Advances in Soybean Breeding

  • M.S. Pathan
  • David A. Sleper
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 2)


Quantitative Trait Locus Single Nucleotide Polymorphism Marker Soybean Cultivar Soybean Genome Soybean Cyst Nematode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arahana, V.S., Garef, G.L., Specht, J.E., Steadman, J.R., and Eskridge, K.M. (2001) Identification of QTLs for resistance to Sclerotinia sclerotiorum in soybean. Crop Sci. 41, 180–188.Google Scholar
  2. Arumuganathan, K. and Earle, E.D. (1991) Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–219.CrossRefGoogle Scholar
  3. Ashfield T., Saghai Maroof, M.A., Webb, D.M., Innes, R.W., Keim, P., Danzer, J.R., Held, D., and Clayton, K. (1998) Rpg1, a soybean gene effective against races of bacterial blight, maps to a cluster of previously identified disease resistance genes. Theor. Appl. Genet. 96, 1013–1021.CrossRefGoogle Scholar
  4. Bachman, M.S., Tamulonis, J.P., Nickell, C.D., and Bent, A.F. (2001) Molecular markers linked to brown stem rot resistance genes, Rbs1 and Rbs2 in soybean. Crop Sci. 41, 527–535.Google Scholar
  5. Bhatnagar, S., King, C.A., Purcell, L., Ray, J.D. (2005) Identification and mapping of quantitative trait loci associated with crop responses to water-deficit stress in soybean [Glycine max (L.) Merr.]. The ASA-CSSA-SSSA International Annual Meeting (Abstract), November 6–10, 2005. p 9.Google Scholar
  6. Bilyeu, K., Palavalli, L., Sleper, D., and Beuselinck, P. (2003) Three microsomal omega-3 fatty acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci. 43, 1833–1838.Google Scholar
  7. Bilyeu, K., Palavalli, L., Sleper, D., and Beuselinck, P. (2005) Mutations in soybean microsomal omega-3 fatty acid desaturase genes reduce linolenic acid concentration in soybean seeds. Crop Sci. 45, 1830–1836.CrossRefGoogle Scholar
  8. Birt, D.F., Hendrick, S. and Alekel, D.L. (2004) Soybean and the prevention of chronic human disease. In: H.R. Boerma and J. E. Specht (Eds), Soybeans: Improvement, Production, and Uses. Agronomy Monographs 3rd ed. No. 16, ASA-CSSA-SSSA, Madison, WI, USA,pp.1047–1117.Google Scholar
  9. Blanc, G. and Wolfe, K.H. (2004) Wide spread paleoploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 16, 1667–1678.PubMedCrossRefGoogle Scholar
  10. Boerma, H. R. (1979) Comparison of past and recently developed soybean cultivars in maturity groups VI, VII and VIII. Crop Sci. 19, 611–613.Google Scholar
  11. Boyer, J.S., Johnson, R.R., and Saupe, S.G. (1980) Afternoon water deficits and grain yields in old and new soybean cultivars. Agron. J. 72, 981–986.Google Scholar
  12. Brummer, E.C., Greaf, G.L., Orf, J., Wilcox, J.R., and Shoemaker, R.C. (1997) Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci. 37, 370–378.Google Scholar
  13. Burnham, K.D., Dorrance, A.E., Francis, D.M., Fioritto, R.J., and St. Martin, S.K. (2003) A new locus in soybean for resistance to Phytophthora sojae. Crop Sci. 43, 101–105.Google Scholar
  14. Burton, J.W. (1987) Soybean [(Glycine max (L.) Merr.)]. Field Crop Res. 53, 171–186.CrossRefGoogle Scholar
  15. Cahill, D.J. and Schmidt, D.H. (2004) Use of marker assistant selection in a product development breeding program. Proceedings of the 4th International Crop Science Congress, 26 Sept- 1 Oct 2004, Brisbane, Australia. ({}).Google Scholar
  16. Carter Jr., T. E., Nelson, R. L., Sneller, C. H. and Cui, Z. (2004) Genetic diversity in soybean. In: H.R. Boerma and J. E. Specht (Eds), Soybeans: Improvement, Production, and Uses. Agronomy Monographs 3rd ed. No. 16, ASA-CSSA-SSSA, Madison, WI, USA, pp. 303–416.Google Scholar
  17. Carlson, J.B., and Lersten, N.R. (1987) Reproductive morphology. In: J.R. Wilcox (Ed.), Soybeans: Improvement, Production, and Uses. Agronomy Monographs 2nd ed. No. 16, American Society of Agronomy (ASA), Madison, WI, USA, pp. 95–134.Google Scholar
  18. Chakraborthy, N., Curley, J., Neece, D., Diers, B. and Nelson, R. L. (2006) QTLs for soybean seed yield and agronomic traits in populations derived from exotic lines. Poster abstract. Biennial conference on the molecular and cellular biology of the soybean, August 5–8, 2006, Lincoln, Nebraska.Google Scholar
  19. Chang, R, Qiu, L., Sun, J., Chen, Y., Li, X. and Xu, Z. (1999) Collection and conservation of soybean germplasm in China. In. H. E. Kauffman (Ed). Proceedings of the World Soybean Conference VI. Superior Printing, Champange, Illinois, USA. pp. 172–176.Google Scholar
  20. Chen, Z., and Shoemaker, R.C. (1998) Four genes affecting seed traits in soybeans map to linkage group F. J. Heredity. 89, 211–215.CrossRefGoogle Scholar
  21. Choi, I-Y., Hyten, D.L., Matukumalli, L.K., Song, Q., Chaky, J.M., Quigley, C.V., Chase, K., Lark, K.G., Reiter, R.S., Yoon, Hwang, E-Y., Yi, S-I., Young, N.D., Shoe,amker, R.C., Tassell, C.P., Specht, J.E., and Cregan, P. B. (2007) A soybean transcript map: gene distribution, haplotype and Single-nucleotide polymorphism (SNP) analysis. Genetics. 176, 685–696.Google Scholar
  22. Chung, J., Babka, H.L., Graef,G.L., Staswick, P.E., Lee, D.J., Cregan, P.B., Shoemaker, R.C., and Specht, J.E. (2003) The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci. 43, 1053–1067.Google Scholar
  23. Concibido, V.C., Diers, B.W., and Arelli, P.R. (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci. 44:1121–1131.Google Scholar
  24. Concibido, V.C., La Vallee, B., McLaird, P., Pineda, N., Meyer, J., Hummel, L., Yang, J., Wu, K., and Delannay, X. (2003) Introgression of a quantitative trait locus for yield from Glycine soja in to commercial soybean cultivars. Theor. Appl. Genet. 106, 575–582.Google Scholar
  25. Concibido, V.C., Denny, R., Lange, D., Danesh, D., Orf, J., and Young, N. (1997) Genome mapping on soybean cyst nematode resistance genes in Peking, PI90763, and PI88788 using DNA markers. Crop Sci. 37, 258–264.Google Scholar
  26. Cregan, P.B., Mudge, J., Fickus, E.W., Danesh, D., Denny, R. and Young, N.D. (1999) Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor. Appl. Genet. 99, 811–818.CrossRefGoogle Scholar
  27. Demirbas, A., Cregan, P.B., Shoemaker, R.C., Specht, J.E., Graef, G.L., Rector, B.G., Lohnes, D.G., and Fioritto, R.J. (2001) Simple sequence repeat markers linked to the soybean Rps genes for phytophthora resistance. Crop Sci. 41, 1220–1227.Google Scholar
  28. Devine, T.E., and Kuykendall, L.D. (1996) Host genetic control of symbiosis in soybean (Glycine max L.). Plant Soil. 186, 173–187.CrossRefGoogle Scholar
  29. Diers, B. (2006) Staying ahead of SCN, alternative sources of resistance. Field Day 2006, University of Illinois, found at a/SCN/ (verified on 10-03-07).Google Scholar
  30. Diers, B.W., Keim, P., Fehr, W.R., and Shoemaker, R.C. (1992) RFLP analysis of soybean seed protein and oil content. Theor. Appl. Genet. 83, 608–612.CrossRefGoogle Scholar
  31. Dreher, K., Khairallah, M., Ribaut, J-M. and Morris, M. (2003) Money matters (I) costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol. Breeding. 11, 221–234.CrossRefGoogle Scholar
  32. Falconer, D.S. (1981) Introduction to quantitative genetics. 2nd ed. Longman Inc., New York.Google Scholar
  33. Fasoula, V.S., Harris, D.K., and Boerma, H.R. (2005) Validation and designation of quantitative trait loci for seed protein, seed oil, and seed weight from two soybean populations. Crop Sci. 44, 1218–1225.Google Scholar
  34. Fulton, T.M., Grandillo, S., Beck-Bunn, T., Friedman, E., Frampton, A., Lopez, J., Petiard, J., Uhlig, J., Zamir, D., and Tanksley, S.D. (2000) Advanced backcross QTL analysis of a Lycopersicon times Lycopersicon parviflorum cross. Theor. Appl. Genet. 100, 1025–1042.CrossRefGoogle Scholar
  35. Gai, J., Zhao, T., and Qiu, J. (1997) A review on the advances of soybean breeding since 19981 in China. In: Seed industry and agricultural development, CAASS. China Agric. Press, Beijing, China, pp. 168–174.Google Scholar
  36. Githiri, S.M., Watanabe, S., Harada, K., and Takahashi, R. (2006) QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed. 125, 613–618.CrossRefGoogle Scholar
  37. Gizlice, Z., Carter, T.E., and Burton, J.W. (1994) Genetic base for North American public soybean cultivars released between 1947 and 1998. Crop Sci. 34, 1143–1151.Google Scholar
  38. Guzman, P.S., Diers, B.W., Neece, D.J., St.Martin, S.K., LeRoy, A.R., Grau, C.R., Hughes, T.J., and Nelson, R.L. (2007) QTL associated with yield in three backcross-derived populations of soybean. Crop Sci. 47, 111–122.CrossRefGoogle Scholar
  39. Hartwig, E.E. (1973) Varietal development. In: B.E. Caldwell (Ed.), Soybeans: improvement, production, and uses. Publication No. 16, American Society of Agronomy (ASA), Madison, WI, USA, pp. 187–210.Google Scholar
  40. Hayes, A.J., Ma, G.R., Buss, G.R., and Maroof, M.A.S. (2000) Molecular marker mapping of RSV4, a gene conferring resistance to all known strains of soybean mosaic virus. Crop Sci. 40, 1434–1437.Google Scholar
  41. Hegstad, J.M., Nickell, C.D., and Vodkin. L.O. (1998) Identifying resistance to phytophthora sojae in selected soybean accessions using RFLP techniques. Crop Sci. 38, 50–55.Google Scholar
  42. Hegstad, J.M., Tarter, J.A., Vodkin, L.O., and Nickell, C.D. (2000) Positioning the wp flower color locus on the soybean genome map. Crop Sci. 40, 534–537.Google Scholar
  43. Hill, C.B., Li, Y., and Hartman, G.L. (2006) A single dominant gene for resistance to the soybean aphid in the soybean cultivar Dowling. Crop Sci. 46, 1601–1605.CrossRefGoogle Scholar
  44. Hymowitz, T. (2004) Speciation and cytogenetics. In: H.R. Boerma and J. E. Specht (Eds), Soybeans: Improvement, Production, and Uses. Agronomy Monographs 3rd ed. No. 16, ASA-CSSA-SSSA, Madison, WI, USA, pp. 97–136.Google Scholar
  45. Hymowitz, T. (1990) Soybean: The success story. In: J. Janick and J. E. Simon (Eds), Advances in new crops. Timber Press, Portland, OR, USA, pp. 159–163.Google Scholar
  46. Hyten, D.L., and Cregan, P.B. (2006) Saturation of the rhg1 genomic region with SNP markers to determine linkage drag in resistant soybean cultivars and to demonstrate association analysis in soybean. International Plant and Animal Genome (PAG) Conference. January 13–17, 2006, San Diego, CA. p. 414.Google Scholar
  47. Hyten, D. L., Pantalone, V.R., Sams, C.E., Saxton, A.M., Landau-Ellis, D., Stefaniak, T.R., and Schmidt, M.E. (2004) Seed quality QTL in a prominent soybean population. Theor. Appl. Genet.109:552–561.PubMedCrossRefGoogle Scholar
  48. Hyten, D. L., Hartman, G. L., Nelson, R. L., Frederick, R. D., Concibido, V. C., Narvel, J. M., and Cregan, P. B. (2007) Map Location of the Rpp1 Locus That Confers Resistance to Soybean Rust in Soybean. Crop Sci. 47, 837–838.Google Scholar
  49. James, C. (2006) global status of commercialized biotech/GM crops- 2005, ISAAA Briefs no 34–2005, Ithaca, New York, USA.Google Scholar
  50. Kabelka, E.A., Carlson, S.R., and Diers, B.W. (2005) Localization of two loci that confer resistance to soybean cyst nematode from Glycine soja PI 468916. Crop Sci. 45, 2473–2481.CrossRefGoogle Scholar
  51. Karakaya, H.C., tang, Y., Cregan, P.B. and Knap, H.T. (2002) Molecular mapping of the fasciation mutation in soybean in soybean, Glycine max (Leguminose). Am. J. Bot. 89, 559–565.CrossRefGoogle Scholar
  52. Khush, G. S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 59, 1–6.PubMedCrossRefGoogle Scholar
  53. Kiang, Y.T. (1990) Linkage analysis of Pgd 1, Pgi 1, pod color (L1), and determinate stem (dt1) loci on soybean linkage group 5. J. Heredity. 81, 401–404.Google Scholar
  54. Kim, M. Y., Van, K., Lestari, P., Moon, J. K., and Lee, S. H. (2005) SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean, Theor. Appl. Genet. 110, 1003–1010.PubMedCrossRefGoogle Scholar
  55. Kisha, T.J., Sneller, C.H., and Diers, B.W. (1997) Relationship between genetic distance among parents and genetic variance in populations of soybean. Crop Sci. 37, 1317–1325.Google Scholar
  56. Kuchel, H., Ye, G., Fox, R. and Jefferies, S. (2005) Genetic and economic analysis Sof a targeted marker-assisted wheat breeding strategy. Mol. Breeding. 16, 67–78.CrossRefGoogle Scholar
  57. Lee, G.J., Carter, T.E. Jr., Li, Z., Gibbs, M.O., Boerma, H.R., Villagarcia, M.R., and Zhou, X. (2004) A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor. Appl. Genet. 109, 1610–1619.PubMedCrossRefGoogle Scholar
  58. Lee, S.H., Bailey, M.A., Mian, M.A.R., Carter, Jr., T.E., Ashley, D.A., Hussey, R.S., Parrott, W.A., and Boerma, H.R. (1996) Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theor. Appl. Genet. 92,516–523.Google Scholar
  59. Lee, G-J., X. Wu, Shannon, J.G., Sleper, D.A. and Nguyen, H.T. (2006). Genome mapping and molecular breeding in plants: soybean. In: C. Kole (ed). Genome mapping and molecular breeding in plants, Vol. 2 (oilseeds), Springer, USA.Google Scholar
  60. Lewers, K.S., Crane, E.H., Bronson, C.R., Schupp, J.M., Keim, P, and Shoemaker, R.C. (1999) Detection of linked QTL for soybean brown stem rot resistance in ‘BSR101’ as expressed in a growth chamber environment. Mol. Breed. 5, 33–42.CrossRefGoogle Scholar
  61. Li, D., and Pfeiffer, T. (2006) Soybean QTLs for yield and yield components associated with Glycine soja alleles. Abstract. The 11$^th$ Biennial conference on the molecular and cellular biology of the soybean, August 5–8, 2006, Lincoln, Nebraska.Google Scholar
  62. Li, X-P., Tian, A-G., Luo, G-Z., Gong, Z-Z., Zhang, J-S., and Chen, S-Y. (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor. Appl. Genet. 110, 1355–1362.PubMedCrossRefGoogle Scholar
  63. Liu, K. (1997) Soybeans: Chemistry, Technology and Utilization. Aspen Publishers, Gaithersburg, Maryland, USA. pp. 532.Google Scholar
  64. Lohnes, D.G., and Schmitthenner, A.F. (1997) Position of the phytophthora gene Rps7 on the soybean molecular map. Crop Sci. 37, 555–556.Google Scholar
  65. Luedders, V.D. (1977) Genetic improvement in yield of soybean. Crop Sci. 17, 971–972.Google Scholar
  66. Luo, G-Z., Wang, H-W., Huang, J., Tian, A-G., Wang, Y-J., Zhang, J-S., and Chen, S-Y. (2005) A putative plasma membrane cation/protein antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol. Biol. 59, 809–820.PubMedCrossRefGoogle Scholar
  67. Luquez, V.M., and Guiamet, J.J. (2001) Effects of the ’stay green’ genotype GGd1d1d2d2 on leaf gas exchange, dry matter accumulation and seed yield in soybean (Glycine max L. Merr.). Ann. Bot. 87, 313–318.CrossRefGoogle Scholar
  68. Mackill, D.J. (2003) Applications of genomics to rice breeding. Int. Rice Res. Note. 28, 9–15.Google Scholar
  69. Mansur, L.M., Lark, K.G. Kross, H., and Oliveira, A. (1993) Internal mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor. Appl. Genet. 86, 907–913.Google Scholar
  70. Mansur, L.M., Orf, J.H., Chase, K., Jarvik, T., Cregan, P.B., and Lark, K.G. (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci. 36, 1327–1336.Google Scholar
  71. Matthews, B.F., Devine, T.E., Weisemann, J.M., Beard, H.S., Lewers, K.S., McDonald, M.H., Park, Y.B., Maiti, R., Lin, J.J., Kuo, J., Pedroni, M.J., Cregan, P.B., and Saunders, J.A. (2001) Incorporation of sequenced cDNA and genomic markers into the soybean genetic map. Crop Sci. 41, 516–521.Google Scholar
  72. Meksem, K., Doubler, T.W., Chancharoenchai, K., Njiti, V.N., Chang, S.J.C., Arelli, A.P.R., Cregan, P.E., Gray, L.E., Gibson, P.T., and Lightfoot, D.A. (1999) Clustering among loci underlying soybean resistance to Fusarum solani, SDS and SCN in near-isogenic lines. Theor. Appl. Genet. 99, 1131–1142.CrossRefGoogle Scholar
  73. Mian, M.A.R., Ashley, D.A., and Boerma, H.R. (1998) An additional QTL for water use efficiency in soybean. Crop Sci. 38, 390–393.Google Scholar
  74. Mian, M.A.R., Mailey, M.A., Ashley, D.A., Wells, R., Carter, T.E., Parrot, W.A., and Boerma, H.R. (1996) Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci. 36, 1252–1257.Google Scholar
  75. Mian, M.A.R., Wang, T., Phillips, D.V., Alvernaz, J. and Boerma, R.R. (1999) Molecular mapping of the Rcs3 gene for resistance to frogeye leaf spot in soybean. Crop Sci. 39, 1687–1691.Google Scholar
  76. Moncada, P., Martinez, C.P., Borrero, J., Chatel, M., Gauch, H.Jr., Guimaraes, E., Tohme, J., and McCouch, R. (2001) Quantitative trait loci for yield and yield components in an Oryza sativa times Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor. Appl. Genet. 102, 41–52.CrossRefGoogle Scholar
  77. Moreau, L., Lamarie, S., Charcosset, A. and Gallais. A. (2000) Economic efficiency of one cycle of marker-assisted selection. Crop Sci. 40, 329–337.Google Scholar
  78. Morris, M., Dreher, K.. Ribaut, J-M. and Khairallah, M. (2003) Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection. Mol. Breed. 11, 235–247.CrossRefGoogle Scholar
  79. Morrison, M. J., Voldeng, H.D. and Cober, R.R. (2000) Agronomic changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agron. J. 92,780–784.Google Scholar
  80. Morrison, M. J., Voldeng, H.D. and Cober, R.R. (1999) Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agron. J. 91,685–689.Google Scholar
  81. Narvel, J.M., Lee, S.H., Boerma, H.R., Wang, T., Jakkula, L.R., and Philips, D.V. (2001) Molecular mapping of Rxp conditioning reaction to bacterial pustule in soybean. J. Hered. 92,267–270.PubMedCrossRefGoogle Scholar
  82. Nichols, D.M., Glover, K.D., Carlson, S.R., Specht, J.E., and Diers, B.W. (2006) Fine mapping of a seed protein QTL on soybean linkage map I and its correlated effects on agronomic traits. Crop Sci. 46, 834–839.CrossRefGoogle Scholar
  83. Orf, J.H., Chase, K., Jarvik, T., Mansur, L.M., Cregan, P.B., Adler, F.R., Lark, K.G. (1999) Genetics of soybean agronomic traits. I. Comparison of three related recombinant inbred populations. Crop Sci. 39, 1642–1651.Google Scholar
  84. Orf, J. H., Diers, B. W. and Boerma, H. R. (2004) Genetic improvement: conventional and molecular-based strategies. In: H.R. Boerma and J. E. Specht (Eds), Soybeans: Improvement, Production, and Uses. Agronomy Monographs 3rd ed. No. 16, ASA-CSSA-SSSA, Madison, WI, USA, pp. 417–450.Google Scholar
  85. Ortiz-Perez, E., Horner, H. T., Hanlin, S. J. and Palmer, R. G. (2006a) Insect-mediated seed-set evaluation of 21 soybean lines segregating for male sterility at different loci. Euphytica 152, 351–360.CrossRefGoogle Scholar
  86. Ortiz-Perez, E., Horner, H. T., Hanlin, S. J. and Palmer, R. G. (2006b) Evaluation of insect-mediated seed set among soybean lines segregating for male sterility at the ms6 locus. Field Crops Res. 97, 353–362.CrossRefGoogle Scholar
  87. Palmer, R.G., Gai, J., Sun, H., and Burton, J.W. (2001) Production and evaluation of hybrid soybean. Plant Breed. Rev. 21, 263–307.Google Scholar
  88. Palmer, R.G., Pfeiffer, T.W., Buss, G.R., and Kilen, T.C. (2004) Qualitative genetics. In: Boerma HR, Specht JE (Eds) Soybeans: Improvement, Production, and Uses. Agronomy Monographs 3rd ed. No. 16, ASA-CSSA-SSSA, Madison, WI, USA, pp. 133–233.Google Scholar
  89. Panthee, D.R., Pantalone, V.R., West, D.R., Saxton, A.M., and Sams, C.E. (2005) Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci. 45, 2015–2022.CrossRefGoogle Scholar
  90. Panthee, D.R., Pantalone, V.R., and Saxton, A.M. (2006) Modifier QTL for fatty acid composition in soybean oil. Euphytica 152, 67–73.CrossRefGoogle Scholar
  91. Panthee, D.R., Pantalone, V.R., Saxton, A.M., West, D.R., and Sams, C.E. (2007) Quantitative trait loci for agronomic traits in soybean. Plant Breed. 126:51–57.CrossRefGoogle Scholar
  92. Patzoldt, M.E., Tyagi, R.K., Hymowitz, T., Miles, M.R., Hartman, G.L., and Frederick, R.D. (2007) Soybean rust resistance derived from Glycine tomentella in amphiploid hybrid lines. Crop Sci. 47, 158–161.CrossRefGoogle Scholar
  93. Patzoldt, M.E., Carlson, S.R., and Diers, B.W. (2005a) Characterization of resistance to brown stem rot of soybean in five accessions from central China. Crop Sci. 45, 1092–1095CrossRefGoogle Scholar
  94. Patzoldt, M.E., Grau, C.R., Stephens, P.A., Kurtzweil, N.C., Carlson, S.R. and Diers, B.W. (2005b) Localization of a quantitative trait locus providing brown stem rot resistance in the soybean cultivar Bell. Crop Sci. 45, 1241–1248.CrossRefGoogle Scholar
  95. Polzin, K.M., Shoemaker, R.C., Nickell, C.D., and Lohnes, D.G. (1994) Integration of Rps2, Rmd, and Rj2 into linkage group J of the soybean molecular map. J. Hered. 85, 300–303.Google Scholar
  96. Qiu, B. X., Arelli, P.R. and Sleper, D.A. (1999) RFLP markers associated with soybean cyst nematode resistance and seed composition in a Peking × Essex population. Theor. Appl. Genet. 96, 786–790.Google Scholar
  97. Quarrie, S. A. (1996). New molecular tools to improve the efficiency of breeding for increased drought resistance, Plant Growth Regul. 20, 167–178.CrossRefGoogle Scholar
  98. Rector, B.G., All, J.N., Parrott, W.A., and Boerma, H.R. (1998) Identification of molecular markers associated with quantitative trait loci for soybean resistance to corn earworm. Theor. Appl. Genet. 96, 786–790.CrossRefGoogle Scholar
  99. Rector, B.G., All, J.N., Parrott, W.A., and Boerma, H.R. (1999) Quantitative trait loci for antixenosis resistance to corn earworm in soybean. Crop Sci. 39, 531–538.Google Scholar
  100. Rector, B.G., All, J.N., Parrott, W.A., and Boerma, H.R. (2000) Quantitative trait loci for antibiosis resistance to corn earworm in soybean. Crop Sci. 40, 233–238.Google Scholar
  101. Reyna, N., Cornelious, B., Shannon, J.G., and Sneller, C.H. (2003) Evaluation of a QTL for waterlogging tolerance in southern soybean germplasm. Crop Sci. 43, 2077–2082.Google Scholar
  102. Ribaut, J.-M., and Ragot, M. (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations and alternatives. J. Expt. Bot. 58,351–360.CrossRefGoogle Scholar
  103. Riggs, R.D., Wang, S., Singh, R.J., Hymowitz, T. (1998) Possible transfer of resistance to Heterodera glycines from Glycine tomentella to Glycine max. J. Nematol. 30, 547–552.Google Scholar
  104. Sebolt, A.M., Shoemaker, R.C., and Diers, B.W. (2000) Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci. 40,1438–1444.Google Scholar
  105. Sendra, M., Jumonji, A., Yumoto, S., Ishikawa, R., Harada, T., Niizeki, M., and Akada, S. (2002) Analysis of the duplicated CHS1 gene related to the suppression of the seed coat pigmentation in yellow soybeans. Theor. Appl. Genet. 104, 1086–1091.CrossRefGoogle Scholar
  106. Schlueter, J. A., Dixon, P., Granger, C., Grant, D., Clark, L., Doylee, J. J. and Shoemaker, R. C. (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome. 47, 868–876.PubMedCrossRefGoogle Scholar
