Advertisement

Genomics of Secondary Metabolism in Soybean

  • Terry Graham
  • Madge Graham
  • Oliver Yu
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 2)

Keywords

Seed Coat Phenylalanine Ammonia Lyase Phenylpropanoid Pathway Cinnamyl Alcohol Dehydrogenase Soybean Cyst Nematode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, E. A., Rogers A., Vodkin, L.O., Walter, A., and Schurr, U. (2006) The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiology 142, 135–147.PubMedCrossRefGoogle Scholar
  2. Alkharouf, N.W., Jamison, D. C. and Matthews B.F. (2005) Online analytical processing (OLAP): a fast and effective data mining tool for gene expression databases. J Biomed. Biotechnol. 2005(2): 181–188.CrossRefGoogle Scholar
  3. Ayers A.R., Ebel J., Valent B.S., Albersheim P. (1976) Host-pathogen interactions. X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae. Plant Physiol. 57, 760–765.PubMedGoogle Scholar
  4. Boerjan, W., Ralph, J., Baucher, M. (2003) Lignin biosynthesis. Annual Review of Plant Biology 54, 519–546.PubMedCrossRefGoogle Scholar
  5. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell. 2000 Dec; 12, 2383–2394.Google Scholar
  6. Buttery, B.R. and Buzzell, R. I. (1973). Varietal differences in leaf flavonoids of soybeans. Crop Sci. 13, 103–106.Google Scholar
  7. Buttery, B.R. and Buzzell, R. I. (1975) Soybean flavonol glylcosides: identification and biochemical genetics. Can. J. Bot. 53, 219–224.Google Scholar
  8. Buttery, B. R. and Buzzell, R. I. (1987) Leaf traits associated with flavonol glycoside genes in soybean. Plant Physiol. 85, 20–21.PubMedGoogle Scholar
  9. Buzzell, R. I., Buttery, B. R. and Bernard, R. L. (1977) Inheritance and linkage of a magenta flower gene in soybean. Can. J. Genet. Cytol. 19, 749–751.Google Scholar
  10. Buzzell R. I., Buttery B. R., Mactavish D.C. (1987) biochemical genetics of black pigmentation of soybean seed. Journal of Heredity 78, 53–54.Google Scholar
  11. Clough, S. J., Tuteja, J. H., Li, M., Marek, L. F., Shoemaker, R. C., Vodkin, L. O. (2004) Features of a 103-kb gene-rich region in soybean include an inverted perfect repeat cluster of CHS genes comprising the I locus. Genome 47, 819–831PubMedCrossRefGoogle Scholar
  12. Creelman R.A., Tierney M.L., Mullet J.E. (1992) Jasmonic Acid/Methyl Jasmonate Accumulate in Wounded Soybean Hypocotyls and Modulate Wound Gene Expression. Proc. Natl. Acad. Sci. 89, 4938–4941.PubMedCrossRefGoogle Scholar
  13. Dhaubhadel, S., McGarvey, B. D., Williams, R., Gijzen, M. (2003) Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Molecular Biology 53,733–743.PubMedCrossRefGoogle Scholar
  14. Dhaubhadel S, Gijzen M, Moy P, Farhangkhoee M. (2007) Transcriptome Analysis Reveals a Critical Role of CHS7 and CHS8 Genes for Isoflavonoid Synthesis in Soybean Seeds. Plant Physiology 143, 326–338.PubMedCrossRefGoogle Scholar
  15. Dixon, R. A., Achnine L., Kota, P., Liu, C-J., Reddy, M. S. S., Wang, L. (2002) The phenylpropanoid pathway and plant defence: A genomics perspective. Molecular Plant Pathology 3, 371–390.CrossRefGoogle Scholar
  16. Ebel J. (1986) Phytoalexin synthesis: the biochemical analysis of the induction process. Ann. Rev. Phytopathology 24, 235–264.CrossRefGoogle Scholar
  17. Farag, M. A., Huhman, D., V., Lei, Z., Sumner, L. W. (2007) Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS. Phytochemistry 68, 342–354.PubMedCrossRefGoogle Scholar
