence Documentation (November 1995);
  14. FDA (U.S. Food and Drug Administration) Guidance for Industry, 2000, Rockville. Bioavailability and Bioequivalence Studies for Orally Administered Drug Products -General Considerations (October 2000); FDA (U.S. Food and Drug Administration) Guidance for Industry, 2005, Rockville.
  15. The Biopharmaceutics Classification System (BCS) Guidance (June 2005); guidance.htm.
  16. Flynn, G. L. (1984). Solubility concepts and their applications to the formulation of pharmaceutical systems. Part I. Theoretical foundations. J. Parenter. Sci. Technol. 38:202-209.PubMedGoogle Scholar
  17. Gennaro, A. R. (ed.). (1995). Remington: The Science and Practice of Pharmacy, 19th ed. Mack Publishing Co., Easton, PA.Google Scholar
  18. Gibaldi, M. and Perrier, D. (1982). Pharmacokinetics,2nd ed. Marcel Dekker Inc., New York.Google Scholar
  19. Gu, C. H., Rao, D., Gandhi, R. B., Hilden, J., and Raghavan, K. (2005). Using a novel multi-compartment dissolution system to predict the effect of gastric pH on the oral absorption of weak bases with poor intrinsic solubility. J. Pharm. Sci. 94:199-208.CrossRefPubMedGoogle Scholar
  20. Han, H. K. and Amidon, G. L. (2000). Targeted prodrug design to optimize drug delivery. AAPS PharmSci. (online). 2(1): article 6.Google Scholar
  21. Hao, J. and Heng, P. W. (2003). Buccal delivery systems. Drug Dev. Ind. Pharm. 29:821-832.CrossRefPubMedGoogle Scholar
  22. Higuchi, T. (1958). Some physical chemical aspects of suspension formulation. J. Am. Pharm. Assoc. 47:657-660.Google Scholar
  23. Higuchi, T. (1976). Pharmacy, pharmaceutics and modern drug delivery. Am. J. Hosp. Pharm. 33:795-800.PubMedGoogle Scholar
  24. Higuchi, T., Szulczewski, D. H., and Yunker, M. (1956). Physical chemical properties and ultraviolet spectral characteristics of amyl nitrite. J. Am. Pharm. Assoc. 45:776-779.Google Scholar
  25. Higuchi, W. I., Parrott, E. L., Wurster, D. E., and Higuchi, T. (1958). Investigation of drug release from solids. II. Theoretical and experimental study of influences of bases and buffers on rates of dissolution of acidic solids. J. Am. Pharm. Assoc. 47:376-383.Google Scholar
  26. Higuchi, W. I., Lau, P. K., Higuchi, T., and Shell, J. W. (1963). Polymorphism and drug availability. Solubility relationships in the methylprednisolone system. J. Pharm. Sci. 52:150-153.CrossRefPubMedGoogle Scholar
  27. Hilgers, A. R., Smith, D. P., Biermacher, J. J., Day, J. S., Jensen, J. L., Sims, S. M., Adams, W. J., Friis, J. M., Palandra, J., Hosley, J. D., Shobe, E. M., and Burton, P. S. (2003). Predicting oral absorption of drugs: a case study with a novel class of antimicrobial agents. Pharm. Res. 20:1149-1155.CrossRefPubMedGoogle Scholar
  28. Ishii, K., Katayama, Y., Itai, S., Ito, Y., and Hayashi, H. (1995). A new pharmacokinetic model including in vivo dissolution and gastrointestinal transit parameters. Biol. Pharm. Bull. 18:882-886.PubMedGoogle Scholar
  29. Johnson, K. C. and Swindell, A. C. (1996). Guidance in the setting of drug particle size specifications to minimize variability in absorption. Pharm. Res. 13:1795-1798.CrossRefPubMedGoogle Scholar
  30. Jung, M. (2001). Antibody directed enzyme prodrug therapy (ADEPT) and related approaches for anticancer therapy. Mini. Rev. Med. Chem. 1:399-407.CrossRefPubMedGoogle Scholar
  31. Kalgutkar, A. S., Vaz, A. D., Lame, M. E., Henne, K. R., Soglia, J., Zhao, S. X., Abramov, Y. A., Lombardo, F., Collin, C., Hendsch, Z. S., and Hop, C. E. (2005). Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone-imine species in human liver microsomes and recombinant cytochrome P450 3A4. Drug Metab. Dispos. 33:243-253.CrossRefPubMedGoogle Scholar
  32. Katsura, T. and Inui, K. (2003). Intestinal absorption of drugs mediated by drug trans-porters: mechanisms and regulation. Drug Metab. Pharmacokinet. 18:1-15.CrossRefPubMedGoogle Scholar
  33. Kivisto, K. T., Niemi, M., and Fromm, M. F. (2004). Functional interaction of intestinal CYP3A4 and P-glycoprotein. Fundam. Clin. Pharmacol. 18:621-626.CrossRefPubMedGoogle Scholar
