The Pathogenesis of Atherosclerosis and Plaque Instability

  • James S. Forrester

Despite the dramatic reduction in cardiac events reported in the lipid lowering trial, a substantial body of evidence from sources as diverse as epidemiology, clinical trials and cell biology suggests that the atherogenesis involves processes far more complex than elevation in serum lipids (Table 1.1). Until the 1980s the central focus of pathologists was the debate over whether coronary thrombosis is a premortem or postmortem event. In the late 1980s, however, coronary angioscopy in symptomatic patients focused attention on plaque rupture. Angioscopy in patients at the time they were experiencing clinical syndromes definitively demonstrated that the culprit lesion in patients with stable angina was an atheroma with a smooth surface, whereas those with unstable angina had a disrupted endothelial surface, with or without thrombus formation. Although these data established the causal importance of intimal disruption in acute coronary syndromes, there was no understanding of its pathologic basis.


Plaque Rupture Reverse Cholesterol Transport Plaque Instability Unstable Plaque Plaque Destabilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Forrester JS, Litvack F, Grundfest W, Hickey A. A perspective of coronary disease seen through the arteries of living man. Circulation 1987;75:505–513.PubMedGoogle Scholar
  2. 2.
    Sherman CT, Litvack F, Grundfest W, Lee M, Hickey A, Chaux A, Kass R, Blanche C, Matloff J, Morgenstern L, Forrester JS. Coronary Angioscopy in patients with unstable angina pectoris. N Engl J Med 1986;315(15):913–919.PubMedCrossRefGoogle Scholar
  3. 3.
    Davies MJ. The composition of coronary-artery plaques. N Engl J Med 1997;336(18): 1312–1314.CrossRefPubMedGoogle Scholar
  4. 4.
    Felton CV, Crook D, Davies MJ, Oliver MF. Relation of plaque lipid composition and morphology to the stability of human aortic plaques. Arterioscler Thromb Vasc Biol 1997;17(7):1337–1345.PubMedGoogle Scholar
  5. 5.
    Shechter M, Sharir M, Forrester J, Bairey-Merz CN. Is There a benefit to lowering low-density lipo protein below 100 Mg/Dl in patients with coronary artery disease. JACC 1999;33:271A.Google Scholar
  6. 6.
    Mellwig KP, Baller D, Gleichmann U, Moll D, Betker S, Weise R, Notohamiprodjo G. Improvement of coronary vasodilatation capacity through single LDL apheresis. Atherosclerosis 1998;139(1):173–178.CrossRefPubMedGoogle Scholar
  7. 7.
    Vogel RA. Cholesterol Lowering and Endothelial Function. Am J Med 1999;107(5):479–487.CrossRefPubMedGoogle Scholar
  8. 8.
    Topper JN, Cai J, Falb D, et al. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci USA 1996;93:10417–10422.CrossRefPubMedGoogle Scholar
  9. 9.
    De Caterina R, Libby P, Peng HB, et al. Nitric oxide decreases cytokine-induced endothelial activation: nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995;96:60–68.CrossRefPubMedGoogle Scholar
  10. 10.
    Nagel T, Resnick N, Atkinson WJ, et al. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J Clin Invest 1994;94:885–891.CrossRefPubMedGoogle Scholar
  11. 11.
    Qiao JH, Tripathi J, Mishra NK, et al. Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol 1997;150:1687–1699.PubMedGoogle Scholar
  12. 12.
    Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. The combined role of P and E-selectins in atherosclerosis. J Clin Invest 1998;102(1):145–152.CrossRefPubMedGoogle Scholar
  13. 13.
    Van der Wal AC, Das PK, Tigges AJ. Adhesion molecules on the endothelium and mononuclear cells in human atherosclerotic lesions. Am J Pathol 1992;141:1427–1433.PubMedGoogle Scholar
  14. 14.
    Rohde L, Lee RT, Rivero J, Jamacochian M, Arroyo L, Briggs W, Rifai N, Libby P, Creager M, Ridker P. Circulating cell adhesion molecules are correlated with ultrasound-based assessment of carotid atherosclerosis. Arterioscler Thromb Vasc Biol 1998;18(11):1765–1770.PubMedGoogle Scholar
  15. 15.
    Avogaro P, Bigitolo BG, Cassolato G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis 1998;8:79–87.Google Scholar
  16. 16.
    Hasegawa A, Toshima S, Nakano A, Nagai R. Oxidized LDL in patients with coronary heart disease and normal subjects. Nippon Rinsho 1999;57(12):2754–2758.PubMedGoogle Scholar
  17. 17.
    Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997;272:20963–20966.CrossRefPubMedGoogle Scholar
  18. 18.
    de la Llera Moya M, Atger V, Paul JL, Fournier N, Moatti N, Giral P, Friday KE, Rothblat G. A cell culture system of screening human serum for ability to promote cellular cholesterol efflux. Arterioscler Thromb 1994;14:1056–1065.PubMedGoogle Scholar
  19. 19.
    Woollett LA, Kearney DM, Spady DK. Diet modification alters plasma HDL cholesterol concentrations but not the transport of HDL esters to the liver in the hamster. J Lipid Res 1997;38:2289–2302.PubMedGoogle Scholar
  20. 20.
    Barter PJ. Inhibition of endothelial cell adhesion molecular expression by high density lipoproteins. Clin Exp Pharmacol Physiol 1997;24(3/4):286–287.CrossRefPubMedGoogle Scholar
  21. 21.
    Bonnefont-Rousselot D, Therond P, Beaudeux JL, Peynet J, Legrand A, Delattre J. High density lipoproteins (HDL) and the oxidative hypothesis of atherosclerosis. Clin Chem Lab Med 1999;37(10):939–948.CrossRefPubMedGoogle Scholar
  22. 22.
    Forrester JS, Shah PK. Lipid lowering vs. revascularization: an idea whose time (for testing) has come. Circulation 1997;96(4):1360–1362.Google Scholar
  23. 23.
    Galis Z, Sukhova G, Kranzhofer R, Clark S, Libby P. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA 1995;92:402–406.CrossRefPubMedGoogle Scholar
  24. 24.
    Barath P, Jakubowski A, Fishbein M, Grundfest W, Litvack F, Forrester J. Are mast cells the culprit in coronary plaque destabilization? J Am Coll Cardiol 1988;9:II-52.Google Scholar
  25. 25.
    Kaartinen M, Penttila A, Kovanen P. Mast cells in rupture-prone areas of human coronary atheromas produce and store TNF-a. Circulation 1996;94:2787–2792.PubMedGoogle Scholar
  26. 26.
    Chen Y-H, Chen Y-L, Lin S-J, Chou C-Y, Mar G-Y, Chang M-S, Wang S-P. Electron microscopic studies of phenotypic modulation of smooth muscle cells in coronary arteries of patients with unstable angina pectoris and post-angioplasty restenosis. Circulation 1997;95:1169–1175.PubMedGoogle Scholar
  27. 27.
    Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995;91(11): 2844–2850.PubMedGoogle Scholar
  28. 28.
    van der Wal AC, Becker AE, van der Loos CM, Das PK. Unstable plaques, endothelial function, and coronary artery thrombosis: site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89:36–44.PubMedGoogle Scholar
  29. 29.
    Barath P, Fishbein MC, Cao J, Berenson J, Helfant RH, Forrester JS. Detection and localization of tumor necrosis factor gene expression in human atheroma. Am J Cardiol 1990;65:297–302.CrossRefPubMedGoogle Scholar
  30. 30.
    Sukhova G, Schonbeck U, Rabkin E, Schoen F, Poole A, Billinghurst R, Libby P. Evidence for increased collagenolysis by interstitial collagenases-1 and −3 in vulnerable human atheromatous plaques. Circulation 1999;99(19):2503–2509.PubMedGoogle Scholar
  31. 31.
    Anguera I, Miranda-Guardiola F, Bosch X, Filella X, Sitges M, Marin JL, Betriu A, Sanz G. Elevation of serum levels of the anti-inflammatory cytokine. interleukin-10 and decreased risk of coronary events in patients with unstable angina. Am Heart J 2002;144:811–817.Google Scholar
  32. 32.
    Bobik A, Agrotis A, Kanellakis P, Dilley R, Krushinsky A, Smirnov V, Tararak E, Condron M, Kostolias G. Distinct patterns of transforming growth factor-B isoform and receptor expression in human atherosclerotic lesions. Circulation 1999;99:2883–2891.PubMedGoogle Scholar
  33. 33.
    Ross R. Atherosclerosis is an inflammatory disease. Am Heart J 1999;138:S419–S420.CrossRefPubMedGoogle Scholar
  34. 34.
    Casscells W, Hathorn B, David M, Krabach T, Vaughn WK, McAllister HA, Bearman G, Willerson JT. Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 1996;347:1447–1449.CrossRefPubMedGoogle Scholar
  35. 35.
    Malik IS, Haskard DO. Soluble adhesion molecules in ischaemic heart disease. Eur Heart J 1999;20:990–991.CrossRefPubMedGoogle Scholar
  36. 36.
    Kiechl S, Egger G, Mayr M, Wiedermann CJ, Bonora E, Oberhollenzer F, Muggeo M, Xu Q, Wick G, Poewe W, Willeit J. Chronic infections and the risk of carotid atherosclerosis: prospective results from a large population study. Circulation 2001;103(8):1064–1070.PubMedGoogle Scholar
  37. 37.
    Danesh J. Smoldering arteries: low-grade inflammation and coronary heart disease. JAMA 1999;282(22):2169–2171.CrossRefPubMedGoogle Scholar
  38. 38.
    Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Villareal-Levy G, Fallon JT, Regnstrom J, Fuster V. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques: potential role of matrix-degrading metalloproteinases and implication for plaque rupture. Circulation 1995;95:1565–1569.Google Scholar
  39. 39.
    Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM. Identification of 92-kd gelatinase in human coronary atherosclerotic lesions: association of active enzyme synthesis with unstable angina. Circulation 1995;95:2125–2131.Google Scholar
  40. 40.
    Lendon CL, Davies MJ, Born GVR, Richardson PD. Atherosclerotic plaque caps are locally weakened when macrophage density is increased. Atherosclerosis 1991;87:87–90.CrossRefPubMedGoogle Scholar
  41. 41.
    Xu XP, Meisel SR, Ong HM, Kaul S, Cercek B, Rajavashisth TB, Sharifi B, Shah PK. Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and is tissue inhibitor in human monocyte-derived macrophages. Circulation 1999;99:993–998.PubMedGoogle Scholar
  42. 42.
    Saren P, Welgus HG, Kovanen PT. TNF-alpha and IL-beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol 1996;157:4159–4165.PubMedGoogle Scholar
  43. 43.
    Rajavashisth TB, Xu X-P, Jovinge S, Meisel S, Xu X-O, Chai N-N, Fishbein MC, Kaul S, Cercek B, Sharifi B, Shah PK. Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators. Circulation 1999;99(24):3103–3109.PubMedGoogle Scholar
  44. 44.
    Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS: Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro: implications for atherosclerotic plaque stability. J Clin Invest 1996;98:2572–2579.CrossRefPubMedGoogle Scholar
  45. 45.
    Kol A, Sukhova GK, Lichtman AH, Libby P. Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-i and matrix metalloproteinase expression. Circulation 1998;98:300–307.PubMedGoogle Scholar
  46. 46.
    Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaque. J Clin Invest 1995;95: 2266–2274.CrossRefPubMedGoogle Scholar
  47. 47.
    Henderson EL, Geng Y-J, Sukhova GK, Whittemore AD, Knox J, Libby P. Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aneurysms. Circulation 1999;99:96–104.PubMedGoogle Scholar
  48. 48.
    Wallner K, Li C, Shah PK, Fishbein MC, Forrester JS, Kaul S, Sharifi B. Tenascin-C is expressed in macrophage-rich human coronary atherosclerotic plaque. Circulation 1999;99(10):1284–1289.PubMedGoogle Scholar
  49. 49.
    LaFleur DW, Chiang J, Fagin JA, Forrester JS, Shah PK, Sharifi BG. Smooth muscle cells interact with tenascin through its fibrinogen-like domain. FASEB 1998;12(4):A479.Google Scholar
  50. 50.
    Falk E, Shah P, Fuster V. Coronary plaque disruption. Circulation 1995;92:657–671.PubMedGoogle Scholar
  51. 51.
    Toschi V, Gallo R, Lettino M, Fallon JT, Gertz SD, Fernandez-Ortiz A, Chesebro JH, Badimon L, Nemerson Y, Fuster V, Badimon JJ. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 1997;95:594–599.PubMedGoogle Scholar
  52. 52.
    Forrester JS, Kaul S, Bairey-Merz N. The aggressive lipid lowering controversy. J Am Coll Cardiol 2000;36:1419–1425.CrossRefPubMedGoogle Scholar
  53. 53.
    Packard CJ. Relationship Between LDL-C Changes and CHD Event Reduction with Pravastatin In the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 1997;96(suppl I):I–107.Google Scholar
  54. 54.
    deLorgeril M, Salen P, Martin J-L, Monjaud I, Delaye J, Mamelle N. Mediterranean Diet, Traditional Risk Factors, and the Rate of Cardiovascular Complications After Myocardial Infarction. Circulation 1999;99:779–785.Google Scholar
  55. 55.
    Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, Faas FH, Linares E, Schaefer EJ, Schectman G, Wilt T, Wittes J. Gemfibrozil for the Secondary Prevention of Coronary Heart Disease in Men with Low Levels of High-Density Lipoprotein Cholesterol. New Engl J Med 1999;341(6):410–418.CrossRefPubMedGoogle Scholar
  56. 56.
    Relation of gemfibrozil treatment and lipid levels with major coronary exacts; VA-HIT; a randomized controlled trial 2001;285:1585–1591.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • James S. Forrester
    • 1
  1. 1.Division of CardiologyCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations