Molecular Mechanisms of Environmental Atherogenesis

  • Kimberly P. Miller
  • Kenneth S. Ramos

Cardiovascular diseases (CVD) are the leading cause of death in both males and females in the United States, and are classified into four major forms: coronary heart disease (CHD), cerebrovascular disease (stroke), hypertensive disease (high blood pressure), and rheumatic fever/rheumatic heart disease. Over 70 million Americans (1 in 4) have one or more types of cardiovascular disease, and in 2002, 38% of all deaths in the U.S. were attributed to cardiovascular diseases, equal to 1 of every 2.6 deaths. In fact, fatalities due to cardiovascular diseases each year are about equal to the next five leading causes of death combined: cancer, chronic lower respiratory diseases, accidents, diabetes mellitus, and pneumonia/influenza. Based on age-adjusted statistics, cardiovascular disease targets 34.3% of male and 32.4% of female non-Hispanic whites; 41.1% of male and 44.7% of female non-Hispanic blacks; and 29.2% of male and 29.3% of female Mexican Americans. According to the Centers for Disease Control and National Center for Health Statistics (CDC/NCHS), if all forms of major cardiovascular diseases were eliminated, life expectancy of the U.S. population would rise by almost 7 years.


Vascular Smooth Muscle Cell Redox Cycling Fatty Streak Aryl Hydrocarbon Receptor Signaling Toxicol Environ Health 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agency for Toxic Substances and Disease Registry. Toxicological Profile for Polycyclic Aromatic Hydrocarbons. ATSDR, US Public Health Service, Atlanta, GA, 1990.Google Scholar
  2. 2.
    Albert RE, Vanderlaan M, Burns FJ, Nishizumi M. Effects of carcinogens on chicken atherosclerosis. Cancer Res 1977;37:2232–2235.PubMedGoogle Scholar
  3. 3.
    Alejandro NF, Parrish AR, Bowes III RC, Burghardt RC, Ramos KS. Phenotypic profiles of cultured glomerular cells following repeated cycles of hydrocarbon injury. Kidney Int 2000;57:1571–1580.PubMedCrossRefGoogle Scholar
  4. 4.
    Alexander RW. Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension 1995;25:155–161.PubMedGoogle Scholar
  5. 5.
    American Heart Association. (2005) Heart Disease and Stroke Statistics — 2005 Update. American Heart Association, Dallas, Texas.Google Scholar
  6. 6.
    Andrews NC, Erdjument-Bromage H, Davidson MB, Tempst P, Orkin SH. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 1993;362:722–727.PubMedCrossRefGoogle Scholar
  7. 7.
    Asman DC, Takimoto K, Pitot HC, Dunn TJ, Lindahl R. Organization and characterization of the rat class 3 aldehyde dehydrogenase gene. J Biol Chem 1993;268:12530–12536.PubMedGoogle Scholar
  8. 8.
    Auge N, Escargueil-Blanc I, Lajoie-Mazenc I, Suc I, Andrieu-Abadie N, Peiraggi MT, Chatelut M, Thiers JC, Jaffrezou JP, Laurent G, Levade T, Negre-Salvayre A, Salvayre R. Potential role for ceramide in mitogen-activated protein kinase activation and proliferation of vascular smooth muscle cells induced by oxidized low density lipoprotein. J Biol Chem 1998;273:12893–12900.PubMedCrossRefGoogle Scholar
  9. 9.
    Barbacid M. Ras genes. Annu Rev Biochem 1987;56:779–827.PubMedCrossRefGoogle Scholar
  10. 10.
    Barhoumi R, Mouneimne Y, Ramos KS, Safe SH, Phillips TD, Centonze VE, Ainley C, Gupta MS, Burghardt RC. Analysis of benzo[a]pyrene partitioning and cellular homeostasis in a rat liver cell line. Toxicol Sci 2000;53:264–270.PubMedCrossRefGoogle Scholar
  11. 11.
    Baum EJ. Occurrence and surveillance of polycyclic aromatic hydrocarbons. In Gelboin HV, Ts’o POP (Eds). Polycyclic Hydrocarbons and Cancer. Academic Press, New York: Academic Press, 1978, pp. 45–70.Google Scholar
  12. 12.
    Benditt EP, Benditt JM. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci USA 1973;70:1753–1756.PubMedCrossRefGoogle Scholar
  13. 13.
    Benditt EP. Evidence for a monoclonal origin of human atherosclerotic plaques and some implications. Circulation 1974;50:650–652.PubMedGoogle Scholar
  14. 14.
    Bergelson S, Daniel V. Cooperative interaction between ETS and AP-1 transcription factors regulates induction of glutathione S-transferase Ya gene expression. Biochem Biophys Res Comm 1994;200:290–297.PubMedCrossRefGoogle Scholar
  15. 15.
    Beutler E, Yeh M, Fairbanks VF. The normal human female as a mosaic of X-chromosome activity: studies using the gene for G-6-PD deficiency as a marker. Proc Natl Acad Sci USA 1962;48:9–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Bohmann D, Bos TJ, Admon A, Nishimura T, Vogt PK, Tjian R. Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science 1987;238:1386–1392.PubMedCrossRefGoogle Scholar
  17. 17.
    Bolli R. Oxygen-derived free radicals and postischemic myocardial dysfunction (‘stunned myocardium’). J Am Coll Cardiol 1988;12:239–249.PubMedGoogle Scholar
  18. 18.
    Bond JA, Omiecinski CJ, Juchau MR. Kinetics, activation, and induction of aortic mono-oxygenases–Biotransformation of benzo[a]pyrene. Biochem Pharmacol 1979;28:305–311.PubMedCrossRefGoogle Scholar
  19. 19.
    Bond JA, Gown AM, Yang HL, Benditt EP, Juchau MR. Further investigation of the capacity of polynuclear aromatic hydrocarbons to elicit atherosclerotic lesions. J Toxicol Environ Health 1981;7:327–335.PubMedCrossRefGoogle Scholar
  20. 20.
    Booth J, Sims P. Different pathways involved in the metabolism of the 7, 8- and 9, 10-dihydrodiols of benzo[a]pyrene. Biochem Pharmacol 1976;25:979–980.PubMedCrossRefGoogle Scholar
  21. 21.
    Borgen A, Darvey H, Castagnoli N, Crocker TT, Rasmussen RE, Wang IT. Metabolic conversion of benzo[a]pyrene by Syrian hamster liver microsomes and binding metabolites to deoxyribonucleic acid. J Med Chem 1973;16:502–506.PubMedCrossRefGoogle Scholar
  22. 22.
    Borm PJ, Knaapen AM, Schins RP, Godschalk RW, Schooten FJ. Neutrophils amplify the formation of DNA adducts by benzo[a]pyrene in lung target cells. Environ Health Perspect 1997;105(Suppl 5):1089–1093.PubMedCrossRefGoogle Scholar
  23. 23.
    Boyle WJ, Smocal T, Defize LHK, Angel P, Woodgett JR, Karin M, Hunter T. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 1991;64:573–584.PubMedCrossRefGoogle Scholar
  24. 24.
    Bral CM, Ramos KS. Identification of benzo[a]pyrene-inducible cis-acting elements within c-Ha-ras transcriptional regulatory sequences. Mol Pharmacol 1997;52:974–982.PubMedGoogle Scholar
  25. 25.
    Bresnick E, Stoming TA, Vaught JB, Thakkar DR, Jerina DM. Nuclear metabolism of benzo[a]pyrene and (±)-trans-7, 8-dihydroxy-7, 8-dihydro-benzo[a]pyrene. Arch Biochem Biophys 1977;183:31–37.PubMedCrossRefGoogle Scholar
  26. 26.
    Burton KP, McCord JM, Ghai G. Myocardial alterations due to free radical generation. Am J Physiol 1984;246:H776–H783.PubMedGoogle Scholar
  27. 27.
    Capdevila J, Estabrook RW, Prough RA. The microsomal metabolism of benzo[a]pyrene phenols. Biochem Biophys Res Commun 1978;82:518–525.PubMedCrossRefGoogle Scholar
  28. 28.
    Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: Evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 1987;84:7725–7729.PubMedCrossRefGoogle Scholar
  29. 29.
    Cavalieri EL, Rogan EG. The approach to understanding aromatic hydrocarbon carcinogenesis: The central role of radical cations in metabolic activation. Pharmacol Ther 1992;55:183–199.PubMedCrossRefGoogle Scholar
  30. 30.
    Cavarocchi NC, England MD, O’Brien JF, Solis E, Russo P, Schaff HV, Orszulak TA, Pluth JR, Kaye MP. Superoxide generation during cardiopulmonary bypass: Is there a role for vitamin E? J Surg Res 1986;40:519–527.PubMedCrossRefGoogle Scholar
  31. 31.
    Chan JY, Han X, Kan YW. Cloning of Nrf1, and NF-E2-related transcription factor, by genetic selection in yeast. Proc Natl Acad Sci USA 1993;90:11371–11375.PubMedCrossRefGoogle Scholar
  32. 32.
    Chen X-L, Medford RM. Oxidation–reduction sensitive regulation of vascular inflammatory gene expression. In: Pearson JA (Ed). Vascular Adhesion Molecules and Inflammation. Basel: Birkhauser Verlag, 1999; pp. 161–178.Google Scholar
  33. 33.
    Chen Y-H, Ramos KS. Negative regulation of rat GST-Ya via antioxidant/electrophile response element is directed by a C/EBP-like site. Biochem Biophys Res Commun 1999;265: 18–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen Y-H, Ramos KS. A CCAAT/Enhancer-binding protein site within antioxidant/electrophile response element along with CREB-binding protein participate in the negative regulation of rat GST-Ya gene in vascular smooth muscle cells. J Biol Chem 2000;275: 27366–27376.PubMedGoogle Scholar
  35. 35.
    Chesis PL, Levin DE, Smith MT, Ernster L, Ames BN. Mutagenicity of quinones: Pathways of metabolic activation and detoxification. Proc Natl Acad Sci USA 1984;81:1696–1700.PubMedCrossRefGoogle Scholar
  36. 36.
    Chin JH, Azhar S, Hoffman BB. Inactivation of endothelium-derived relaxing factor by oxidized lipoproteins. J Clin Invest 1992;89:10–18.PubMedCrossRefGoogle Scholar
  37. 37.
    Committee on Biologic Effects of Atmospheric Pollutants. Particulate Polycyclic Organic Matter. Div Med Sci Natl Res Council, Washington, DC: National Academy of Science, 1972.Google Scholar
  38. 38.
    Cornhill JF, Barrett WA, Herderick EE, Mahley RW, Fry DL. Topographic study of sudanophilic lesions in cholesterol-fed minipigs by image analysis. Arteriosclerosis 1985;5:415–426.PubMedGoogle Scholar
  39. 39.
    Cosentino F, Sill JC, Katusic ZS. Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension 1994;23:229–235.PubMedGoogle Scholar
  40. 40.
    Coso OA, Chiariello M, Yu J-C, Teramoto H, Crespo P, Xu N, Miki T, Gutkind JS. The small GTP-binding proteins Rac1 and Cdc42 regualte the activity of the JNK/SAPK signaling pathway. Cell 1995;81:1137–1146.PubMedCrossRefGoogle Scholar
  41. 41.
    Denison MS, Fisher JM, Whitlock JP Jr. Inducible, receptor-dependent protein-DNA interactions at a dioxin-responsive transcriptional enhancer. Proc Natl Acad Sci USA 1988a;85: 2528–2532.PubMedCrossRefGoogle Scholar
  42. 42.
    Denison MS, Fisher JM, Whitlock Jr JP. The DNA recognition site for the dioxin-Ah receptor complex. J Biol Chem 1988b;263:17221–17224.PubMedGoogle Scholar
  43. 43.
    Dérijard B, Hibi M, Wu I-H, Barrett T, Su B, Deng T, Karin M, Davis RJ. JNK1: A protein kinase stimulated by UV light and Ha-ras that binds and phosphorylates the c-Jun activation domain. Cell 1994;76:1025–1037.PubMedCrossRefGoogle Scholar
  44. 44.
    Dhakshinamoorthy S, Jaiswal AK. Functional characterization and role of Inrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P) H:quinone oxidoreductase1 gene. Oncogene 2001;20:3906–3917.PubMedCrossRefGoogle Scholar
  45. 45.
    Diamond JR, Karnovsky MJ. Focal and segmental glomerulosclerosis: analogies to atherosclerosis. Kidney Int 1988;33:917–924.PubMedCrossRefGoogle Scholar
  46. 46.
    Dieter MZ, Freshwater SL, Solis WA, Nebert DW, Dalton TP. Tyrphostin AG879, a tyrosine kinase inhibitor: Prevention of transcriptional activation of the electrophile and the aromatic hydrocarbon response elements. Biochem Pharmacol 2001;61:215–225.PubMedCrossRefGoogle Scholar
  47. 47.
    DiGiovanni J, Gill RD, Nettikumara AN, Colby AB, Reiners Jr JJ. Effect of extracellular calcium concentration on the metabolism of polycyclic aromatic hydrocarbons by cultured mouse keratinocytes. Cancer Res 1989;49:5567–5574.PubMedGoogle Scholar
  48. 48.
    Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P. Direct evidence that sulfhydryl groups of Keap l are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 2002;99:11908–11913.PubMedCrossRefGoogle Scholar
  49. 49.
    Doan TN, Gentry DL, Taylor AA, Elliott SJ. Hydrogen peroxide activates agonist-sensitive Ca2+-flux pathways in canine venous endothelial cells. Biochem J 1994;297:209–215.PubMedGoogle Scholar
  50. 50.
    Du MQ, Carmichael PL, Phillips DH. Induction of activating mutations in the human c-Ha-ras1 proto-oncogene by oxygen free radicals. Mol Carcinog 1994;11:170–175.PubMedCrossRefGoogle Scholar
  51. 51.
    Eberhart J, Coffing SL, Anderson JN, Marcus C, Kalogeris TJ, Baird WM, Park SS, Gelboin HV. The time-dependent increase in the binding of benzo[a]pyrene to DNA through (+)-anti-benzo[a]pyrene-7, 8-diol-9, 10-epoxide in primary rat hepatocyte cultures results from induction of cytochrome P450IA1 by benzo[a]pyrene treatment. Carcinogenesis 1992;13:297–301.PubMedCrossRefGoogle Scholar
  52. 52.
    Ellis RW, DeFeo D, Shih TY, Gonda MA, Young HA, Tsuchida N, Lowy DR, Scolnick EM. The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes. Nature 1981;292:506–511.PubMedCrossRefGoogle Scholar
  53. 53.
    Esterbauer H, Quehenberger O, Jürgens G. Oxidation of human low density lipoprotein with special attention to aldehydic lipid peroxidation products. In: Rice-Evans C, Halliwell B (Eds). Free Radicals: Methodology and Concepts. London: Richelieu Press, 1988;pp. 243–268.Google Scholar
  54. 54.
    Faggiotto A, Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 1984;4:341–356.PubMedGoogle Scholar
  55. 55.
    Faggiotto A, Ross R, Harker L. Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 1984;4:323–340.PubMedGoogle Scholar
  56. 56.
    Fahl WE, Jefcoate CR, Kasper CB. Characteristics of benzo[a]pyrene metabolism and cytochrome P-450 heterogeneity in rat liver nuclear envelope and comparison to microsomal membrane. J Biol Chem 1978;253:3106–3113.PubMedGoogle Scholar
  57. 57.
    Favreau LV, Pickett CB. Transcriptional regulation of the rat NAD(P) H:quinone reductase gene. Identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. J Biol Chem 1991;266:4556–4561.PubMedGoogle Scholar
  58. 58.
    Favreau LV, Pickett CB. The rat quinone reductase antioxidant response element. J Biol Chem 1995;270:24468–24474.PubMedCrossRefGoogle Scholar
  59. 59.
    Feldman G, Remsen J, Shinohara K, Cerutti P. Excisability and persistence of benzo[a]pyrene DNA adducts in epithelioid human lung cells. Nature 1978;274:796–798.PubMedCrossRefGoogle Scholar
  60. 60.
    Feramisco JR, Gross M, Kamata T, Rosenberg M, Sweet RW. Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell 1984;38:109–117.PubMedCrossRefGoogle Scholar
  61. 61.
    Ferrari R, Ceconi C, Curello S, Guarnieri C, Caldarera CM, Alberini A, Visioli O. Oxygen-mediated myocardial damage during ischaemia and reperfusion: Role of the cellular defenses against oxygen toxicity. J Mol Cell Cardiol 1985;17:937–945.PubMedCrossRefGoogle Scholar
  62. 62.
    Ferrari R, Agnoletti L, Comini L, Gaia G, Bachetti T, Cargnoni A, Ceconi C, Curello S, Visioli O. Oxidative stress during myocardial ischemia and heart failure. Eur Heart J 1998;19:B2–B11.PubMedGoogle Scholar
  63. 63.
    Fialkow PJ. The origin and development of human tumors studed with cell markers. N Engl J Med 1974;291:26–35.PubMedGoogle Scholar
  64. 64.
    Flowers NL, Miles PR. Alterations of pulmonary benzo[a]pyrene metabolism by reactive oxygen metabolites. Toxicology 1991;68:259–274.PubMedCrossRefGoogle Scholar
  65. 65.
    Forrester K, Almoguera C, Han K, Grizzle WE, Perucho M. Detection of high incidence of K-ras oncogenes during human carciongenesis. Nature 1987;327:298–303.PubMedCrossRefGoogle Scholar
  66. 66.
    Friguet B, Stadtman ER, Szweda L. Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. J Biol Chem 1994;269:21639–21643.PubMedGoogle Scholar
  67. 67.
    Friling RS, Bensimon A, Tichauer Y, Daniel V. Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc Natl Acad Sci USA 1990;87:6258–6262.PubMedCrossRefGoogle Scholar
  68. 68.
    Friling RS, Bergelson S, Daniel V. Two adjacent AP-1-like binding sites form the electophile-responsive element of the murine glutathione S-transferase Ya subunit gene. Proc Natl Acad Sci USA 1992;9:668–672.CrossRefGoogle Scholar
  69. 69.
    Frost J, Xu S, Hutchison M, Marcus S, Cobb MH. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members. Mol Cell Biol 1996;16:3707–3713.PubMedGoogle Scholar
  70. 70.
    Fujisawa-Sehara A, Yamane M, Fujii-Kuriyama Y. A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm: Its possible translocation to the nucleus. Proc Natl Acad Sci USA 1988;5:5859–5863.CrossRefGoogle Scholar
  71. 71.
    Gambari R, Spandidos DA. Chinese hamster lung cells transformed with the human Ha-ras-1 oncogene: 5-azacytidine mediated induction to adipogenic conversion. Cell Biol Int Rep 1986;10:173.CrossRefGoogle Scholar
  72. 72.
    Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 1999;11:211–218.PubMedCrossRefGoogle Scholar
  73. 73.
    Gelboin HV. Benzo[a]pyrene metabolism, activation, and carcinogenesis: Role and regulation of mixed-function oxidases and related enzymes. Physiol Rev 1980;60:1107–1166.PubMedGoogle Scholar
  74. 74.
    Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994;4:1621–1628.CrossRefGoogle Scholar
  75. 75.
    Grech E, Jack CI, Bleasdale C, Jackson MJ, Baines M, Faragher EB, Hind CR, Perry RA. Differential free radical activity after successful and unsuccessful thrombolytic treperfusion in acute myocardial infarction. Coron Artery Dis 1993;4:769–774.PubMedCrossRefGoogle Scholar
  76. 76.
    Gregus Z, Klaassen CD. Mechanisms of toxicity. In: Klaassen C (Ed). Casarett and Doull’s Toxicology, The Basic Science of Poisons, 6th edition. Chap. 3 New York: McGraw-Hill, 2001; pp. 35–82.Google Scholar
  77. 77.
    Gupta M, Singal PK. Time course of structure, function and metabolic changes due to an exogenous source of oxygen metabolites in rat heart. Can J Physiol Pharmacol 1989;67:1549–1559.PubMedGoogle Scholar
  78. 78.
    Haberland ME, Steinbrecher UP. Modified low-density lipoproteins: Diversity and biological relevance in atherogenesis. In: Lusis AJ, Rotter JI, Sparkes RS (Eds). Molecular Genetics of Coronary Artery Disease: Candidate Genes and Processes in Atherosclerosis. Monographs in Human Genetics, Vol. 14. Basel: Karger, 1992; pp. 35–61.Google Scholar
  79. 79.
    Halazonetis TD, Georgopoulos K, Greenberg ME, Leder P. c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 1988;5:917–924.CrossRefGoogle Scholar
  80. 80.
    Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997;100:2153–2157.PubMedCrossRefGoogle Scholar
  81. 81.
    Hattemer-Frey HA, Travis CC. Benzo-a-pyrene: Environmental partitioning and human exposure. Toxicol Ind Health 1997;7:141–157.Google Scholar
  82. 82.
    Hoffmann D, Schmeltz I, Hecht SS, Wynder EL. Tobacco carcinogenesis. In: Gelboin HV, Ts’o POP (Eds). Polycyclic Hydrocarbons and Cancer. New York: Academic Press, 1978; pp. 85–117.Google Scholar
  83. 83.
    Holderman MT, Miller KP, Dangott LJ, Ramos KS. Identification of albumin precursor protein, phi AP3, and s-smooth muscle actin as novel components of redox sensing machinery in vascular smooth muscle cells. Mol Pharmacol 2002;61:1–9.CrossRefGoogle Scholar
  84. 84.
    Hollstein M, McCann J, Angelosanto FA, Nichols WW. Short-term tests for carcinogens and mutagens. Mutat Res 1979;65:133–226.PubMedGoogle Scholar
  85. 85.
    Hough JL, Baird MB, Sfeir GT, Pacini CS, Darrow D, Wheelock C. Benzo[a]pyrene enhances atherosclerosis in White Carneau and Show Racer pigeons. Arterioscler Thromb 1993;13:1721–1727.PubMedGoogle Scholar
  86. 86.
    Huang AL, Berard D, Hager GL. Glucocorticoid regulation of the HaMuSV p21 gene conferred by sequences from mouse mammary tumor virus. Cell 1981;27:245–255.PubMedCrossRefGoogle Scholar
  87. 87.
    Huang H-C, Nguyen T, Pickett CP. Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc Natl Acad Sci USA 2000;97:12475–12480.PubMedCrossRefGoogle Scholar
  88. 88.
    Huberman E, Sachs L, Yang SK, Gelboin HV. Identification of mutagenic metabolites of benzo[a]pyrene in mammalian cells. Proc Natl Acad Sci USA 1976;3:607–611.CrossRefGoogle Scholar
  89. 89.
    Inamdar NM, Ahn YI, Alam J. The heme-responsive element of the mouse heme oxygenase-1 gene is an extended AP-1 binidng site that resembles the recognition sequences for MAF and NF-E2 transcription factors. Biochem Biophys Res Commun 1996;221:570–576.PubMedCrossRefGoogle Scholar
  90. 90.
    Indolfi C, Avvedimento EV, Rapacciuolo A, Di Lorenzo E, Esposito G, Stabile E, Feliciello A, Mele E, Giuliano P, Condorelli G. Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo. Nat Med 1995;1:541–545.PubMedCrossRefGoogle Scholar
  91. 91.
    Ishii S, Kadonaga JT, Tjian R, Brady JN, Merlino GT, Pastan I. Binding of the Sp1 transcription factor by the human Harvey ras 1 proto-oncogene promoter. Science 1986;232:1410–1413.PubMedCrossRefGoogle Scholar
  92. 92.
    Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. An Nrf2/Small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997;236:313–322.PubMedCrossRefGoogle Scholar
  93. 93.
    Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 1999;13:76–86.PubMedCrossRefGoogle Scholar
  94. 94.
    Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 2003;8:379–391.PubMedCrossRefGoogle Scholar
  95. 95.
    Ivanovic V, Weinstein IB. Benzo[a]pyrene and other inducers of cytochrome P1–450 inhibit binding of epidermal growth factor to cell surface receptors. Carcinogenesis 1982;3:505–510.PubMedCrossRefGoogle Scholar
  96. 96.
    Jaiswal AK. Human NAD(P) H:quinone oxidoreductase2: Gene structure, activity, and tissue specific expression. J Biol Chem 1994;269:14502–14508.PubMedGoogle Scholar
  97. 97.
    Jones KA, Kadonaga JT, Rosenfeld PJ, Kelly TJ, Tjian R. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 1987;48:79–89.PubMedCrossRefGoogle Scholar
  98. 98.
    Jope RS, Song L, Grimes CA, Zhang L. Oxidative stress oppositely modulates protein tyrosine phosphorylation stimulated by muscarinic G protein-coupled and epidermal growth factor receptors. J Neurosci Res 1999;55:329–340.PubMedCrossRefGoogle Scholar
  99. 99.
    Joseph P, Jaiswal AK. NAD(P) H:quinone oxidoreductase1 (DT diaphorase) specifically prevents the formation of benzo[a]pyrene quinone-DNA adducts generated by cytochrome P450IA1 and P450 reductase. Proc Natl Acad Sci USA 1994;91:8413–8417.PubMedCrossRefGoogle Scholar
  100. 100.
    Jowsey IR, Jiang Q, Itoh K, Yamamoto M, Hayes JD. Expression of the aflatoxin B1–8, 9-epoxide-metabolizing murine glutathione S-transferase A3 subunit is regulated by the Nrf2 transcription factor through an antioxidant response element. Mol Pharmacol 2003;64:1018–1028.PubMedCrossRefGoogle Scholar
  101. 101.
    Kadlubar FF, Badawi AF. Genetic susceptibility and carcinogen-DNA adduct formation in human urinary bladder carcinogenesis. Toxicol Lett 1995;82–83:627–632.PubMedCrossRefGoogle Scholar
  102. 102.
    Kajstura J, Cheng W, Reiss K, Clark WW, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 1996;74:86–107.PubMedGoogle Scholar
  103. 103.
    Kang KW, Ryu JH, Kim SG. The essential role of phosphatidylinositol 3-kinase and of p38 mitogen-activated protein kinase activation in the antioxidant response element-mediated rGSTA2 induction by decreased glutathione in H4IIE hepatoma cells. Mol Pharmacol 2000;58:1017–1025.PubMedGoogle Scholar
  104. 104.
    Kang KW, Cho MK, Lee CH, Kim SG. Activation of phosphatidylinositol 3-kinase and Akt by tert-butylhydroquinone is responsible for antioxidant response element-mediated rGSTA2 induction in H4IIE cells. Mol Pharmacol 2001;59:1147–1156.PubMedGoogle Scholar
  105. 105.
    Kapitulnik J, Levin W, Conney AH, Yagi H, Jerina DM. Benzo[a]pyrene 7, 8-dihydrodiol is more carcinogenic than benzo[a]pyrene in newborn mice. Nature 1977;266:378–380.PubMedCrossRefGoogle Scholar
  106. 106.
    Kasper C. Biochemical distinctions between the nuclear and microsomal membranes from rat hepatocytes. J Biol Chem 1971;246:577–581.PubMedGoogle Scholar
  107. 107.
    Kataoka K, Noda M, Nishizawa M. Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Mol Cell Biol 1994;14: 700–712.PubMedGoogle Scholar
  108. 108.
    Kerzee JK, Ramos KS. Activation of c-Ha-ras by benzo[a]pyrene in vascular smooth muscle cells involves redox stress and aryl hydrocarbon receptor. Mol Pharmacol 2000;58: 152–158.PubMedGoogle Scholar
  109. 109.
    Khandwala AS, Kasper CB. Preferential induction of aryl hydroxylase activity in rat liver nuclear envelope by 3-methylcholanthrene. Biochem Biophys Res Commun 1973;54: 1241–1246.PubMedCrossRefGoogle Scholar
  110. 110.
    Kim KB, Lee BM. Oxidative stress to DNA, protein, and antioxidant enzymes (superoxide dismutase and catalase) in rats treated with benzo[a]pyrene. Cancer Lett 1997;113:205–212.PubMedCrossRefGoogle Scholar
  111. 111.
    King HW, Thompson MH, Brookes P. The role of 9-hydroxy-benzo[a]pyrene in the microsome mediated binding of benzo[a]pyrene to DNA. Int J Cancer 1976;18:339–344.PubMedCrossRefGoogle Scholar
  112. 112.
    Kinoshita N, Gelboin HV. Beta-glucuronidase catalyzed hydrolysis of benzo[a]pyrene-3-glucuronide and binding to DNA. Science 1978;199:307–309.PubMedCrossRefGoogle Scholar
  113. 113.
    Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai C. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci USA 1987;84:5928–5931.PubMedCrossRefGoogle Scholar
  114. 114.
    Kitamura S. Effects of cigarette smoking on metabolic events in the lung. Environ Health Perspect 1987;72:283–296.PubMedCrossRefGoogle Scholar
  115. 115.
    Kodama M, Ioki Y, Nagata C. Binding of benzo[a]pyrene semiquinone radicals with DNA and polynucleotides. Gann 1977;68:253–254.PubMedGoogle Scholar
  116. 116.
    Kovary K, Bravo R. Expression of different Jun and Fos proteins during the G0-to-G1 transition in mouse fibroblasts: In vitro and in vivo associations. Mol Cell Biol 1991;11:2451–2459.PubMedGoogle Scholar
  117. 117.
    Kramer JH, Arroyo CM, Dickens BF, Weglicki WB. Spin-trapping evidence that graded myocardial ischemis alters post-ischemic superoxide production. Free Radic Biol Med 1987;3:153–159.PubMedCrossRefGoogle Scholar
  118. 118.
    Krzywanska E, Piekarski L. Benzo[a]pyrene free radicals formation in the presence of butylated hydroxyanisole and their possible importance in carcinogenesis. Neoplasma 1977;24:395–400.PubMedGoogle Scholar
  119. 119.
    Kunsch C, Luchoomun J, Grey JY, Olliff LK, Saint LB, Arrendale RF, Wasserman MA, Saxena U, Medford RM. Selective inhibition of endothelial and monocyte redox-sensitive genes by AGI-1067: a novel antioxidant and anti-inflammatory agent. J Pharmacol Exp Ther 2004;308:820–829.PubMedCrossRefGoogle Scholar
  120. 120.
    Kunsch C, Medford RM. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 1999;85:753–766.PubMedGoogle Scholar
  121. 121.
    Lee W, Haslinger A, Karin M, Tjian R. Two factors that bind and activate the human metallothionein IIA gene in vitro also interact with the SV40 promoter and enhancer regions. Nature 1987;325:368–372.PubMedCrossRefGoogle Scholar
  122. 122.
    Lee W, Keller EB. Regulatory elements mediating transcription of the human Ha-ras gene. J Mol Biol 1991;220:599–611.PubMedCrossRefGoogle Scholar
  123. 123.
    Lesko S, Caspary W, Lorentzen R, Ts’o POP. Enzymic formation of 6-oxobenzo[a]pyrene radical in rat liver homogenates from carcinogenic benzo[a]pyrene. Biochemistry 1975;14:3978–3984.CrossRefGoogle Scholar
  124. 124.
    Lesko SA, Lorentzen RJ. Benzo[a]pyrene dione-benzo[a]pyrene diol oxidation-reduction couples: Involvement in DNA damage, cellular toxicity, and carcinogenesis. J Toxicol Environ Health 1985;16:679–691.PubMedCrossRefGoogle Scholar
  125. 125.
    Levin W, Wood AW, Wislocki PG, Kapitulnik J, Yagi H, Jerina DM, Conney AH. (±)-Trans-7, 8-dihydroxy-7, 8-dihydrobenzo[a]pyrene: A potent skin carcinogen when applied topically to mice. Proc Natl Acad Sci USA 1976;73:3867–3871.PubMedCrossRefGoogle Scholar
  126. 126.
    Levin W, Wood AW, Wislocki PG, Chang RL, Kapitulnik J, Mah HD, Yagi H, Jerina DM, Conney AH. Mutagenicity and carcinogenicity of benzo[a]pyrene derivatives. In: Gelboin HV, Ts’o POP, (Eds). Polycyclic Hydrocarbons and Cancer. New York: Academic Press, 1978; pp. 189–202.Google Scholar
  127. 127.
    Li Y, Jaiswal AK. Identification of Jun-B as third member in human antioxidant response element-nuclear proteins complex. Biochem Biophys Res Commun 1992a;188:992–996.PubMedCrossRefGoogle Scholar
  128. 128.
    Li Y, Jaiswal AK. Regulation of human NAD(P) H:quinone oxidoreductase gene. Role of AP-1 binding site contained within human antioxidant response element. J Biol Chem 1992b;267:15097–15104.Google Scholar
  129. 129.
    Li Y, Jaiswal AK. Human antioxidant-response-element-mediated regulation of type 1 NAD(P) H:quinone oxidoreductase gene expression: effect of sulfhydryl modifying agents. Eur J Biochem 1994;226:31–39.PubMedCrossRefGoogle Scholar
  130. 130.
    Linder D, Gartler SM. Glucose-6-phosphate dehydrogenase mosaicism: Utilization as a cell marker in the study of leiomyomas. Science 1965;150:67–69.PubMedCrossRefGoogle Scholar
  131. 131.
    Loktionov A, Hollstein M, Martel N, Galendo D, Cabral JRP, Tomatis L, Yamasaki H. Tissue-specific activating mutations of Ha- and Ki-ras oncogenes in skin, lung, and liver tumors induced in mice following transplacental exposure to DMBA. Mol Carcinog 1990;3:134–140.PubMedCrossRefGoogle Scholar
  132. 132.
    Lorentzen RJ, Ts’o POP. Benzo[a]pyrenedione/benzo[a]pyrenediol oxidation-reduction couples and the generation of reactive reduced molecular oxygen. Biochemistry 1977;16:1467–1473.PubMedCrossRefGoogle Scholar
  133. 133.
    Lu J, Lee W, Jiang C, Keller EB. Start site selection by Sp1 in the TATA-less human Ha-ras promoter. J Biol Chem 1994;269:5391–5402.PubMedGoogle Scholar
  134. 134.
    Lyon MF. Chromosomal and subchromosomal inactivation. Annu Rev Genet 1968;2:31–51.CrossRefGoogle Scholar
  135. 135.
    Mackness MI, Abbott CA, Arrol S, Durrington PN. The role of high-density lipoprotein and lipid-soluble antioxidant vitamins in inhibiting low-density lipoprotein oxidation. Biochem J 1993a;294:829–834.PubMedGoogle Scholar
  136. 136.
    Mackness MI, Arrol S, Abbott CA, Durrington PN. Is paraoxonase related to atherosclerosis. Chem Biol Interact 1993b;87:161–171.PubMedCrossRefGoogle Scholar
  137. 137.
    Mackness MI, Durrington PN. Lipid transport and lipoprotein metabolism. In: Rice-Evans C, Bruckdorfer KR (Eds). Oxidative Stress, Lipoproteins and Cardiovascular Dysfunction. London: Portland Press Ltd, 1995; pp. 33–53.Google Scholar
  138. 138.
    Malarkey K, Belham CM, Paul A, Graham A, McLees A, Scott PH, Plevin R. The regulation of tyrosine kinase signaling pathways by growth factor and G-protein-coupled receptors. Biochem J 1995;309:361–375.PubMedGoogle Scholar
  139. 139.
    Malinow MR. Plasma homocysteine and arterial occlusive diseases: A mini-review. Clin Chem 1995;41:173–176.PubMedGoogle Scholar
  140. 140.
    Marshall MS. Ras target proteins in eukaryotic cells. FASEB J 1995;9:1311–1318.PubMedGoogle Scholar
  141. 141.
    Marx J. Forging a path to the nucleus. Science 1993;260:1588–1590.PubMedCrossRefGoogle Scholar
  142. 142.
    Masuda J, Ross R. Atherogenesis during low level hypercholesteolemia in the nonhuman primate. I. Fatty streak formation. Arteriosclerosis 1990a;10:164–177.PubMedGoogle Scholar
  143. 143.
    Masuda J, Ross R. Atherogenesis during low level hypercholesteolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 1990b;10:178–187.PubMedGoogle Scholar
  144. 144.
    Maziere C, Floret S, Santus R, Morliere P, Marcheux V, Maziere JC. Impairment of the EGF signaling pathway by the oxidative stress generated with UVA. Free Radic Biol Med 2003;34:629–636.PubMedCrossRefGoogle Scholar
  145. 145.
    McKay IA, Marshall CJ, Cales C, Hall A. Transformation and stimulation of DNA synthesis in NIH-3T3 cells are a titratable function of normal p21N-ras expression. EMBO J 1986;5: 2617–2621.PubMedGoogle Scholar
  146. 146.
    McMahon M, Itoh K, Yamamoto M, Hayes JD. Keap l-dependent proteasomal degradation of transcription factor Nrf2 contributes to the nagative regulation of antioxidant response element-driven gene expression. J Biol Chem 2003;278:21592–21600.PubMedCrossRefGoogle Scholar
  147. 147.
    McMillan BJ, Bradfield CA. The aryl hydrocarbon receptor is activated by modified low-density lipoprotein. Proc Natl Acad Sci USA 2007;104:1412–1417.PubMedCrossRefGoogle Scholar
  148. 148.
    Mendelson KG, Contois L-R, Tevosian SG, Davis RJ, Paulson KE. Independent regulation of JNK/p38 MAP kinases by metabolic oxidative stress in the liver. Proc Natl Acad Sci USA 1996;93:12908–12913.PubMedCrossRefGoogle Scholar
  149. 149.
    Meyer BK, Perdew GH. Characterization of the AhR-Hsp90-XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization. Biochemistry 1999;38:8907–8917.PubMedCrossRefGoogle Scholar
  150. 150.
    Miller EC, Miller JA. Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 1981;47:2327–2345.PubMedCrossRefGoogle Scholar
  151. 151.
    Miller JA. Carcinogenesis by chemicals: An overview–G.H.A. Clowes Memorial Lecture. Cancer Res 1970;30:559–576.Google Scholar
  152. 152.
    Miller JA, Surh Y-J. Sulfonation in chemical carcinogenesis. In: Kauffman FC (Ed). Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity. Berlin: Springer-Verlag, 1994; pp. 429–457.Google Scholar
  153. 153.
    Miller KP, Chen Y-H, Hastings VL, Bral CM, Ramos KS. Profiles of antioxidant/electrophile response element (ARE/EpRE) nuclear protein binding and c-Ha-ras transactivation in vascular smooth muscle cells treated with oxidative metabolites of benzo[a]pyrene. Biochem Pharmacol 2000;60:1285–1296.PubMedCrossRefGoogle Scholar
  154. 154.
    Miller KP, Ramos KS. DNA sequence determinants of nuclear protein binding to the c-Ha-ras antioxidant/electrophile response element in vascular smooth muscle cells: Identification of Nrf2 and HSP90o as heterocomplex components. Cell Stress Chaperones 2005;10:114–125.PubMedCrossRefGoogle Scholar
  155. 155.
    Minden A, Lin A, Claret F-X, Abo A, Karin M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 1995;81:1147–1157.PubMedCrossRefGoogle Scholar
  156. 156.
    Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP-1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA 1994;91:9926–9930.PubMedCrossRefGoogle Scholar
  157. 157.
    Moinova HR, Mulcahy RT. Up-regulation of the human -glutamylcysteine synthetase regulatory subunit gene involves binding of Nrf-2 to an electrophile response element. Biochem Biophys Res Commun 1999;261:661–668.PubMedCrossRefGoogle Scholar
  158. 158.
    Montano MM, Jaiswal AK, Katzenellenbogen BK. Transcriptional regulation of the human quinone reductase gene by antiestrogen-liganded estrogen receptor-s and estrogen receptor-. J Biol Chem 1998;273:25443–25449.PubMedCrossRefGoogle Scholar
  159. 159.
    Montano MM, Wittmann BM, Bianco NR. Identification and characterization of a novel factor that regulates quinone reductase gene transcriptional activity. J Biol Chem 2000;275: 34306–34313.PubMedCrossRefGoogle Scholar
  160. 160.
    Moodie SA, Willumsen BM, Weber MJ, Wolfman A. Complexes of ras GTP with raf-1 and mitogen-activated protein kinase kinase. Science 1993;260:1658–1661.PubMedCrossRefGoogle Scholar
  161. 161.
    Morel DW, Chisholm GM. Antioxidant treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity. J Lipid Res 1989;30:1827–1834.PubMedGoogle Scholar
  162. 162.
    Mulcahy LS, Smith MR, Stacey DW. Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature 1985;313:241–243.PubMedCrossRefGoogle Scholar
  163. 163.
    Mulcahy RT, Wartman MA, Bailey HH, Gipp JJ. Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J Biol Chem 1997;272: 7445–7454.PubMedCrossRefGoogle Scholar
  164. 164.
    Nadkarni DV, Sayre LM. Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal. Chem Res Toxicol 1995;8:284–291.PubMedCrossRefGoogle Scholar
  165. 165.
    Nagase T, Ueno Y, Ishii S. Transcriptional control of the human Harvey ras proto-oncogene: Role of multiple elements in the promoter region. Gene 1990;94:249–253.PubMedCrossRefGoogle Scholar
  166. 166.
    Nagata C, Kodama M, Ioki Y. Electron spin resonance study of the binding of the 6-oxybenzo[a]pyrene radical and benzo[a]pyrene semiquinone radicals with DNA and polynucleotides. In: Gelboin HV, Ts’o POP (Eds). Polycyclic Hydrocarbons and Cancer. New York: Academic Press, 1978; pp. 247–260.Google Scholar
  167. 167.
    Nakamura K, Hori T, Sato N, Sugie K, Kawakami T, Yodoi J. Redox regulation of a src family protein tyrosine kinase p56lck in T cells. Oncogene 1993;8:3133–3139.PubMedGoogle Scholar
  168. 168.
    Nguyen T, Rushmore TH, Pickett CB. Transcriptional regulation of a rat liver glutathione S-transferase Ya subunit gene. J Biol Chem 1994;269:13656–13662.PubMedGoogle Scholar
  169. 169.
    Nguyen T, Huang HC, Pickett CB. Transcriptional regulation of the antioxidant response element: Activation by Nrf2 and repression by MafK. J Biol Chem 2000;275:15466–15473.PubMedCrossRefGoogle Scholar
  170. 170.
    Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 2003;43: 233–260.PubMedCrossRefGoogle Scholar
  171. 171.
    Nguyen T, Yang CS, Pickett CB. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic Biol Med 2004;37:433–441.PubMedCrossRefGoogle Scholar
  172. 172.
    Nioi P, McMahon M, Itoh K, Yamamoto M, Hayes JD. Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P) H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem J 2003;374: 337–348.PubMedCrossRefGoogle Scholar
  173. 173.
    Nishizuka Y. Studies and perspectives of protein kinase C. Science 1986;233:305–312.PubMedCrossRefGoogle Scholar
  174. 174.
    Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997;337:230–236.PubMedCrossRefGoogle Scholar
  175. 175.
    Ou X, Ramos KS. Benzo[a]pyrene inhibits protein kinase C activity in subcultured rat aortic smooth muscle cells. Chem Biol Interact 1994;93:29–40.PubMedCrossRefGoogle Scholar
  176. 176.
    Ou X, Weber TJ, Chapkin RS, Ramos KS. Interference with protein kinase C-related signal transduction in vascular smooth muscle cells by benzo[a]pyrene. Arch Biochem Biophys 1995;318:122–130.PubMedCrossRefGoogle Scholar
  177. 177.
    Paigen B, Havens MB, Morrow A. Effect of 3-methylcholanthrene on the development of aortic lesions in mice. Cancer Res 1985;45:3850–3855.PubMedGoogle Scholar
  178. 178.
    Parkinson A. Biotransformation of xenobiotics. In: Klaassen CD (Ed). Casarett and Doull’s Toxicology, The Basic Science of Poisons, 6th edition. Chap. 6. New York: McGraw-Hill, 2001;pp. 133–224.Google Scholar
  179. 179.
    Paulson KE, Darnell Jr JE, Rushmore T, Pickett CB. Analysis of the upstream elements of the xenobiotic compound-inducible and positionally regulated glutathione S-transferase Ya gene. Mol Cell Biol 1990;10:1841–1852.PubMedGoogle Scholar
  180. 180.
    Pearson TA, Wang A, Solez K, Heptinstall RH. Clonal characteristics of fibrous plaques and fatty streaks from human aortas. Am J Pathol 1975;81:379–387.PubMedGoogle Scholar
  181. 181.
    Pelkonen O, Boobis AR, Levitt RC, Kouri RE, Nebert DW. Genetic differences in the metabolic activation of benzo[a]pyrene in mice. Attempts to correlate tumorigenesis with mutagenesis in vitro. Pharmacology 1979;18:281–293.PubMedCrossRefGoogle Scholar
  182. 182.
    Pelkonen O, Nebert DW. Metabolism of polycyclic aromatic hydrocarbons: Etiologic role in carcinogenesis. Pharmacol Rev 1982;34:189–222.PubMedGoogle Scholar
  183. 183.
    Peng HB, Libby P, Liao JK. Induction and stabilization of I B-B by nitric oxide mediates inhibition of NF-dB. J Biol Chem 1995;270:14214–14219.PubMedCrossRefGoogle Scholar
  184. 184.
    Penn A, Garte SJ, Warren L, Nesta D, Mindich B. Transforming gene in human atherosclerotic plaque DNA. Proc Natl Acad Sci USA 1986;83:7951–7955.PubMedCrossRefGoogle Scholar
  185. 185.
    Penn A, Snyder C. Arteriosclerotic plaque development is “promoted” by polynuclear aromatic hydrocarbons. Carcinogenesis 1988;9:2185–2189.PubMedCrossRefGoogle Scholar
  186. 186.
    Penn A, Hubbard FC Jr, Parkes JL. Transforming potential is detectable in arteriosclerotic plaques of young animals. Arterioscler Thromb 1991;11:1053–1058.PubMedGoogle Scholar
  187. 187.
    Perkins KK, Dailey GM, Tjian R. Novel Jun- and Fos-related proteins in Drosophila are functionally homologous to enhancer factor AP-1. EMBO J 1988;7:4265–4273.PubMedGoogle Scholar
  188. 188.
    Perry MH, Erlanger MW, Gustafsson TO, Perry EF. Reversal of cadmium-induced hypertension by D-myo-inositol-1, 2, 6-triphosphate. J Toxicol Environ Health 1989;28:151–159.PubMedCrossRefGoogle Scholar
  189. 189.
    Peus D, Vasa RA, Meves A, Pott M, Beyerle A, Squillance K, Pittelkow MR. H2O2 is an important mediator of UVB-induced EGF-receptor phosphorylation in cultured keratinocytes. J Invest Dermatol 1998;110:966–971.PubMedCrossRefGoogle Scholar
  190. 190.
    Pryor WA. Cigarette smoke radical and the role of free radicals in chemical carcinogenicity. Environ Health Perspect 1997;105:875–882.PubMedCrossRefGoogle Scholar
  191. 191.
    Przyklenk K, Kloner RA. Superoxide dismutase plus catalase improve contractile function in the canine model of the ‘stunned myocardium’. Circ Res 1986;58:148–156.PubMedGoogle Scholar
  192. 192.
    Puhl H, Waeg G, Esterbauer H. Inhibition of LDL oxidation by vitamin E and other anitoxidants. Atheroscler Rev 1993;25:277–285.Google Scholar
  193. 193.
    Rahman A, Barrowman JA, Rahimtula A. The influence of bile on the bioavailability of polynuclear aromatic hydrocarbons from the rat intestine. Can J Physiol Pharmacol 1986;64:1214–1218.PubMedGoogle Scholar
  194. 194.
    Ramos KS, McMahon KK, Alipui C, Demick D. Modulation of smooth muscle cell prolliferation by dinitrotoluene. In: Witner CM, Snyder RR, Jollow DJ et al. (Eds). Biologic Reductive Intermediates. Vol 5, New York: Plenum Press, 1990; pp. 805–807.Google Scholar
  195. 195.
    Ramos KS, Bowes RC III, Ou X, Weber TJ. Responses of vascular smooth muscle cells to toxic insult: Cellular and molecular perspectives for environmental toxicants. J Toxicol Environ Health 1994;43:419–440.PubMedCrossRefGoogle Scholar
  196. 196.
    Ramos KS, Parrish AR. Growth-related signaling as a target of toxic insult in vascular smooth muscle cells: Implications in atherogenesis. Life Sci 1995;57:627–635.PubMedCrossRefGoogle Scholar
  197. 197.
    Ramos KS, Zhang Y, Sadhu DN, Chapkin RC. The induction of proliferative phenotypes in vascular smooth muscle cells by benzo[a]pyrene is characterized by upregulation of phosphatidylinositol metabolism and c-Ha-ras gene expression. Arch Biochem Biophys 1996;332:213–222.PubMedCrossRefGoogle Scholar
  198. 198.
    Ramos KS. Redox regulation of c-Ha-ras and osteopontin signaling in vascular smooth muscle cells: Implications in chemical atherogenesis. Annu Rev Pharmacol Toxicol 1999;39:243–265.PubMedCrossRefGoogle Scholar
  199. 199.
    Ramos KS, Melchert RB, Chacon E, Acosta D Jr. Toxic responses of the heart and vascular systems. In: Klaassen CD (Ed). Casarett and Doull’s Toxicology, The Basic Science of Poisons, 6th edition. Chap. 18. New York: McGraw-Hill, 2001; pp. 597–652.Google Scholar
  200. 200.
    Ramos KS, Partridge CR. Atherosclerosis and cancer: flip sides of the neoplastic response in mammalian cells? Cardiovasc Toxicol 2005;5:245–255.PubMedCrossRefGoogle Scholar
  201. 201.
    Rao GN, Berk BC. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 1992;70:593–599.PubMedGoogle Scholar
  202. 202.
    Rao GN. Hydrogen peroxide induces complex formation of SHC-Grb2-SOS with receptor tyrosine kinase and activates ras and extracellular signal-regulated protein kinases group of mitogen activated protein kinases. Oncogene 1996;13:713–719.PubMedGoogle Scholar
  203. 203.
    Recio L, Hsie AW. Glucuronide conjugation reduces the cytotoxicity but not the mutagenicity of benzo[a]pyrene in the CHO/HGPRT assay. Teratog Carcinog Mutagen 1984;4:391–402.PubMedCrossRefGoogle Scholar
  204. 204.
    Reddy EP, Reynolds RK, Santos E, Barbacid M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 1982;300:149–152.PubMedCrossRefGoogle Scholar
  205. 205.
    Rogan E, Roth R, Cavalieri E. Enzymology of polycyclic hydrocarbon binding to nucleic acids In: Jones PW, Freudenthal R (Eds). Carcinogenesis. New York: Raven Press, 1978a; pp. 265–271.Google Scholar
  206. 206.
    Rogan E, Roth R, Katomski P, Benderson J, Cavalieri E. Binding of benzo[a]pyrene at the 1, 3, 6 positions to nucleic acids in vivo on mouse skin and in vitro with rat liver microsomes and nuclei. Chem Biol Interact 1978b;22:35–51.PubMedCrossRefGoogle Scholar
  207. 207.
    Romero DL, Mounho BJ, Lauer FT, Born JL, Burchiel SW. Depletion of glutathione by benzo[a]pyrene metabolites, ionomycin, thapsigargin, and phorbol myristate in human peripheral blood mononuclear cells. Toxicol Appl Pharmacol 1997;144:62–69.PubMedCrossRefGoogle Scholar
  208. 208.
    Rosenfeld ME, Tsukada T, Chait A, Bierman EL, Gown AM, Ross R. Fatty streak expansion and maturation in Watanabe heritable hyperlipidemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 1987a;7:24–34.PubMedGoogle Scholar
  209. 209.
    Rosenfeld ME, Tsukada T, Gown AM, Ross R. Fatty streak initiation in Watanabe heritable hyperlipidemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 1987b;7:9–23.PubMedGoogle Scholar
  210. 210.
    Rosenfeld ME, Palinski W, Ylä-Herttuala S, Carew TE. Macrophages, endothelial cells, and lipoprotein oxidation in the pathogenesis of atherosclerosis. Toxicol Pathol 1990;18: 560–571.PubMedGoogle Scholar
  211. 211.
    Ross JA, Nesnow S. 32P-postlabeling in studies of polycyclic aromatic hydrocarbon activation. IARC Scientif Public (Lyon) 1993;124:71–78.Google Scholar
  212. 212.
    Ross R, Masuda J, Raines EW, Gown AM, Katsuda S, Sasahara M, Malden LT, Masuko H, Sato H. Localization of PDGF-o-protein in macrophages in all phases of atherogenesis. Science 1990;248:1009–1012.PubMedCrossRefGoogle Scholar
  213. 213.
    Ross R. Atherosclerosis: A defense mechanism gone awry. Am J Pathol 1993a;143: 987–1002.PubMedGoogle Scholar
  214. 214.
    Ross R. Cellular mechanisms of atherosclerosis. Atheroscler Rev 1993b;25:195–200.Google Scholar
  215. 215.
    Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993c;362: 801–809.PubMedCrossRefGoogle Scholar
  216. 216.
    Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med 1999;340:115–126.PubMedCrossRefGoogle Scholar
  217. 217.
    Rudiger HW, Marxen J, Kohl FV, Melderis H, von Wichert PV. Metabolism and formation of DNA adducts of benzo[a]pyrene in human diploid fibroblasts. Cancer Res 1979;39: 1083–1088.PubMedGoogle Scholar
  218. 218.
    Rushmore TH, King RG, Paulson KE, Pickett CB. Regulation of glutathione S-transferase Ya subunit gene expression: Identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds. Proc Natl Acad Sci USA 1990;87:3826–3830.PubMedCrossRefGoogle Scholar
  219. 219.
    Rushmore TH, Pickett CB. Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J Biol Chem 1990;265:14648–14653.PubMedGoogle Scholar
  220. 220.
    Rushmore TH, Morton MR, Pickett CB. The antioxidant responsive element. J Biol Chem 1991;266:11632–11639.PubMedGoogle Scholar
  221. 221.
    Sadhu DN, Merchant M, Safe SH, Ramos KS. Modulation of protooncogene expression in rat aortic smooth muscle cells by benzo[a]pyrene. Arch Biochem Biophys 1993;300: 124–131.PubMedCrossRefGoogle Scholar
  222. 222.
    Sadhu DN, Ramos KS. Modulation by retinoic acid of spontaneous and benzo[a]pyrene-induced c-Ha-ras expression. Antimutagen Anticarcinogen Mech 1993;3:263–268.Google Scholar
  223. 223.
    Sadhu DN, Lundberg MS, Burghardt RB, Ramos KS. c-Ha-rasEJ transfection of rat aortic smooth muscle cells induces epidermal growth factor responsiveness and characteristics of a malignant phenotype. J Cell Physiol 1994;161:490–500.PubMedCrossRefGoogle Scholar
  224. 224.
    Sankaranarayanan K, Jaiswal AK. Nrf3 negatively regulates ARE-mediated expression and antioxidant induction of NAD(P) H:Quinone oxidoreductase1 gene. J Biol Chem 2004;279:50810–50817.PubMedCrossRefGoogle Scholar
  225. 225.
    Sano M, Fukuda K, Sato T, Kawaguchi H, Suematsu M, Matsuda S, Koyasu S, Matsui H, Yamauchi-Takihara K, Harada M, Saito Y, Ogawa S. ERK and p38 MAPK, but not NF-kappaB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts. Circ Res 2001;89:661–669.PubMedCrossRefGoogle Scholar
  226. 226.
    Sasco AJ, Secretan MB, Straif K. Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung Cancer 2004;45:S3–S9.PubMedCrossRefGoogle Scholar
  227. 227.
    Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: Specific messages from ubiquitous messengers. Mol Cell Biol 1999;19:2435–2444.PubMedGoogle Scholar
  228. 228.
    Schmeltz I, Hoffmann D, Wynder EL. Toxic and tumorigenic agents in tobacco smoke. Analytical methods and modes of origin. Trace Subst Environ Health 8, Symp 1974;281–295.Google Scholar
  229. 229.
    Schmidt JV, Bradfield CA. Ah Receptor signaling pathways. Annu Rev Cell Dev Biol 1996;12:55–89.PubMedCrossRefGoogle Scholar
  230. 230.
    Scragg R, Jackson R, Holdaway I, Woollard G, Woollard D. Changes in plasma vitamin E levels in the first 48 hr after onset of acute myocardial infarction. Am J Cardiol 1989;64: 971–974.PubMedCrossRefGoogle Scholar
  231. 231.
    Selkirk JK, Croy RG, Roller PP, Gelboin HV. High-pressure liquid chromatographic analysis of benzo(a) pyrene metabolism and covalent binding and the mechanism of action of 7, 8-benzoflavone and 1, 2-epoxy-3, 3, 3-trichloropropane. Cancer Res 1974;34:3474–3480.PubMedGoogle Scholar
  232. 232.
    Selkirk JK. Benzo[a]pyrene carcinogenesis: A biochemical selection mechanism. J Toxicol Environ Health 1977;2:1245–1258.PubMedCrossRefGoogle Scholar
  233. 233.
    Serabjit-Singh CJ, Bend JR, Philpot RM. Cytochrome P-450 monooxygenase system localization in smooth muscle of rabbit aorta. Mol Pharmacol 1985;28:72–79.PubMedGoogle Scholar
  234. 234.
    Shin EA, Kim KH, Han SI, Ha KS, Kim JH, Kang KI, Kim HD, Kang HS. Arachidonic acid induces the activation of the stress-activated protein kinase membrane ruffling and H2O2 production via a small GTPase Rac1. FEBS Lett 1999;452:355–359.PubMedCrossRefGoogle Scholar
  235. 235.
    Sikstrom R, Lanoix J, Bergeron JJM. An enzymatic analysis of a nuclear envelope fraction. Biochim Biophys Acta 1976;448:88–102.PubMedCrossRefGoogle Scholar
  236. 236.
    Simic D, Mimic-Oka J, Pljesa M, Milanovic D, Radojevic S, Ivanovic B, Kalimanovska-Ostric D, Matic D, Simic T. Time course of erythrocyte antioxidant activity in patients treated by thrombolysis for acute myocardial infarction. Jpn Heart J 2003;44:823–832.PubMedCrossRefGoogle Scholar
  237. 237.
    Simionescu M, Simionescu N. Proatherosclerotic events: pathobiochemical changes occurring in the arterial wall before monocyte migration. FASEB J 1993;7:1359–1366.PubMedGoogle Scholar
  238. 238.
    Singal PK, Khaper N, Palace V, Kumar D. The role of oxidative stress in the genesis of heart disease. Cardiovasc Res 1998;40:426–432.PubMedCrossRefGoogle Scholar
  239. 239.
    Sky-Peck HH. Trace metals, neoplasia. Clin Physiol Biochem 1986;4:99–111.PubMedGoogle Scholar
  240. 240.
    Slaga TJ, Bracken WM, Dresner S, Levin W, Yagi H, Jerina DM, Conney AH. Skin tumor-initiating activities of the twelve isomeric phenols of benzo[a]pyrene. Cancer Res 1978;38:678–681.PubMedGoogle Scholar
  241. 241.
    Slaga TJ, Bracken WM, Gleason G, Levin W, Yagi H, Jerina DM, Conney AH. Marked differences in skin tumor-initiating activities of the optical enantiomers of the diastereomeric benzo[a]pyrene 7, 8-diol-9, 10-epoxides. Cancer Res 1979;39:67–71.PubMedGoogle Scholar
  242. 242.
    Smithgall TE, Harvey RG, Penning TM. Spectroscopic identification of ortho-quinones as the products of polycyclic aromatic trans-dihydrodiol oxidation catalyzed by dihydrodiol dehydrogenase. A potential route of proximate carcinogen metabolism. J Biol Chem 1988;263:1814–1820.PubMedGoogle Scholar
  243. 243.
    Spandidos DA, Wilkie NM. Malignant transformation of early passage rodent cells by a single mutated human oncogene. Nature 1984;310:469–475.PubMedCrossRefGoogle Scholar
  244. 244.
    Spandidos DA, Anderson MLM. A study of mechanisms of carcinogenesis by gene transfer of oncogenes into mammalian cells. Mutat Res 1987;185:271–291.PubMedGoogle Scholar
  245. 245.
    Spandidos DA, Holmes L. Transcriptional enhancer activity in the variable tandem repeat DNA sequence downstream of the human Ha-ras 1 gene. FEBS Lett 1987;218:41–46.PubMedCrossRefGoogle Scholar
  246. 246.
    Spandidos DA. The effect of exogenous human ras and myc oncogenes in morphological differentiation of the rat pheochromocytoma PC12 cells. Int J Dev Neurosci 1989b;7:1–4.PubMedCrossRefGoogle Scholar
  247. 247.
    Staal FJ, Anderson MT, Staal GEJ, Herzenberg LA, Gitler C, Herzenberg LA. Redox regulation of signal transduction: Tyrosine phosphorylation and calcium influx. Proc Natl Acad Sci USA 1994;91:3619–3622.PubMedCrossRefGoogle Scholar
  248. 248.
    Stacey DW, Jung HG. Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein. Nature 1984;310:508–511.PubMedCrossRefGoogle Scholar
  249. 249.
    Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 1997;10:485–494.PubMedCrossRefGoogle Scholar
  250. 250.
    Stary HC. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis 1989;9:I19–I32.PubMedGoogle Scholar
  251. 251.
    Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull Jr W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 1995;15:1512–1531.Google Scholar
  252. 252.
    Steinberg D, Carew TE, Fielding C, Fogelman AM, Mahley RW, Sniderman AD, Zilversmit DB. Lipoproteins and the pathogenesis of atherosclerosis. Circulation 1989a;80:719–723.PubMedGoogle Scholar
  253. 253.
    Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprtoein that increases its atherogenicity. N Engl J Med 1989b;320:915–924.PubMedCrossRefGoogle Scholar
  254. 254.
    Steinberg D. Role of oxidized LDL and antioxidants in atherosclerosis. Adv Exp Med Biol 1995;369:39–48.PubMedGoogle Scholar
  255. 255.
    Steinberg D. A critical look at the evidence for the oxidation of LDL in atherogenesis. Atherosclerosis 1997;131:S5–S7.PubMedCrossRefGoogle Scholar
  256. 256.
    Suc I, Meilhac O, Lajoie-Mazenc I, Vandaele J, Jurgens G, Salvayre R, Negre-Salvayre A. Activation of EGF receptor by oxidized LDL. FASEB J 1998;12:665–671.PubMedGoogle Scholar
  257. 257.
    Sullivan PD, Calle LM, Shafer K, Nettleman M. Effect of antioxidants on benzo[a]pyrene free radicals. In: Jones PW, Freudenthal RI (Eds). Carcinogenesis: A Comprehensive Survey. New York: Raven Press, 1978; pp. 1–8.Google Scholar
  258. 258.
    Sullivan PD. Free radicals of benzo[a]pyrene and derivatives. Environ Health Perspect 1985;64:283–295.PubMedCrossRefGoogle Scholar
  259. 259.
    Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995;270:298–301.CrossRefGoogle Scholar
  260. 260.
    Tannheimer SL, Ethier SP, Caldwell KK, Burchiel SW. Benzo[a]pyrene- and TCDD-induced alterations in tyrosine phosphorylation and insulin-like growth factor signaling pathways in the MCF-10A human mammary epithelial cell line. Carcinogenesis 1998;19:1291–1297.PubMedCrossRefGoogle Scholar
  261. 261.
    Thakker DR, Yagi H, Lehr RE, Kevin W, Buening M, Lu AYH, Chang RL, Wood AW, Conney AH, Jerina DM. Metabolism of trans-9, 10-digydroxy-9, 10-dehydrobenzo[a]pyrene occurs primarily by arylhydroxylation rather than formation of a diol epoxide. Mol Pharmacol 1978;14:502–513.PubMedGoogle Scholar
  262. 262.
    Thirman MJ, Albrecht JH, Krueger MA, Erickson RR, Cherwitz DL, Park SS, Gelboin HV, Holtzman JL. Induction of cytochrome CYPIA1 and formation of toxic metabolites of benzo[a]pyrene by rat aorta: A possible role in atherogenesis. Proc Natl Acad Sci USA 1994;91:5397–5401.PubMedCrossRefGoogle Scholar
  263. 263.