  18. Gavnholt, B., Larsen, K. (2002) Molecular biology of plant laccases in relation to lignin formation. Physiologia Plantarum 116, 273–280.CrossRefGoogle Scholar
  19. Graham M.Y., Graham T.L. (1991a) Rapid accumulation of anionic peroxidases and phenolic polymers in soybean cotyledon tissues following treatment with Phytophthora megasperma f. sp. glycinea wall glucan. Plant Physiol. 97, 1445–1455.Google Scholar
  20. Graham M.Y., Weidner J., Wheeler K., Pelow M.L., Graham T.L. (2003) Induced expression of pathogenesis-related protein genes in soybean by wounding and the Phytophthora sojae cell wall glucan elicitor Physiol. Molec. Plant Pathol. 63,141–149.Google Scholar
  21. Graham T.L. (1991a) A rapid, high resolution HPLC profiling procedure for plant and microbial aromatic secondary metabolites. Plant Physiol. 95, 584–593.Google Scholar
  22. Graham T.L. (1991b) Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiology 95, 594–604.CrossRefGoogle Scholar
  23. Graham T.L., Graham M.Y. (1991b) Glyceollin elicitors induce major but distinctly different shifts in isoflavonoid metabolism in proximal and distal soybean cell populations. Mol. Plant Microbe Interact. 4, 60–68.Google Scholar
  24. Graham T.L., Kim J.E., Graham M.Y. (1990) Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma. Molec. Plant Microbe Interact. 3, 157–166.Google Scholar
  25. Hahlbrock, K. (1981) Flavonoids In: P. K. Stumpf and E. E. Conn (eds.) The Biochemistry of Plants, Vol 7, Secondary Plant Products, Academic Press, NY, pp. 425–456.Google Scholar
  26. Hammerschmidt, R. (1999) Phytoalexins: What Have We Learned After 60 Years? Annual Review of Phytopathology. 37, 285–306.Google Scholar
  27. Humphreys, J.M., Chapple, C. (2002) Rewriting the lignin roadmap. Current Opinion in Plant Biology 5, 224–9.PubMedCrossRefGoogle Scholar
  28. Iqbal, M.J., Yaegashi, S., Njiti, V. N., Ahsan, R., Cryder, K. L. and Lightfoot, D. A. (2002). Resistance locus pyramids alter transcript abundance in soybean roots inoculated with Fusarium solani f.sp. glycines. Molecular Genetics and Genomics 268, 407–417.PubMedCrossRefGoogle Scholar
  29. Iqbal, M. J., Yaegashi, S., Ahsan, R., Shopinski, K. L., Lightfoot, D. A. (2005). Root response to Fusarium solani f. sp. glycines: temporal accumulation of transcripts in partially resistant and susceptible soybean. Theoretical and Applied Genetics 110, 1429–1438.PubMedCrossRefGoogle Scholar
  30. Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol. 1999; 41, 577–585.PubMedCrossRefGoogle Scholar
  31. Kassem MA, Meksem K, Iqbal MJ, Njiti VN, Banz WJ, Winters TA, Wood A, Lightfoot DA. (2004) Definition of Soybean Genomic Regions That Control Seed Phytoestrogen Amounts. Journal of Biomedicine & Biotechnology 2004(1), 52–60.CrossRefGoogle Scholar
  32. Khan, R., Alkharouf N., Beard H., MacDonald, M., Chouikha, I., Meyer, S., Grefenstette, J., Knap, H. and Matthews, B. (2004) Microarray analysis of gene expression in soybean roots susceptible to the soybean cyst nematode two days post invasion. Journal of Nematology 36, 241–248.PubMedGoogle Scholar
  33. Kim, B.-G., Ko J.H., Hur, H-G. Ahn, J.-H. (2004) Classification and expression analysis of cytochrome P450 genes from soybean. Agricultural Chemistry and Biotechnology 47, 173–177.Google Scholar
  34. Klink, V.P., Alkharouf, N., MacDonald, M., Matthews, B. (2005) Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). Plant Molecular Biology 59, 965–79.PubMedCrossRefGoogle Scholar
  35. Landini S., