Miniaturization is an important trend in many modern technologies. The requirement for material processing with micron or submicron resolution at high speed and low unit cost is an underpinning technology in nearly all industries manufacturing high-tech microproducts for biotechnological, microelectronics, telecommunication, MEMS, and medical applications (Gruenewald et al. 2001). In view of this increasing trend toward miniaturization, micromachining becomes an important activity in the fabrication of microparts. Various technologies such as mechanical micromachining (microdrilling and micromilling), focused ion beam micromachining, laser micromachining are being used in microfabrication. Laser micromachining is a relatively recent process and offers better flexibility in dimensional design of microproducts. Advances in the laser technology combined with the better understanding of laser-matter interaction make laser micromachining a viable, attractive, cost-effective, and enabling technology to support these applications (Subrahmanyan 2003). At present, laser micromachining is extensively used to produce shapes with greater complexity and lesser material damage than competing micromachining approaches. This chapter provides a brief overview of the various approaches and applications of laser-based micromachining processes.


Electrical Discharge Machine Excimer Laser Etch Rate Laser Fluence Ablation Rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer 2008

Personalised recommendations