    Todorovic R, Devanesan PD, Cavalieri EL, Rogan EG, Park SS, Gelboin HV. A monoclonal antibody to rat liver cytochrome P450 IIC11 strongly and regiospecifically inhibits constitutive benzo[a]pyrene metabolism and DNA binding. Mol Carcinog 1991;4:308–314.PubMedCrossRefGoogle Scholar
  264. 264.
    Touyz RM, Schiffrin EL. AngII-stimulated superoxide production is mediated via phopholipase D in human vascular smooth muscle cells. Hypertension 1999;34:976–982.PubMedGoogle Scholar
  265. 265.
    Touyz RM. Oxidative stress and vascular damage in hypertension. Curr Hypertens Rep 2000;2:98–105.PubMedCrossRefGoogle Scholar
  266. 266.
    Uchida K, Stadtman ER. Covalent modification of 4-hydroxynonenal to glyceraldehyde-3-phosphate. J Biol Chem 1993;268:6388–6393.PubMedGoogle Scholar
  267. 267.
    US Department of Health Education and Welfare. Smoking and Health (Report of the Advisory Committee to the Surgeon General of the Public Health Service). Public Health Service Publ. No. 1103. Washington, DC: US Govt. Printing Office, 1967.Google Scholar
  268. 268.
    Ushio-Fukai M, Alexander RW, Akers M, Griendling KK. p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II: Role in vascular smooth muscle cell hypertrophy. J Biol Chem 1998;273:15022–15029.PubMedCrossRefGoogle Scholar
  269. 269.
    Vasiliou V, Puga A, Chang C-Y, Tabor MW, Nebert DW. Interaction between the Ah receptor and proteins binding to the AP-1-like electrophile response element (EpRE) during murine phase II [Ah] battery gene expression. Biochem Pharmacol 1995;50:2057–2068.PubMedCrossRefGoogle Scholar
  270. 270.
    Vaziri C, Faller DV. A benzo[a]pyrene-induced cell cycle checkpoint resulting in p53-independent G1 arrest in 3T3 fibroblasts. J Biol Chem 1997;272:2762–2769.PubMedCrossRefGoogle Scholar
  271. 271.
    Venugopal R, Jaiswal AK. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P) H:quinone oxidoreductase1 gene. Proc Natl Acad Sci USA 1996;93:14960–14965.PubMedCrossRefGoogle Scholar
  272. 272.
    Venugopal R, Jaiswal AK. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 1998;17:3145–3156.PubMedCrossRefGoogle Scholar
  273. 273.
    Vousden KH, Bos JL, Marshall CJ, Phillips DH. Mutations activating human c-Ha-ras1 protooncogene (HRAS1) induced by chemical carcinogens and depurination. Proc Natl Acad Sci USA 1986;83:1222–1226.PubMedCrossRefGoogle Scholar
  274. 274.
    Wasserman WW, Fahl WE. Comprehensive analysis of proteins which interact with the antioxidant responsive element: Correlation of ARE-BP-1 with the chemoprotective induction response. Arch Biochem Biophys 1997a;344:387–396.PubMedCrossRefGoogle Scholar
  275. 275.
    Wasserman WW, Fahl WE. Functional antioxidant response elements. Proc Natl Acad Sci USA 1997b;94:5361–5366.PubMedCrossRefGoogle Scholar
  276. 276.
    Weber TJ, Ramos KS. c-Ha-rasEJ transfection in vascular smooth muscle cells circumvents PKC requirement during mitogenic signaling. Am J Physiol 1997;273:H1920–H1926.PubMedGoogle Scholar
  277. 277.
    Weinstein IB, Jeffrey AM, Leffler S, Pulkrabek P, Yamasaki H, Grunberger D. Interactions between polycyclic aromatic hydrocarbons and cellular macromolecules. In: Gelboin HV, POP Ts’o (Eds). Polycyclic Hydrocarbons and Cancer. New York: Academic Press, 1978; pp. 4–36.Google Scholar
  278. 278.
    Weyand EH, Bevan DR. Benzo[a]pyrene disposition and metabolism in rats following intratracheal instillation. Cancer Res 1986;46:5655–5661.PubMedGoogle Scholar
  279. 279.
    Weyand EH, Bevan DR. Benzo[a]pyrene metabolism in vivo following intratracheal administration. In: Cooke M, Dennis AJ (Eds). Polynuclear Aromatic Hydrocarbons: A Decade of Progress. Proceedings of the 10th International Symposium. Columbus, OH: Batelle Press, 1988; pp. 913–923.Google Scholar
  280. 280.
    Whitlock Jr JP. Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol 1999;39: 103–125.PubMedCrossRefGoogle Scholar
  281. 281.
    Wild AC, Moinova HR, Mulcahy RT. Regulation of W-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 1999;274:33627–33636.PubMedCrossRefGoogle Scholar
  282. 282.
    Xie T, Belinsky M, Xu Y, Jaiswal AK. ARE-, TRE-mediated regulation of gene expression: Response to xenobiotics and antioxidants. J Biol Chem 1995;270:6894–6900.PubMedCrossRefGoogle Scholar
  283. 283.
    Yamazaki H, Terada M, Tsuboi A, Matsubara C, Hata T, Kakiuchi Y. Distribution and binding pattern of benzo[a]pyrene in rat liver, lung and kidney constituents after oral administration. Toxicol Environ Chem 1987;15:71–81.CrossRefGoogle Scholar
  284. 284.
    Yang H, Mazur-Melnyk M, de Boer JG, Glickman BW. A comparison of mutational specificity of mutations induced by S9-activated B[a]P and benzo[a]pyrene-7, 8-diol-9, 10-epoxide at the endogenous aprt gene in CHO cells. Mutat Res 1999;423:23–32.PubMedGoogle Scholar
  285. 285.
    Ytrehus K, Myklebut R, Mjos OD. Influence of oxygen radicals generated by xanthine oxidase in the isolated perfused rat heart. Cardiovasc Res 1986;20:597–603.PubMedCrossRefGoogle Scholar
  286. 286.
    Yu R, Lei W, Mandlekar S, Weber MJ, Der CJ, Wu J, Kong A-NT. Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals. J Biol Chem 1999;274:27545–27552.PubMedCrossRefGoogle Scholar
  287. 287.
    Yu R, Mandlekar S, Lei W, Fahl WE, Tan T-H, Kong A-NT. p38 mitogen-activated protein-kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens. J Biol Chem 2000;275:2322–2327.PubMedCrossRefGoogle Scholar
  288. 288.
    Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, Taylor WR, Griendling KK. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 1998;32:488–495.PubMedGoogle Scholar
  289. 289.
    Zalba G, Beaumont J, San Jose G, Fortuno A, Fortuno MA, Diez J. Vascular oxidant stress: Molecular mechanisms and pathophysiological implications. J Physiol Biochem 2000;56: 57–64.PubMedCrossRefGoogle Scholar
  290. 290.
    Zhang L, Connor EE, Chegini N, Shiverick KT. Modulation by benzo[a]pyrene of epidermal growth factor receptors, cell proliferation, and secretion of human chorionic gonadotropin in human placental cell lines. Biochem Pharmacol 1995;50:1171–1180.PubMedCrossRefGoogle Scholar
  291. 291.
    Zhang Y, Ramos KS. The induction of proliferative vascular smooth muscle cell phenotypes by benzo[a]pyrene does not involve mutational activation of ras genes. Mutat Res 1997;373:285–292.PubMedGoogle Scholar
  292. 292.
    Zhao W, Ramos KS. Inhibition of DNA synthesis in primary cultures of adult rat hepatocytes by benzo[a]pyrene and related aromatic hydrocarbons: Role of Ah receptor-dependent events. Toxicology 1995;99:179–189.PubMedCrossRefGoogle Scholar
  293. 293.
    Zhao W, Ramos KS. Modulation of hepatocyte gene expression by the carcinogen benzo[a]pyrene. Toxicol In Vitro 1998;12:395–402.CrossRefPubMedGoogle Scholar
  294. 294.
    Zhu H, Li Y, Trush MA. Characterization of benzo[a]pyrene quinone-induced toxicity to primary cultured bone marrow stromal cells from DBA/2 mice: Potential role of mitochondrial dysfunction. Toxicol Appl Pharmacol 1995;130:108–120.PubMedCrossRefGoogle Scholar
  295. 295.
    Zipper LM, Mulcahy RT. Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes. Biochem Biophys Res Commun 2000;278:484–492.PubMedCrossRefGoogle Scholar
  296. 296.
    Zweier JL. Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem 1988;263: 1353–1357.PubMedGoogle Scholar
  297. 297.
    Zwijsen RM, Japenga SC, Heijen AM, van den Bos RC, Koeman JH. Induction of platelet-derived growth factor chain A gene expression in human smooth muscle cells by oxidized low density lipoproteins. Biochem Biophys Res Commun 1992;186:1410–1416.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kimberly P. Miller
    • 1
  • Kenneth S. Ramos
    • 2
  1. 1.Division of Reproductive and Urologic ProductsFood and Drug Administration, Center for Drug Evaluation and ResearchSilver SpringUSA
  2. 2.Center for Genetics and Molecular MedicineUniversity of Louisville Health Sciences CenterLouisvilleUSA

Personalised recommendations