  34. Kostenbauder, H. B. and Higuchi, T. (1957). A note on the water solubility of some N , N ,-dialkylamides. J. Am. Pharm. Assoc. 46:205-206.Google Scholar
  35. Kunta, J. R. and Sinko, P. J. (2004). Intestinal drug transporters: in vivo function and clinical importance. Curr. Drug Metab. 5:109-124.CrossRefPubMedGoogle Scholar
  36. Lee, H. J., Cooperwood, J. S., You, Z., and Ko, D. H. (2002). Prodrug and antedrug: two diametrical approaches in designing safer drugs. Arch. Pharm. Res. 25:111-136.CrossRefPubMedGoogle Scholar
  37. Lennernas, H. and Abrahamsson, B. (2005). The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension. J. Pharm. Pharmacol. 57:273-285.CrossRefPubMedGoogle Scholar
  38. Leslie, E. M., Deeley, R. G., and Cole, S. P. (2005). Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol. Appl. Pharmacol. 204:216-237.CrossRefPubMedGoogle Scholar
  39. Leuner, C. and Dressman, J. (2000). Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50:47-60.CrossRefPubMedGoogle Scholar
  40. Li, S., Wong, S., Sethia, S., Almoazen, H., Joshi, Y. M., and Serajuddin, A. T. (2005). Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH. Pharm. Res. 22:628-635.CrossRefPubMedGoogle Scholar
  41. Lipka, E., Crison, J., and Amidon, G. L. (1996). Transmembrane transport of peptide type compounds: prospects for oral delivery. J. Control Release 39:121-129.CrossRefPubMedGoogle Scholar
  42. Lui, C. Y., Amidon, G. L., Berardi, R. R., Fleisher, D., Youngberg, C., and Dressman, J. B. (1986). Comparison of gastrointestinal pH in dogs and humans: implications on the use of the beagle dog as a model for oral absorption in humans. J. Pharm. Sci. 75:271-274.CrossRefPubMedGoogle Scholar
  43. Majumdar, S., Duvvuri, S., and Mitra, A. K. (2004). Membrane transporter/receptor-targeted prodrug design: strategies for human and veterinary drug development. Adv. Drug Deliv. Rev. 56:1437-1452.CrossRefPubMedGoogle Scholar
  44. Merino,V., Freixas, J., del Val, B. M., Garrigues, T. M., Moreno, J., and Pla-Delfina, J. M. (1995). Biophysical models as an approach to study passive absorption in drug development: 6-fluoroquinolones. J. Pharm. Sci. 84:777-782.CrossRefPubMedGoogle Scholar
  45. Meyer, U. A. (1996). Overview of enzymes of drug metabolism. J. Pharmacokinet. Bio-pharm. 24:449-459.CrossRefGoogle Scholar
  46. Morris, K. R. (1994). An integrated approach to the selection of optimal salt form for a new drug candidate. Int. J. Pharm. 105:209-217.CrossRefGoogle Scholar
  47. Nicolaides, E., Galia, E., Efthymiopoulos, C., Dressman, J. B., and Reppas, C. (1999). Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data. Pharm. Res. 16:1876-1882.CrossRefPubMedGoogle Scholar
  48. Parrott, N. and Lave, T. (2002). Prediction of intestinal absorption: comparative assessment of GASTROPLUS and IDEA. Eur. J. Pharm. Sci. 17:51-61.CrossRefPubMedGoogle Scholar
  49. Pochopin, N. L., Charman, W. N., and Stella, V. J. (1994). Pharmacokinetics of dapsone and amino acid prodrugs of dapsone. Drug Metab. Dispos. 22:770-775.PubMedGoogle Scholar
  50. Porter, C. J., Kaukonen, A. M., Boyd, B. J., Edwards, G. A., and Charman, W. N. (2004). Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm. Res. 21:1405-1412.CrossRefPubMedGoogle Scholar
  51. Prokai-Tatrai, K. and Prokai, L. (2003). Modifying peptide properties by prodrug design for enhanced transport into the CNS. Prog. Drug Res. 61:155-188.PubMedGoogle Scholar
  52. Raw, A. S. and Yu, L. X. (ed.). (2004). Pharmaceutical solid polymorphism in drug development and regulation. Adv. Drug Deliv. Rev. 56:235-418.CrossRefGoogle Scholar
  53. Reinstein, J. A. and Higuchi, T. (1958). Examination of the physical chemical basis for the isoniazid-p-aminosalicylic acid combination. J. Am. Pharm. Assoc. 47:749-752.Google Scholar
  54. Ritschel, W. A. (1996). Microemulsion technology in the reformulation of cyclosporine: the reason behind the pharmacokinetic properties of Neoral. Clin. Transplant. 10:364-373.PubMedGoogle Scholar