  107. Schmidt, D.H. and Cahill, D. J. (2006) Marker-assisted selection and its contribution to soybean product development- glancing back, looking forward. Abstract. The 11 th Biennial conference on the molecular and cellular biology of the soybean, August 5–8, 2006, Lincoln, Nebraska.Google Scholar
  108. Senda, M., Jumonji, A., Yumoto, S., Ishikawa, R., Harada, T., Niizeki, M and Akada, S. (2002) Analysis of the duplicated CHS1 gene related to the suppression of the seed coat pigmentation in yellow soybeans. Theor. Appl. Genet. 104, 1086–1091.PubMedCrossRefGoogle Scholar
  109. Shoemaker, R. C., lzin, K., Labate, J., Specht, J., Brummer, E. C., Olson, T., Young, N., Concibido, V., Wilcox, J., Tamulonis, J. P., Kochert, G. and Boerma, H. R. (1996) Genome duplication in soybean (Glycine subgenus soja). Genetics. 144, 329–338.PubMedGoogle Scholar
  110. Shultz, J. L., and others. (2006) The soybean genome database (SoyGD): a browser for display a duplicated, polyploidy, regions and sequence tagged sites on integrated physical and genetic maps of Glycine max. Nucleic Acid Res. 34, D758–D765.PubMedCrossRefGoogle Scholar
  111. Singh, R. J. and Hymowitz, T. (1999) Soybean genetic resources and crop improvement. Genome, 42, 605–616.CrossRefGoogle Scholar
  112. Song, Q. J., Marek, L. F., Shoemaker, R. C., Lark, K. G., Concibido, V. C., Delannay, X., Specht, J. E. and Cregan, P. B. (2004) A new integrated genetic linkage map of the soybean. Theor. Appl. Genet. 109, 122–128.PubMedCrossRefGoogle Scholar
  113. Specht, J. E., Hume, D. J. and Kumudini, S. V. (1999) Soybean yield potential- A genetic and physiological perspective. Crop Sci. 39, 1560–1570.Google Scholar
  114. Specht, J.E., Germann, M., Markwell, J.P., Lark, K.G., Orf, J.H., Macrander, M., Chase, K., Chung, J., Graef, G.L. (2001) Soybean response to water: a QTL analysis of drought tolerance. Crop Sci. 41, 493–509.Google Scholar
  115. Spencer, M.M., Pantalone, V.R., Meyer, E.J., Landau-Ellis, D., and Hyten, D.L. (2003) Mapping the Fas locus controlling stearic acid content in soybean. Theor. Appl. Genet. 106, 615–619.PubMedGoogle Scholar
  116. Spencer, M.M., Landau-Ellis, D., Meyer, E.J., and Pantalone, V.R. (2004) Molecular marker associated with linolenic acid content in soybean. JAOCS. 81, 559–562.CrossRefGoogle Scholar
  117. Takahashi, R,, Githiri, S., Hatayama, K., Dubouzet, E., Shimada, N., Aoki, T., Ayabe, S., Iwashina, T., Toda, K., and Matsumura, H. (2007) A single-base deletion in soybean flavonol synthase gene is associated with magenta flower color. Plant Mol. Biol. 63, 125–135.PubMedCrossRefGoogle Scholar
  118. Tamulonis, J.P., Luzzi, B.M., Hussey, R.S., Parrott, W.A., and Boerma, H.R. (1997) RFLP mapping of resistance to southern root-knot nematode in soybean. Crop Sci. 37, 1903–1909.Google Scholar
  119. Tanksley, S.D., Grandillo, S., Fulton, T.M., Zamir, D., Eshed, Y., Petiard, V., Lopez, J., and Beck-Bunn, T. (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative pimpinellifolium. Theor. Appl. Genet. 92, 213–224.CrossRefGoogle Scholar
  120. Tollenaar, M. (1994) Yield potential of maize: impact of stress tolerance. In: K.G. Cassman (Ed.), Breaking the yield barrier. Proceedings of workshop on rice yield potential in favorable environment. International Rice Research Institute, Manila, Philippines, pp. 103–109.Google Scholar
  121. Tuberosa, R., Gill, B. S. and Quarrie, S. A. (2002) Cereal genomics: ushering in a brave new world. Plant Mol. Biol. 48, 445–449.PubMedCrossRefGoogle Scholar
  122. Tuberosa, R. and Salvi, S. (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci. 11, 405–412.PubMedCrossRefGoogle Scholar
  123. VanToai, T.T., Martin, S.K., Chase, K., Boru, G., Schnipke, V., Schmitthenner, A.F., and Lark, K.G. (2001) Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci. 41, 1247–1252.Google Scholar
  124. Varshney, R. K., Graner, A. Sorrells, M.E. (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci. 10, 621–630.PubMedCrossRefGoogle Scholar
  125. Varshney, R. K., Hoisington, D.A. and Tyagi, A.K. (2006) Advances in cereal genomics and application in crop breeding. Trends Biotech. 24, 11.Google Scholar
  126. Voldeng, H.D., Cober, E.R., Hume, D.J., Gillard, C. and Morrison, M.J. (1997) Fifty-eight years of genetic improvement of short-season soybean cultivars. Crop Sci. 37, 428–431.Google Scholar
  127. von Korff, M., Wang, h., leon, J., and Pillen, K. (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor. Appl. Genet. 111, 583–590.CrossRefGoogle Scholar
  128. Wang, D., Graef, G.L., Procopiuk, A.M., and Diers, B.W. (2004) Identification of putative QTL that underline yield in interspecific soybean backcross populations. Theor. Appl. Genet. 108,458–467.PubMedCrossRefGoogle Scholar
  129. Wang, Y., Xue, Y. and Li, J. (2005) Towards molecular breeding and improvement of rice in China. Trends Plant Sci. 10(12), 610–614.PubMedCrossRefGoogle Scholar
  130. Wenzel, G. (2006) Molecular plant breeding: achievements in green biotechnology and future perspectives. Appl. Microbiol. Biotechnol. 70, 642–650.PubMedCrossRefGoogle Scholar
  131. Wilcox, J. R. (2001) Sixty years of improvement in publicly developed elite soybean lines. Crop Sci. 49, 1711–1716.Google Scholar
  132. Wilcox, J.R., Schapaugh Jr, W.T., Bernard, R. L., Copper, R. L., Fehr, W.R. and Niehaus, M.H. (1979) Genetic improvement of soybeans in the Midwest. Crop Sci. 19, 803–805.Google Scholar
  133. Wilson, R. F. (2004) Seed Composition. In: H.R. Boerma and J. E. Specht (Eds), Soybeans: Improvement, Production, and Uses. Agronomy Monographs 3rd ed. No. 16, ASA-CSSA-SSSA, Madison, WI, USA, pp. 621–677.Google Scholar
  134. Winter, S.M., Shelp,B.J., Anderson, T.R., Welacky, T.W., and Rajcan, I. (2007) QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B. Theor. Appl. Genet. 114, 461–472.PubMedCrossRefGoogle Scholar
  135. Wu, C., Sun, S., Nimmakayala, P., Santos, F. A., Meksem, K., Springman, R., Ding, K., Lightfoot, D. A. and Zhang, H-B. (2004) A BAC- and BIBAC-based physical map of the soybean genome. Genome Res. 14, 319–326.PubMedCrossRefGoogle Scholar
  136. Xiao, J., Li, J., Grandillo, S., Ahn, S.N., Yuan, L., Tanksley, S.D., and McCouch, S.R. (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relatives, Oryza rufipogon. Genetics 150, 899–909.PubMedGoogle Scholar
  137. Xu, Y., McCouch, S. R. and Zhang, Q. (2005) How can we use genomics to improve cereals with rice as a reference genome. Plant Mol. Biol. 59, 7–26.PubMedCrossRefGoogle Scholar
  138. Yu, Y.G., Saghai Maroof, M.A., Buss, G.R., Maughan, P.J., and Tolin, S.A. (1994) RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathology 84,60–64.CrossRefGoogle Scholar
  139. Yun, S.J., Gyenis, L., Hayes, P.M., Matus, I., Smith, K.P., Steffenson, B.J., and Muehlbauer, G.J. (2005) Quantitative trait loci for multiple disease resistance in wild barley. Crop Sci. 45, 2563–2572.CrossRefGoogle Scholar
  140. Zhao, T. J., and Gai, J. Y. (2006) Discovery of new male-sterile cytoplasm sources and development of a new cytoplasmic-nuclear male-sterile line in NJCMS3A in soybean. Euphytica 152,387–396.CrossRefGoogle Scholar
  141. Zou, J.J., Singh, R.J., and Hymowitz, T. (2003) Association of the yellow leaf (y10) mutant to soybean chromosome 3. J. Heredity. 94, 352–355.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M.S. Pathan
    • 1
  • David A. Sleper
  1. 1.National Center for Soybean Biotechnology, Division of Plant SciencesUniversity of Missouri-ColumbiaUSA

Personalised recommendations