Oxidative Stress in Arterial Hypertension: Oxidative Stress and Hypertension

  • Rhian M. Touyz
  • Ernesto L. Schiffrin

Oxidative stress is defined as the imbalance between the formation of ROS and antioxidant defense mechanisms. The vasculature is a rich source of ROS, which under pathological conditions, plays an important role in vascular damage. There is growing evidence that increased oxidative stress and associated oxidative damage are mediators of vascular injury in cardiovascular pathologies, including hypertension, atherosclerosis, and ischemia-reperfusion. Increased production of superoxide anion and hydrogen peroxide has been demonstrated in experimental and human hypertension. This development has evoked considerable interest because of the possibilities that therapies targeted against reactive oxygen intermediates by decreasing generation of ROS and/or by increasing availability of antioxidants, may be useful in minimizing vascular injury and hypertensive end organ damage. This chapter focuses on vascular actions of ROS, the role of oxidative stress in vascular damage in hypertension and the therapeutic potential of modulating oxygen radical bioavailability in hypertension.


Oxidative Stress Nitric Oxide Vascular Smooth Muscle Cell NADPH Oxidase Protein Tyrosine Phosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zalba G, San Jose G, Moreno MU, Fortuno MA, Fortuno A, Beaumont FJ, Diez J. Oxidative stress in arterial hypertension: role of NAD(P) H oxidase. Hypertension 2001;38(6):1395–1399.PubMedCrossRefGoogle Scholar
  2. 2.
    Landmesser U, Harrison DG. Oxidative stress and vascular damage in hypertension. Coron Artery Dis 2001;12(6):455–461.PubMedCrossRefGoogle Scholar
  3. 3.
    Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000;20:2175–2183.PubMedGoogle Scholar
  4. 4.
    Cosentino F, Sill JC, Katusic ZS. Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension 1994;23:229–235.PubMedGoogle Scholar
  5. 5.
    Touyz RM, Schiffrin EL. Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 1999;34(4):976–982.PubMedGoogle Scholar
  6. 6.
    Zafari AM, Ushio-Fukai M, Akers M, Griendling K. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 1998;32:488–495.PubMedGoogle Scholar
  7. 7.
    Rao GN, Berk BC. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 1992;70:593–599.PubMedGoogle Scholar
  8. 8.
    Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997;2153–2157.Google Scholar
  9. 9.
    Chin JH, Azhar S, Hoffman BB. Inactivation of endothelium derived relaxing factor by oxidized lipoproteins. J Clin Invest 1992;89:10–18.PubMedCrossRefGoogle Scholar
  10. 10.
    Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, Spitz DR, Davisson RL. Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res 2002;91(11):1038–1045.PubMedCrossRefGoogle Scholar
  11. 11.
    Kerr S, Brosnan J, McIntyre M, Reid JL, Dominiczak AF, Hamilton CA. Superoxide anion production is increased in a model of genetic hypertension. Role of endothelium. Hypertension 1999;33:1353–1358.PubMedGoogle Scholar
  12. 12.
    Schnackenberg CG, Welch W, Wilcox CS. Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic. Role of nitric oxide. Hypertension 1999;32:59–64.Google Scholar
  13. 13.
    Chen X, Touyz RM, Park JB, Schiffrin EL. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NAD(P) H oxidase and superoxide dismutase in stroke-prone SHR. Hypertension 2001;38(2):606–611.PubMedCrossRefGoogle Scholar
  14. 14.
    Quinones-Galvan A, Pucciarelli A, Fratta-Pasini A, Garbin U, Franzoni F, Galetta F, Natali A, Cominacini L, Ferrannini E. Effective blood pressure treatment improves LDL-cholesterol susceptibility to oxidation in patients with essential hypertension. J Intern Med 2001;250(4):322–326.PubMedCrossRefGoogle Scholar
  15. 15.
    Romero JC, Reckelhoff JF. Role of angiotensin and oxidative stress in essential hypertension. Hypertension 1999;34(4):943–949.PubMedGoogle Scholar
  16. 16.
    Hoagland KM, Maier KG, Roman RJ. Contributions of 20-HETE to the antihypertensive effects of Tempol in Dahl salt-sensitive rats. Hypertension 2003;41(3 Pt 2):697–702.PubMedCrossRefGoogle Scholar
  17. 17.
    Sharma RC, Hodis HN, Mack WJ. Probucol suppresses oxidant stress in hypertensive arteries. Immunohistochemical evidence. Am J Hypertens 1996;9:577–590.PubMedCrossRefGoogle Scholar
  18. 18.
    Bendall JK, Cave AC, Heymes C, Gall N, Shah AM. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 2002;105(3):293–296.PubMedCrossRefGoogle Scholar
  19. 19.
    Li JM, Shah AM. Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit. J Biol Chem 2003;278(14):12094–12100.Google Scholar
  20. 20.
    Berry C, Hamilton CA, Brosnan MJ, Magill FG, Berg GA, McMurray JJ, Dominiczak AF. Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries. Circulation 2000;101(18):2206–2212.PubMedGoogle Scholar
  21. 21.
    Cantor EJ, Mancini EV, Seth R, Yao XH, Netticadan T. Oxidative stress and heart disease: cardiac dysfunction, nutrition, and gene therapy. Curr Hypertens Rep 2003;5(3):215–220.PubMedCrossRefGoogle Scholar
  22. 22.
    Zanzinger J. Mechanisms of action of nitric oxide in the brain stem: role of oxidative stress. Auton Neurosci 2002;98(1–2):24–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Wilcox CS. Reactive oxygen species: roles in blood pressure and kidney function. Curr Hypertens Rep 2002;4:160–166.PubMedCrossRefGoogle Scholar
  24. 24.
    Fridovich I. Superoxide anion radical, superoxide dismutases, and related matters. J Biol Chem 1997;272:18515–18517.PubMedCrossRefGoogle Scholar
  25. 25.
    Bunn HF, Higgins PJ. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 1996;76(3):839–885.PubMedGoogle Scholar
  26. 26.
    Cimino F, Esposito F, Ammendola R, Russo T. Gene regulation by reactive oxygen species. Curr Top Cell Regul 1997;35:123–148.PubMedCrossRefGoogle Scholar
  27. 27.
    Darley-Usmar V, Wiseman H, Halliwell B. Nitric oxide and oxygen radicals, a question of balance. FEBS Lett 1995;369:13–15.CrossRefGoogle Scholar
  28. 28.
    Han D, Antunes F, Canali R, Rettori D, Cadenas E. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 2003;278(8):5557–5563.PubMedCrossRefGoogle Scholar
  29. 29.
    Decoursey TE, Morgan D, Cherny VV. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 2003;422:531–534.PubMedCrossRefGoogle Scholar
  30. 30.
    Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001;30(11):1191–1212.PubMedCrossRefGoogle Scholar
  31. 31.
    Rice-Evans CA, Burdon RH. Free Radical Damage and Its Control. Amsterdam: Elsevier, 1994, pp. 25–27.Google Scholar
  32. 32.
    Channon KM, Guzik TJ. Mechanisms of superoxide production in human blood vessels: relationship to endothelial dysfunction, clinical and genetic risk factors. J Physiol Pharmacol 2002;53(4):515–524.PubMedGoogle Scholar
  33. 33.
    Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000;87:840–844.PubMedGoogle Scholar
  34. 34.
    Wang D, Hope S, Du Y. Paracrine role of adventitial superoxide anion in a model of genetic hypertension. Role of endothelium. Hypertension 1999;33:1353–1358.Google Scholar
  35. 35.
    Sorescu D, Weiss D, Lassegue B, Clempus RE, Szocs K, Sorescu GP, Valppu L, Quinn MT, Lambeth JD, Vega JD, Taylor WR, Griendling KK. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 2002;105(12):1429–1435.PubMedCrossRefGoogle Scholar
  36. 36.
    Abe J-I, Berk BC. Reactive oxygen species of signal transduction in cardiovascular disease. Trends Cardiovasc Med 1998;8:59–64.CrossRefGoogle Scholar
  37. 37.
    Rajagopalan S, Kurz S, Munzel T. Angiotensin II mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest 1996;97:1916–1923.PubMedCrossRefGoogle Scholar
  38. 38.
    Jones SA, O’Donnell VB, Wood JD. Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Physiol 1996;H1626–H1634.Google Scholar
  39. 39.
    Milstien S, Katusic Z, Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun 1999;263(3):681–684.PubMedCrossRefGoogle Scholar
  40. 40.
    Cosentino F, Barker JE, Brand MP, Heales SJ, Werner ER, Tippins JR, West N, Channon KM, Volpe M, Luscher TF. Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice. Arterioscler Thromb Vasc Biol 2001;21(4): 496–502.PubMedGoogle Scholar
  41. 41.
    Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003;111(8):1201–1209.PubMedGoogle Scholar
  42. 42.
    Lassegue B, Clempus RE. Vascular NAD(P) H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003;285(2):R277–R297.PubMedGoogle Scholar
  43. 43.
    Azumimi H, Inoue N, Takeshita S. Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation 1999;100:1494–1498.Google Scholar
  44. 44.
    Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P) H oxidase: role in cardiovascular biology and disease. Circ Res 2000;86:494–501.PubMedGoogle Scholar
  45. 45.
    Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys 2002;397:342–344.PubMedCrossRefGoogle Scholar
  46. 46.
    Vignais PV. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 2002;59(9):1428–1459.PubMedCrossRefGoogle Scholar
  47. 47.
    Leusen JHW, Verhoeven AJ, Roos D. Interactions between the components of the human NADPH oxidase: a review about the intrigues in the phox family. Front Biosci 1996;1:72–90.Google Scholar
  48. 48.
    De Leo FR, Ulman KV, Davis AR, Jutila KL, Quinn MT. Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox. J Biol Chem 1996;271:17013–17020.PubMedCrossRefGoogle Scholar
  49. 49.
    Geiszt M, Kapus A, Ligeti E. Chronic granulomatous disease: more than the lack of superoxide? J Leukoc Biol 2001;69(2):191–196.PubMedGoogle Scholar
  50. 50.
    Touyz RM, Chen X, He G, Quinn MT, Schiffrin EL. Expression of a gp91phox-containing leukocyte-type NADPH oxidase in human vascular smooth muscle cells–modulation by Ang II. Circ Res 2002;90:1205–1213.PubMedCrossRefGoogle Scholar
  51. 51.
    Muzaffar S, Jeremy JY, Angelini GD, Stuart-Smith K, Shukla N. Role of the endothelium and nitric oxide synthases in modulating superoxide formation induced by endotoxin and cytokines in porcine pulmonary arteries. Thorax 2003;58(7):598–604.PubMedCrossRefGoogle Scholar
  52. 52.
    Rey FE, Pagano PJ. The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol 2002;22(12):1962–1971.PubMedCrossRefGoogle Scholar
  53. 53.
    Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994;74(6):1141–1148.PubMedGoogle Scholar
  54. 54.
    Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin II stimulation of NAD(P) H oxidase activity. Upstream mediators. Circ Res 2002;91:406–413.Google Scholar
  55. 55.
    Touyz RM, Yao G, Schiffrin EL. c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2003;23(6):981–987.PubMedCrossRefGoogle Scholar
  56. 56.
    Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007;87(1);245–313.PubMedCrossRefGoogle Scholar
  57. 57.
    Geiszt M. NADPH oxidases: new kids on the block. Cardiovasc Res 2006:71:289–299.PubMedCrossRefGoogle Scholar
  58. 58.
    Sumimoto H, Miyano K, Takeya R. Molecular composition and regulation of the Nox family NAD(P) H oxidases. Biochem Biophys Res Commun 2005;338(1):677–686.PubMedCrossRefGoogle Scholar
  59. 59.
    Cave AC, Brewer AC, Panicker AN, Ray R, Grieve DJ, Walker S, Shah AM. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 2006;8:691–727.PubMedCrossRefGoogle Scholar
  60. 60.
    Clempus RE, Sorescu D, Dikalova AE, Pounkova L, Jo P, Sorescu GP, Schmidt HH, Lassegue B, Griendling KK. Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 2007;27(1):42–48.PubMedCrossRefGoogle Scholar
  61. 61.
    Suh YA, Arnold RS, Lassegue B. Cell transformation by the superoxide-generating Mox-1. Nature 1999;410:79–82.Google Scholar
  62. 62.
    Banfi B, Clark RA, Steger K, Krause K-H. Two novel proteins activate superoxide generation by the NADPH oxidase Nox1. J Biol Chem 2003;278(6):3510–3513.PubMedCrossRefGoogle Scholar
  63. 63.
    Ueyama T, Lekstrom K, Tsujibe S, Saito N, Leto TL. Subcellular localization and function of alternatively spliced Noxo1 isoforms. Free Radic Biol Med 2007;42(2):180–190.PubMedCrossRefGoogle Scholar
  64. 64.
    Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, Takai S, Yamanishi K, Miyazaki M, Matsubara H, Yabe-Nishimura C. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 2005;112(17):2677–2685.PubMedCrossRefGoogle Scholar
  65. 65.
    Dikalova A, Clempus R, Lassegue B, Cheng G, McCoy J, Dikalov S, San Martin A, Lyle A, Weber DS, Weiss D, Taylor WR, Schmidt HH, Owens GK, Lambeth JD, Griendling KK. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 2005;112(17):2668–2676.PubMedCrossRefGoogle Scholar
  66. 66.
    Touyz RM, Mercure C, He Y, Javeshghani D, Yao G, Callera GE, Yogi A, Lochard N, Reudelhuber TL. Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase. Hypertension 2005;45(4):530–537.PubMedCrossRefGoogle Scholar
  67. 67.
    Brandes RP, Miller FJ, Beer S, Haendeler J, Hoffmann J, Ha T, Holland SM, Gorlach A, Busse R. The vascular NADPH oxidase subunit p47phox is involved in redox-mediated gene expression. Free Radic Biol Med 2002;32(11):1116–1122.PubMedCrossRefGoogle Scholar
  68. 68.
    Moe KT, Aulia S, Jiang F, Chua YL, Koh TH, Wong MC, Dusting GJ. Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis factor-alpha in human aortic smooth muscle and embryonic kidney cells. J Cell Mol Med 2006;10(1):231–239.PubMedCrossRefGoogle Scholar
  69. 69.
    Diep QN, Amiri F, Touyz RM, Cohn JS, Endemann D, Neves MF, Schiffrin EL. PPARalpha activator effects on Ang II-induced vascular oxidative stress and inflammation. Hypertension 2002;40(6):866–871.PubMedCrossRefGoogle Scholar
  70. 70.
    Dandona P, Karne R, Ghanim H, Hamouda W, Aljada A, Magsino CH. Carvedilol inhibits reactive oxygen species generation by leukocytes and oxidative damage to amino acids. Circulation 2000;101:122–124.PubMedGoogle Scholar
  71. 71.
    Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P) H oxidase-derived reactive oxygen species. Circ Res 2003;92(11):e80–e86.PubMedCrossRefGoogle Scholar
  72. 72.
    Witteveen CF, Giovanelli J, Kaufman S. Reactivity of tetrahydrobiopterin bound to nitric-oxide synthase. J Biol Chem 1999;274(42):29755–29762.PubMedCrossRefGoogle Scholar
  73. 73.
