Soybean Genome Structure and Organization

  • Randy C. Shoemaker
  • Jessica A. Schlueter
  • Scott A. Jackson
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 2)


Common Bean Soybean Genome Vigna Radiata Molecular Linkage Group Important Crop Legume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, K. and Wendel, J. (2005) Polyploidy and genome evolution in plants. Current Opinion in Plant Biology 8,135–141.PubMedCrossRefGoogle Scholar
  2. Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.CrossRefGoogle Scholar
  3. Bender, J. (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55, 41–68.PubMedCrossRefGoogle Scholar
  4. Bennetzen, J. L. and Kellogg, E. A. (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9, 1509–1514.PubMedCrossRefGoogle Scholar
  5. Blanc, G., and Wolfe, K.H., (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duploicate genes. Plant Cell 16, 1667–1678.PubMedCrossRefGoogle Scholar
  6. Boutin, S.R., Young, N.D., Olson, Yu, Z.-H., Shoemaker, R.C., and Vallejos C.E. (1995) Genome conservation among three legume genera detected with DNA markers. Genome 38, 928–937.PubMedGoogle Scholar
  7. Bowers, J.E., Chapman, B.A., Rong, J., Paterson, A.H. (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438.PubMedCrossRefGoogle Scholar
  8. Cannon, S.B., McCombie, W.R., Sato, S., Tabata, S., Denny, R., Palmer, L., Katari, M., Young, N.D., Stacey, G. (2003) Evolution and microsynteny of the apyrase gene family in three legume genomes. Mol Genet Genomics 270, 347–361.PubMedCrossRefGoogle Scholar
  9. Choi, H.K., Kim, D., Uhm, T., Limpens, E., Lim, H., Mun, J.H., Kalo, P., Penmetsa, R.V., Seres, A., Kulikova, O., Roe, B.A., Bisseling, T., Kiss, G.B., Cook, D.R. (2004a) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166, 1463–1502.CrossRefGoogle Scholar
  10. Choi, H.K., Mun, J.H., Kim, D.J., Zhu, H., Baek, J.M., Mudge, J., Roe, B., Ellis, N., Doyle, J., Kiss, G.B., Young, N.D., Cook, D.R. (2004b) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101, 15289–15294.CrossRefGoogle Scholar
  11. Devos, K.M., Brown, J.K.M., and Bennetzen, J.L. (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12, 1075–1079.PubMedCrossRefGoogle Scholar
  12. Doyle, J.J., Luckow, M.A. (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131, 900–910.PubMedCrossRefGoogle Scholar
  13. Foster-Hartnett, D., Mudge, J., Danesh, D., Yan, H., Larsen, D., Denny, R., and Young N.D. (2002) Comparative genomic analysis of sequences sampled from a small region on soybean molecular linkage group ‘G’. Genome 45, 634–645.PubMedCrossRefGoogle Scholar
  14. Goldberg, R. B. (1978) DNA sequence organization in the soybean plant. Biochem Genet 16, 45–68.PubMedCrossRefGoogle Scholar
  15. Grant, D. Cregan, P., and Shoemaker, R.C. (2000) Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 94, 4168–4173.CrossRefGoogle Scholar
  16. Grover, C.E., Kim, H, Wing, R., Paterson A.H., and Wendel, J.F. (2004) Incongruent patterns of local and global genome size evolution in cotton. Genome Res. 14, 1474–1482.PubMedCrossRefGoogle Scholar
  17. Gurley, W. B., Hepburn, A. G., Key, J.L. (1979) Sequence organization of the soybean genome. Biochem Biophys Acta 561, 167–183.PubMedGoogle Scholar
  18. Illic, K., SanMiguel, P.J., and Bennetzen, J.L. (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc. Natl. Acad. Sci. U.S.A. 100, 12265–12270.CrossRefGoogle Scholar
  19. Langham, R.J., Walsh, J., Dunn, M., Ko, C., Goff, S.A., and Freeling, M. (2004) Genome duplication, fractionation and the origin of regulatory novelty. Genetics 166, 935–945.PubMedCrossRefGoogle Scholar
  20. Lee, J.M., Bush A., Specht J.E., and Shoemaker R. (1999) Mapping duplicate genes in soybean. Genome 42, 829–836.CrossRefGoogle Scholar
  21. Lee, J.M., Grant, D.,Vallejos C.E., and Shoemaker R. (2001) Genome organization in dicots. II. Arabidopsis as a ‘bridging species’ to resolve genome evolution events among legumes. Theor. Appl. Genet. 103, 765–773.CrossRefGoogle Scholar
  22. Lin, J. Y., Jacobus, B. H., SanMiguel, P., Walling, J.G., Yuan, Y., Shoemaker, R.C., Young, N.D., Jackson, S.A. (2005) Pericentromeric regions of soybean (Glycine max L. Merr.) chromosomes consist of retroelements and tandemly repeated DNA and are structurally and evolutionarily labile. Genetics 170, 1221–1230.PubMedCrossRefGoogle Scholar
  23. Lockton, S., and Gaut, B.S. (2005) Plant conserved non-coding sequences and paralogue evolution. Trends in Genet. 21, 80–86.Google Scholar
  24. Ma, J., SanMiguel, P., Lai, J., Messing, J. and Bennetizen, J.L. (2005) DNA rearrangement in orthologous Orp regions of the maize, rice and sorghum genomes. Genetics 170, 1209–1220.PubMedCrossRefGoogle Scholar
  25. Marek, L.F., Mudge, J., Darnielle, L., Grant, D., Hanson, N., Paz, M., Huihuang, Y., Denny, R., Larson, K., Foster-Hartnett, D., Cooper, A., Danesh, D., Larsen, D., Schmidt, T., Staggs, R., Crow, J.A., Retzel, E., Young, N.D., and Shoemaker, R.C. (2001) Soybean genomic survey: BAC-end sequences near RFLP and SSR markers. Genome 44, 572–581.PubMedCrossRefGoogle Scholar
  26. Masterson, J. (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science (Washington, D.C.), 264, 421–424.CrossRefGoogle Scholar
  27. Menacio-Hautea, D., Fatokum, C.A., Kumar, L., Danesh, D., Young, N.D. (1993) Comparative genome analysis of mungbean (Vigna radiata (L.) Wilczek) and cowpea (V. unguiculata (L.) Walpers) using RFLP mapping data. Theor Appl Genet 86, 797–810.CrossRefGoogle Scholar
  28. Messing, J., Bharti, A. K., Karlowski, W.M., Gundlach, H., Kinm H.R., Yu, Y., Wei, F., Fuks, G., Soderlund, C.A., Mayer, K.F., Wing, R.A. (2004) Sequence composition and genome organization of maize. PNAS 101, 14349–14354.PubMedCrossRefGoogle Scholar
  29. Mudge, J., Huihuang, Yan, Denny, R. L., Howe, D. K., Danesh, D., Marek, L. F., Retzel, E., Shoemaker, R. C., and Young, N. D. (2004) Soybean bacterial artificial chromosome contigs anchored with RFLPs: insights into genome duplication and gene clustering. Genome 47, 361–372.PubMedCrossRefGoogle Scholar
  30. Mudge, J., Cannon, S.B., Kalo, P., Oldroyd, G.E.D., Roe, B.A., Town, C.D., and Young, N.D. (2005) Highly syntenic regions in the genomes of soybean, Medicago truncatula and Arabidopsis thaliana. BMC Plant Biology 5, 15.PubMedCrossRefGoogle Scholar
  31. Nunberg, A., Bedell, J. A., Budiman, M.A., Citek, R., Clifton, S.W., Fulton, L., Pape, D., Cai, Z., Joshi, T., Nguyen, H., Xu, D., Stacey, G. (2006) Survey sequencing of soybean elucidates the genome structure, composition and identifies novel repeats. Functional Plant Biology 33, 765–773.CrossRefGoogle Scholar
  32. Ohno, S. (1970) Evolution by Gene Duplication, Springer-Verlag, New York.Google Scholar
  33. Pagel, J., Walling, J.G., Young, N.D., Shoemaker, R.C., Jackson, S.A. (2004) Segmental duplications within the Glycine max genome revealed by fluorescence in situ hybridization of bacterial artificial chromosomes. Genome 47, 764–768.PubMedCrossRefGoogle Scholar
  34. Petrov, D.A. (2001) Evolution of genome size: new approaches to an old problem. Trends in Genetics 17, 23–28.PubMedCrossRefGoogle Scholar
  35. Pfeil, B.E., Schlueter, J.A., Shoemaker, R.C., Doyle, J.J. (2005) Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. Systematic Biology 54(3), 441–454.PubMedCrossRefGoogle Scholar
  36. Schlueter, J.A., Dixon, P., Granger, C. Grant, D., Clark, L., Doyle, J.J., and Shoemaker, R.C. (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47, 868–876.PubMedCrossRefGoogle Scholar
  37. Schlueter, J.A., Scheffler, B.E.,, Schlueter, S.D., and Shoemaker, R.C. (2006) Sequence conservation of homeologous Bacterial Artificial Chromosomes and transcription of homeologous genes in soybean (Glycine max L. Merr.). Genetics 174, 1017–1028.PubMedCrossRefGoogle Scholar
  38. Schlueter, J., Lin, J.-Y., Schlueter, S., Vasylenko-Sanders, I., Deshpandem, S., Yi, J., O’Bleness, M., Roe, B., Nelson R., Scheffler, B., Jackson, S. and Shoemaker, R., (2007a) Gene duplication and paleopolypoloidy in soybean and the implications for whole genome sequencing. BMC Genomics 8, 330.CrossRefGoogle Scholar
  39. Schlueter, J.A., Vasylendo-Sanders, I.F., Deshpande, S., Yi, J., Siegfried, M., Roe, B.A., Schlueter, S.D., Scheffler, B.E. and R.C. Shoemaker. (2007b) The FAD2 gene family of soybean: insights into the structural and functional divergence of a paleopolyploid genome. The Plant Genome 1, 14–26.Google Scholar
  40. Shi, L., Zhu, T., Keim, P. (1996) Ribosomal RNA genes in soybean and common bean : chromosomal organization, expression, and evolution. Theor Appl Genet 93, 136–141.CrossRefGoogle Scholar
  41. Shoemaker, R., Polzin K., Labate J., Specht J., Brummer E.C., Olson T., Young N., Concibido V., Wilcox J., Tamulonis J., Kochert, G., and Boerma H.R. (1996) Genome duplication in soybean (Glycine subgenus soja). Genetics 144, 329–338.PubMedGoogle Scholar
  42. Vahedian, M., Shi, L., Zhu, T., Okimoto, R., Danna, K., Keim, P. (1995) Genomic organization and evolution of the soybean SB92 satellite sequence. Plant Molecular Biology 29, 857–862.PubMedCrossRefGoogle Scholar
  43. Vision, T.J, Brown, D.G., and Tanksley, S.D. (2000) The origins of genomic duplications in Arabidopsis. Science 290, 2114–2117.PubMedCrossRefGoogle Scholar
  44. Walling, J. G., Shoemaker, R. C., Young, N., Mudge, J., Jackson, S. (2006) Chromosome level homeology in paleopolyploid soybean (Glycine max) revealed through integration of genetic and chromosome maps. Genetics 172, 1893–1900.PubMedCrossRefGoogle Scholar
  45. Weeden, N.F., Muehlbauer, F.J., Ladizinsky, G. (1992) Extensive conservation of linkage relationships between pea and lentil genetic maps. J Hered 83, 123–129.Google Scholar
  46. Yan, H.H., Mudge, J., Kim, D.-J., Shoemaker, R.C., Cook, D.R., Young, N.D. (2003) Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula, and Arabidopsis thaliana. Theor Appl Genet 106, 1256–1265.PubMedGoogle Scholar
  47. Young, N.D., Mudge, J., Ellis, T.N. (2003) Legume genomes: more than peas in a pod. Curr. Opin. Plant Biol. 6, 199–204.PubMedCrossRefGoogle Scholar
  48. Young, N.D., Cannon, S.B., Sato, S., Kim, K., Cook, D.R., Town, C.D., Roe, B.A., Tabata, S. (2005) Sequencing the Genespaces of Medicago truncatula and Lotus japonicus. Plant Phys 137, 1174–1181.CrossRefGoogle Scholar
  49. Zhu, H., Kim, D.J., Baek, J.M., Choi, H.K., Ellis, L.C., Kuester, H., McCombie, W.R., Peng, H.M., Cook, D.R. (2003) Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Plant Physiol 131, 1018–1026.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Randy C. Shoemaker
    • 1
  • Jessica A. Schlueter
  • Scott A. Jackson
  1. 1.USDA-ARS CICGRU, Department of AgronomyIowa State UniversityAmesUSA

Personalised recommendations