  55. Rohatagi, S., Rhodes, G. R., and Chaikin, P. (1999). Absolute oral versus inhaled bioavail-ability: significance for inhaled drugs with special reference to inhaled glucocorticoids. J. Clin. Pharmacol. 39:661-663.CrossRefPubMedGoogle Scholar
  56. Rowland, M. and Tozer, T. N. (1989). Clinical Pharmacokinetics: Concepts and Applications, 2nd ed. Lea & Febiger, Philadelphia.Google Scholar
  57. Sai, Y. (2005). Biochemical and molecular pharmacological aspects of transporters as determinants of drug disposition. Drug Metab. Pharmacokinet. 20:91-99.CrossRefPubMedGoogle Scholar
  58. Shefter, E. and Higuchi, T. (1963). Dissolution behavior of crystalline solvated and nonsolvated forms of some pharmaceuticals. J. Pharm. Sci. 52:781-791.CrossRefPubMedGoogle Scholar
  59. Shek, E., Higuchi, T., and Bodor, N. (1976). Improved delivery through biological mem-branes. 3. Delivery of N -methylpyridinium-2-carbaldoxime chloride through the blood-brain barrier in its dihydropyridine pro-drug form. J. Med. Chem. 19:113-117.CrossRefPubMedGoogle Scholar
  60. Shou, M., Lin, Y., Lu, P., Tang, C., Mei, Q., Cui, D., Tang, W., Ngui, J. S., Lin, C. C., Singh, R., Wong, B. K., Yergey, J. A., Lin, J. H., Pearson, P. G., Baillie, T. A., Rodrigues, A. D., and Rushmore, T. H. (2001). Enzyme kinetics of cytochrome P450-mediated reactions. Curr. Drug Metab. 2:17-36.CrossRefPubMedGoogle Scholar
  61. Shyu, W. C., Mayol, R. F., Pfeffer, M., Pittman, K. A., Gammans, R. E., and Barbhaiya, R. H. (1993). Biopharmaceutical evaluation of transnasal, sublingual, and buccal disk dosage forms of butorphanol. Biopharm. Drug Dispos. 14:371-379.CrossRefPubMedGoogle Scholar
  62. Singhal, D. and Curatolo, W. (2004). Drug polymorphism and dosage form design: a practical perspective. Adv. Drug Deliv. Rev. 56:335-347.CrossRefPubMedGoogle Scholar
  63. Song, Y., Wang, Y., Thakur, R., Meidan, V. M., and Michniak, B. (2004). Mucosal drug delivery: membranes, methodologies, and applications. Crit. Rev. Ther. Drug Carrier Syst. 21:195-256.CrossRefPubMedGoogle Scholar
  64. Stella, V. J., Charman, W. N., and Naringrekar, V. H. (1985). Prodrugs. Do they have advantages in clinical practice? Drugs 29:455-473.CrossRefPubMedGoogle Scholar
  65. Sun, D., Yu, L. X., Hussain, M. A., Wall, D. A., Smith, R. L., and Amidon, G. L. (2004). In vitro testing of drug absorption for drug ‘developability’ assessment: forming an inter-face between in vitro preclinical data and clinical outcome. Curr. Opin. Drug Discov.Devel. 7:75-85.PubMedGoogle Scholar
  66. Varia, S. A. and Stella, V. J. (1984). Phenytoin prodrugs V: in vivo evaluation of some water-soluble phenytoin prodrugs in dogs. J. Pharm. Sci. 73:1080-1087.CrossRefPubMedGoogle Scholar
  67. Venkatesh, S. and Lipper, R. A. (2000). Role of the development scientist in compound lead selection and optimization. J. Pharm. Sci. 89:145-154.CrossRefPubMedGoogle Scholar
  68. Verreck, G., Vandecruys, R., De Conde, V., Baert, L., Peeters, J., and Brewster, M. E. (2004). The use of three different solid dispersion formulations - melt extrusion, film-coated beads, and a glass thermoplastic system - to improve the bioavailability of a novel microsomal triglyceride transfer protein inhibitor. J. Pharm. Sci. 93:1217-1228.CrossRefPubMedGoogle Scholar
  69. Woolf, H. B. (ed.). (1981). Webster’s New Collegiate Dictionary, G. & C. Merriam Co., Springfield.Google Scholar
  70. Yang, C., Tirucherai, G. S., and Mitra, A. K. (2001). Prodrug based optimal drug delivery via membrane transporter/receptor. Expert Opin. Biol. Ther. 1:159-175.CrossRefPubMedGoogle Scholar
  71. Zhou, R., Moench, P., Heran, C., Lu, X., Mathias, N., Faria, T. N., Wall, D. A., Hussain, M. A., Smith, R. L., and Sun, D. (2005). pH-dependent dissolution in vitro and absorption in vivo of weakly basic drugs: development of a canine model. Pharm. Res. 22: 188-192.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nancy P. Barbour
    • 1
  • Robert A. Lipper
    • 1
  1. 1.Bristol-Myers Squibb CompanyNew BrunswickUSA

Personalised recommendations