    Vasquez-Vivar J, Duquaine D, Whitsett J, Kalyanaraman B, Rajagopalan S. Altered tetrahydrobiopterin metabolism in atherosclerosis: implications for use of oxidized tetrahydrobiopterin analogues and thiol antioxidants. Arterioscler Thromb Vasc Biol 2002;22(10):1655–1661.PubMedCrossRefGoogle Scholar
  74. 74.
    Bagi Z, Koller A. Lack of nitric oxide mediation of flow-dependent arteriolar dilation in type I diabetes is restored by sepiapterin. J Vasc Res 2003;40(1):47–57.PubMedCrossRefGoogle Scholar
  75. 75.
    Virdis A, Iglarz M, Neves MF, Amiri F, Touyz RM, Rozen R, Schiffrin EL. Effect of hyperhomocystinemia and hypertension on endothelial function in methylenetetrahydrofolate reductase-deficient mice. Arterioscler Thromb Vasc Biol (Jun 26 2003) [Epub ahead of print].Google Scholar
  76. 76.
    Podjarny E, Benchetrit S, Rathaus M, Pomeranz A, Rashid G, Shapira J, Bernheim J. Effect of tetrahydrobiopterin on blood pressure in rats after subtotal nephrectomy. Nephron Physiol 2003;94(1):6–9.CrossRefGoogle Scholar
  77. 77.
    Yang D, Levens N, Zhang JN, Vanhoutte PM, Feletou M. Specific potentiation of endothelium-dependent contractions in SHR by tetrahydrobiopterin. Hypertension 2003;41(1):136–142.PubMedCrossRefGoogle Scholar
  78. 78.
    Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P) H oxidase and endothelial nitric oxide synthase. Circulation 2002; 105(14):1656–1562.PubMedCrossRefGoogle Scholar
  79. 79.
    Higashi Y, Sasaki S, Nakagawa K, Fukuda Y, Matsuura H, Oshima T, Chayama K. Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals. Am J Hypertens 2002;15(4):326–332.PubMedCrossRefGoogle Scholar
  80. 80.
    Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol 1998;10:248–253.PubMedCrossRefGoogle Scholar
  81. 81.
    Stralin P, Karlsson K, Johannson BO, Marklund SL. The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 1995;15:2032–2036.PubMedGoogle Scholar
  82. 82.
    McIntyre M, Bohr DF, Dominiczak AF. Endothelial function in hypertension. The role of superoxide anion. Hypertension 1999;34:539–545.PubMedGoogle Scholar
  83. 83.
    Schafer FQ, Wang HP, Kelley EE, Cueno KL, Martin SM, Buettner GR. Comparing beta-carotene, vitamin E and nitric oxide as membrane antioxidants. Biol Chem 2002;383(3–4):671–681.PubMedCrossRefGoogle Scholar
  84. 84.
    Forman HJ, Torres M, Redox signaling in macrophages. Mol Aspects Med 2001; 22:189–216.PubMedCrossRefGoogle Scholar
  85. 85.
    Touyz RM. Recent advances in intracellular signalling in hypertension. Curr Opin Nephrol Hypertens 2003;12(2):165–174.PubMedCrossRefGoogle Scholar
  86. 86.
    Griendling KK, Harrison DG. Dual role of reactive oxygen species in vascular growth. Circ Res 1999;85:562–563.PubMedGoogle Scholar
  87. 87.
    Turpaev KT. Reactive oxygen species and regulation of gene expression. Biochemistry 2002;67(3):281–292.PubMedGoogle Scholar
  88. 88.
    Lee SR, Kwon KS, Kim SR, Rhee SG. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 1998;273(25):15366–153372.PubMedCrossRefGoogle Scholar
  89. 89.
    Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 2002;9(2):387–399.PubMedCrossRefGoogle Scholar
  90. 90.
    Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 2002;14(11):879–897.PubMedCrossRefGoogle Scholar
  91. 91.
    Seo YR, Kelley MR, Smith ML. Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc Natl Acad Sci USA 2002;99(22):14548–14553.PubMedCrossRefGoogle Scholar
  92. 92.
    Fritz G, Human APE/Ref-1 protein. Int J Biochem Cell Biol 2000;32(9):925–929.PubMedCrossRefGoogle Scholar
  93. 93.
    Anderson JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Moller NP. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 2001;21:7117–7136.CrossRefGoogle Scholar
  94. 94.
    Denu JM, Tanner KG. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 1998;7:5633–5642.CrossRefGoogle Scholar
  95. 95.
    Blanchetot C, Tertoolen LGJ, Hertog JD. Regulation of receptor protein tyrosine phosphatase p by oxidative stress. EMBO J 2002;21(4):493–503.PubMedCrossRefGoogle Scholar
  96. 96.
    Kamata H, Shibukawa Y, Oka S-I, Hirata H. Epidermal growth factor receptor is modulated by redox through multiple mechanisms. Effects of reductants and H2O2. Eur J Biochem 2000;267:1933–1944.Google Scholar
  97. 97.
    Lee K, Esselman WJ. Inhibition of PTPS by H2O2 regulates the activation of distinct MAPK pathways. Free Radic Biol Med 2002;33(8):1121–1132.PubMedCrossRefGoogle Scholar
  98. 98.
    Yang S, Hardaway M, Sun G, Ries WL, Key Jr L. Superoxide generation and tyrosine kinase. Biochem Cell Biol 2000;78:11–17.PubMedCrossRefGoogle Scholar
  99. 99.
    Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2001;82:47–95.Google Scholar
  100. 100.
    Touyz RM, Wu XH, He G, Salomon S, Schiffrin EL. Increased angiotensin II-mediated Src signaling via epidermal growth factor receptor transactivation is associated with decreased C-terminal Src kinase activity in vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension 2002;39(2 Pt 2):479–485.PubMedCrossRefGoogle Scholar
  101. 101.
    Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 2000;52(4):639–672.PubMedGoogle Scholar
  102. 102.
    Pearson G, Robinson F, Beers Gibson T. Mitogen-activated protein kinase pathways: regulation and physiological functions. Endoc Rev 2001;22(2):153–183.CrossRefGoogle Scholar
  103. 103.
    Xu Q, Liu Y, Gorospe M. Acute hypertension activates mitogen-activated protein kinases in arterial wall. J Clin Invest 1996;97(2):508–514.PubMedCrossRefGoogle Scholar
  104. 104.
    Touyz RM, Deschepper C, Park JB, Schiffrin EL. Inhibition of mitogen-activated protein/extracellular signal-regulated kinase improves endothelial function and attenuates Ang II-induced contractility of mesenteric resistance arteries from spontaneously hypertensive rats. J Hypertens 2002;20(6):1127–1134.PubMedCrossRefGoogle Scholar
  105. 105.
    Torres M. Mitogen-activated protein kinase pathway in redox signaling. Front Biosc 2003;8:369–391.CrossRefGoogle Scholar
  106. 106.
    Ushio-Fukai M, Alexander RW, Akers M, Griendling KK. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 1998;273(24):15022–15029.Google Scholar
  107. 107.
    Touyz RM, Cruzado M, Tabet F, Yao G, Salomon S, Schiffrin EL. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells–role of receptor tyrosine kinase transactivation. Can J Physiol Pharmacol 2003;81:159–167.PubMedCrossRefGoogle Scholar
  108. 108.
    Lee SL, Wang WW, Finlay GA, Fanburg BL. Serotonin stimulates MAP kinase activity through the formation of superoxide anion. Am J Physiol Lung Cell Mol Physiol 1999;277:L282–L291.Google Scholar
  109. 109.
    Lounsbury KM, Hu Q, Ziegelstein RC. Calcium signaling and oxidant stress in the vasculature. Free Radic Biol Med 2000;28(9):1362–1369.PubMedCrossRefGoogle Scholar
  110. 110.
    Ermak G, Davies KJA, Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 2001;38:713–721.CrossRefGoogle Scholar
  111. 111.
    Gao YJ, Lee RM. Hydrogen peroxide induces a greater contraction in mesenteric arteries of spontaneously hypertensive rats through thromboxane A(2) production. Br J Pharmacol 2001;134(8):1639–1646.PubMedCrossRefGoogle Scholar
  112. 112.
    Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. J Clin Invest 1996;98:2572–2579.PubMedCrossRefGoogle Scholar
  113. 113.
    Muller DN, Dechend R, Mervaala EMA, Park JK, Schmidt F, Fiebeler A, et al. NFhB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension 2000;35:193–201.PubMedGoogle Scholar
  114. 114.
    Suematsu M, Suzuki H, Delano FA, Schmid-Schonbein GW. The inflammatory aspect of the microcirculation in hypertension: oxidative stress, leukocytes/endothelial interaction, apoptosis. Microcirculation 2002;9(4):259–276.PubMedGoogle Scholar
  115. 115.
    Luft FC, Mechanisms and cardiovascular damage in hypertension. Hypertension 2001;37:594–598.PubMedGoogle Scholar
  116. 116.
    List BM, Klosch B, Volker C, Gorren AC, Sessa WC, Werner ER, Kukovetz WR, Schmidt K, Mayer B. Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity: tetrahydrobiopterin binding kinetics and role of haem in dimerization. Biochem J 1997;323(Pt 1):159–165.PubMedGoogle Scholar
  117. 117.
    Somers MJ, Harrison DG. Reactive oxygen species and the control of vasomotor tone. Curr Hypertens Rep 1999;1:102–108.PubMedCrossRefGoogle Scholar
  118. 118.
    Tschudi M, Mesaros S, Luscher TF, Malinski T. Direct in situ measurement of nitric oxide in mesenteric reistance arteries: increased decomposition by superoxide in hypertension. Hypertension 1996;27:32–35.PubMedGoogle Scholar
  119. 119.
    Szabo C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett 2003;140:105–112.PubMedCrossRefGoogle Scholar
  120. 120.
    Alexander RW. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension 1995;25:155–161.PubMedGoogle Scholar
  121. 121.
    Kristal B, Shurta-Swirrski R, Chezar J. Participation of peripheral polymorphonuclear leukocytes in the oxidative stress and inflammation in patiemnts with essential hypertension. Am J Hypertens 1998;11:921–928.PubMedCrossRefGoogle Scholar
  122. 122.
    Welch WJ, Wilcox CS. AT1 receptor antagonist combats oxidative stress and restores nitric oxide signaling in the SHR. Kidney Int 2001;59:1257–1263.PubMedCrossRefGoogle Scholar
  123. 123.
    Zalba G, Beaumont FJ, San Jose G, Fortuno A, Fortuno MA, Etayo JC, Diez J. Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension 2000;35(5):1055–1061.PubMedGoogle Scholar
  124. 124.
    Zalba G, San Jose G, Beaumont FJ, Fortuno MA, Fortuno A, Diez J. Polymorphisms and promoter overactivity of the p22(phox) gene in vascular smooth muscle cells from spontaneously hypertensive rats. Circ Res 2001;88(2):217–222.PubMedGoogle Scholar
  125. 125.
    Guzik TJ, West NE, Black E, McDonald D, Ratnatunga C, Pillai R, Chanon KM. Functional effect of the C242T polymorphism in the NAD(P) H oxidase p22phox gene on vascular superoxide production in atherosclerosis. Circulation 2000;102:1744–1747.PubMedGoogle Scholar
  126. 126.
    Chabrashvili T, Tojo A, Onozato ML, Kitiyakara C, Quinn MT, Fujita T, Welch WJ, Wilcox CS. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension 2002;39(2):269–274.PubMedCrossRefGoogle Scholar
  127. 127.
    Hamilton CA, Brosnan MJ, McIntyre M, Graham D, Dominiczak AF. Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction. Hypertension 2001;37(2):529–534.PubMedGoogle Scholar
  128. 128.
    Brosnan MJ, Hamilton CA, Graham D, Lygate CA, Jardine E, Dominiczak AF. Irbesartan lowers superoxide levels and increases nitric oxide bioavailability in blood vessels from spontaneously hypertensive stroke-prone rats. J Hypertens 2002;20(2):281–286.PubMedCrossRefGoogle Scholar
  129. 129.
    Hong HJ, Hsiao G, Cheng TH, Yen MH. Supplemention with tetrahydrobiopterin suppresses the development of hypertension in spontaneously hypertensive rats. Hypertension 2001;38(5):1044–1048.PubMedCrossRefGoogle Scholar
  130. 130.
    Laursen JB, Rajagopalan S, Galis Z, Tarpey M, Freeman BA, Harrison DG. Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 1997;95:588–593.PubMedGoogle Scholar
  131. 131.
    Rodriguez-Iturbe B, Zhan CD, Quiroz Y, Sindhu RK, Vaziri ND. Antioxidant-rich diet relieves hypertension and reduces renal immune infiltration in spontaneously hypertensive rats. Hypertension 2003;41(2):341–346.PubMedCrossRefGoogle Scholar
  132. 132.
    Tojo A, Onozato ML, Kobayashi N, Goto A, Matsuoka H, Fujita T. Angiotensin II and oxidative stress in Dahl Salt-sensitive rat with heart failure. Hypertension 2002;40(6):834–839.PubMedCrossRefGoogle Scholar
  133. 133.
    Ding Y, Gonick HC, Vaziri ND, Liang K, Wei L. Lead-induced hypertension. III. Increased hydroxyl radical production. Am J Hypertens 2001;14:169–173.PubMedCrossRefGoogle Scholar
  134. 134.
    Dobrian AD, Davies MJ, Schriver SD, Lauterio TJ, Prewitt RL. Oxidative stress in a rat model of obesity-induced hypertension. Hypertension 2001;37:554–560.PubMedGoogle Scholar
  135. 135.
    Wu R, Millette E, Wu L, de Champlain J. Enhanced superoxide anion formation in vascular tissues from spontaneously hypertensive and desoxycorticosterone acetate-salt hypertensive rats. J Hypertens 2001;19(4):741–748.PubMedCrossRefGoogle Scholar
  136. 136.
    Virdis A, Fritsch Neves M, Amiri F, Viel E, Touyz RM, Schiffrin EL. Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 2002; 40(4):504–510.PubMedCrossRefGoogle Scholar
  137. 137.
    Girouard H, Chulak C, LeJossec M, Lamontagne D, de Champlain J. Chronic antioxidant treatment improves sympathetic function and beta-adrenergic pathway in the SHR. J Hypertens 2003;21(10):179–188.PubMedCrossRefGoogle Scholar
  138. 138.
    Reckelhoff JF, Romero JC. Role of oxidative stress in angiotensin-induced hypertension. Am J Physiol Regul Integr Comp Physiol 2003;284(4):R893–R912.PubMedGoogle Scholar
  139. 139.
    Wallwork CJ, Parks DA, Schmid-Schonbein GW. Xanthine oxidase activity in the dexamethasone-induced hypertensive rat. Microvasc Res 2003;66(1):30–37.PubMedCrossRefGoogle Scholar
  140. 140.
    Schnackenberg CS. Oxygen radicals in cardiovascular-renal disease. Curr Opin Pharmacol 2002;2:121–125.PubMedCrossRefGoogle Scholar
  141. 141.
    Frenoux JM, Noirot B, Prost ED, Madani S, Blond JP, Belleville JL, Prost JL. Very high alpha-tocopherol diet diminishes oxidative stress and hypercoagulation in hypertensive rats but not in normotensive rats. Med Sci Monit 2002;8(10):BR401–BR407.Google Scholar
  142. 142.
    Park JB, Touyz RM, Chen X, Schiffrin EL. Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. Am J Hypertens 2002;15:78–84.PubMedCrossRefGoogle Scholar
  143. 143.
    Touyz RM. Oxidative stress and vascular damage in hypertension. Curr Hypertens Rep 2000;2:98–105.PubMedCrossRefGoogle Scholar
  144. 144.
    Minuz P, Patrignani P, Gaino S, Degan M, Menapace L, Tommasoli R, et al. Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease. Circulation 2002;106:2800–2805.PubMedCrossRefGoogle Scholar
  145. 145.
    Sagar S, Kallo IJ, Kaul N, Ganguly NK, Sharma BK. Oxygen free radicals in essential hypertension. Mol Cell Biochem 1992;111:103–108.PubMedCrossRefGoogle Scholar
  146. 146.
    Stojiljkovic MP, Lopes HF, Zhang D, Morrow JD, Goodfriend TL, Egan BM. Increasing plasma fatty acids elevates F2-isoprostanes in humans: implications for the cardiovascular risk factor cluster. J Hypertens 2002;20(6):1215–1221.PubMedCrossRefGoogle Scholar
  147. 147.
    Lip GY, Edmunds E, Nuttall SL, Landray MJ, Blann AD, Beevers DG. Oxidative stress in malignant and non-malignant phase hypertension. J Hum Hypertens 2002;16(5):333–336.PubMedCrossRefGoogle Scholar
  148. 148.
    Lee VM, Quinn PA, Jennings SC, Ng LL. Neutrophil activation and production of reactive oxygen species in pre-eclampsia. J Hypertens 2003;21(2):395–402.PubMedCrossRefGoogle Scholar
  149. 149.
    Cracowski JL, Baguet JP, Ormezzano O, Bessard J, Stanke-Labesque F, Bessard G, Mallion JM. Lipid peroxidation is not increased in patients with untreated mild-to-moderate hypertension. Hypertension 2003;41(2):286–288.PubMedCrossRefGoogle Scholar
  150. 150.
    Touyz RM, Schiffrin EL. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P) H oxidase-sensitive pathways. J Hypertens 2001;19(7):1245–1254.PubMedCrossRefGoogle Scholar
  151. 151.
    Ghiadoni L, Magagna A, Versari D, Kardasz I, Huang Y, Taddei S, Salvetti A. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension 2003;41(6):1281–1286.PubMedCrossRefGoogle Scholar
  152. 152.
    Schachinger V, Britten MB, Dimmeler S, Zeiher AM. NADH/NADPH oxidase p22 phox gene polymorphism is associated with improved coronary endothelial vasodilator function. Eur Heart J 2001;22(1):96–101.PubMedCrossRefGoogle Scholar
  153. 153.
    Gardemann A, Mages P, Katz N, Tillmanns H, Haberbosch W. The p22 phox A640G gene polymorphism but not the C242T gene variation is associated with coronary heart disease in younger individuals. Atherosclerosis 1999;145(2):315–323.PubMedCrossRefGoogle Scholar
  154. 154.
    Rey FE, Pagano PJ. The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol 2002;22(12):1962–1971.PubMedCrossRefGoogle Scholar
  155. 155.
    Brown AA, Hu FB. Dietary modulation of endothelial function: implications for cardiovascular disease. Am J Clin Nutr 2001;73:673–686.PubMedGoogle Scholar
  156. 156.
    Shihabi A, Li W-G, Miller FJ, Weintraub NL. Antioxidant therapy for atherosclerotic vascular disease: the promise and the pitfalls. Am J Physiol 2002;282:H797–H802.Google Scholar
  157. 157.
    Salvemini D, Cuzzocrea S. Therapeutic potential of superoxide dismutase mimetics as therapeutic agents in critical care medicine. Crit Care Med 2003;31(1):S29–S38.PubMedCrossRefGoogle Scholar
  158. 158.
    Digiesi D, Lenuzza M, Digiese G. Prospects for the use of antioxidant therapy in hypertension. Ann Ital Med Int 2001;16(20): 93–100.PubMedGoogle Scholar
  159. 159.
    Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC. Vitamin E consumption and the risk of coronary heart disease in women. N Engl J Med 1993;328(20):1444–1449.PubMedCrossRefGoogle Scholar
  160. 160.
    Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 1993;328(20):1450–1456.PubMedCrossRefGoogle Scholar
  161. 161.
    Kushi LH, Folsom AR, Prineas RJ, Mink PJ, Wu Y, Bostick RM. Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N Engl J Med 1996;334(18):1156–1162.PubMedCrossRefGoogle Scholar
  162. 162.
    Khaw K-T, Bingham S, Welch A, Luben R, Wareham N, Oakes S, et al. Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study. Lancet 2001;357:657–663.PubMedCrossRefGoogle Scholar
  163. 163.
    Chen J, He J, Hamm L, Batuman V, Whelton PK. Serum antioxidant vitamins and blood pressure in the United States population. Hypertension 2002;40(60):810–816.PubMedCrossRefGoogle Scholar
  164. 164.
    Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996;347(9004):781–786.PubMedCrossRefGoogle Scholar
  165. 165.
    Virtamo J, Rapola JM, Ripatti S, Heinonen OP, Taylor PR, AlbanesD, Huttunen JK. Effect of vitamin E and beta carotene on the incidence of primary nonfatal myocardial infarction and fatal coronary heart disease. Arch Intern Med 1998;158(6):668–675.Google Scholar
  166. 166.
    GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial, Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 1999;354(9177):447–455.Google Scholar
  167. 167.
    HOPE Investigators. Vitamin E supplementation and cardiovascular events in high risk patients. N Engl J Med 2000;342:154–160.CrossRefGoogle Scholar
  168. 168.
    MRC/BHF Heart protection study of antioxidant vitamin supplementation in 20 536 high-risk individuals: a randomized placebo-controlled trial. Lancet 2002;360:23–33.Google Scholar
  169. 169.
    de Gaetano G. Collaborative Group of the Primary Prevention Project, Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice, Collaborative Group of the Primary Prevention Project. Lancet 2001;357(9250):89–95.PubMedCrossRefGoogle Scholar
  170. 170.
    Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 2003;361(9374):2017–2023.PubMedCrossRefGoogle Scholar
  171. 171.
    Duffy SJ, Gokce N, Holbrook M, Huang A, Frei B, Keaney JF, Vita JA. Treatment of hypertension with ascorbic acid. Lancet 1999;354:2048–2049.PubMedCrossRefGoogle Scholar
  172. 172.
    Fotheby MD, Williams JC, Forster LA, Craner P, Ferns GA. Effect of vitamin C on ambulatory blood pressure and plasma lipids in older patients. J Hypertens 2000;18:411–415.CrossRefGoogle Scholar
  173. 173.
    Mullan B, Young IS, Fee H, McCance DR. Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes. Hypertension 2002;40:804–809.PubMedCrossRefGoogle Scholar
  174. 174.
    Boshtam M, Rafiei M, Sadeghi K, Sarraf-Zadegan N. Vitamin E can reduce blood pressure in mild hypertensives. Int J Vitam Nutr Res 2002;72(5):309–314.PubMedCrossRefGoogle Scholar
  175. 175.
    Galley HF, Thornton J, Howdle PD, Walker BE, Webster NR. Combination oral antioxidant supplementation reduces blood pressure. Clin Sci (Lond) 1997;92(4):361–365.Google Scholar
  176. 176.
    Kim MY, Sasaki S, Sasazuki S, Okubo S, Hayashi M, Tsugane S. Lack of long-term effect of vitamin C supplementation on blood pressure. Hypertension 2002;40:797–803.PubMedCrossRefGoogle Scholar
  177. 177.
    Chappell LC, Seed PT, Briley AL, Kelly FJ, Lee R, et al. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomized trial. Lancet 1999;354:810–815.PubMedGoogle Scholar
  178. 178.
    Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 1998;97:2222–2229.PubMedGoogle Scholar
  179. 179.
    d’Uscio LV, Milstein S, Rischardson D, Smith L, Katusic ZS. Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity. Circ Res 2003;92:88–95.PubMedCrossRefGoogle Scholar
  180. 180.
    Maxwell S, Greig L. Antioxidants–a protective role in cardiovascular disease? Expert Opin Pharmacother 2001;2(11):1737–1750.PubMedCrossRefGoogle Scholar
  181. 181.
    Wu R, Lamontagne D, de Champlain J. Antioxidative properties of acetylsalicylic acid on vascular tissues from normotensive and spontaneously hypertensive rats. Circulation 2002;105(3):387–392.PubMedCrossRefGoogle Scholar
  182. 182.
    Tribble DL. Antioxidant consumption and risk of coronary heart disease: emphasis on vitamin C, vitamin E and d-carotene, A statement for the healthcare professionals from the American Heart Association. Circulation 1999;99:591–595.PubMedGoogle Scholar
  183. 183.
    Carr A, Frei B. The role of natural antioxidants in preserving the biological activity of endothelium-derived nitric oxide. Free Rad Biol Med 2000;28:1806–1814.PubMedCrossRefGoogle Scholar
  184. 184.
    Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller III ER. Simons-Morton DG, Karanja N, Lin PH. DASH-Sodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 2001;344(1):3–10.Google Scholar
  185. 185.
    John JH, Ziebland S, Yudkin P, Roe LS, Neil HAW. Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomized controlled trial. Lancet 2002;359:1969–1973.PubMedCrossRefGoogle Scholar
  186. 186.
    Schiffrin EL, Touyz RM. Multiple actions of angiotensin II in hypertension: benefits of AT1 receptor blockade. J Am Coll Cardiol 2003;42(5):911–913.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rhian M. Touyz
    • 1
  • Ernesto L. Schiffrin
    • 2
  1. 1.Kidney Research Centre, University of OttawaOttawa Health Research InstituteOttawaCanada
  2. 2.Division of Experimental MedicineLady Meredith HouseMontrealCanada

Personalised recommendations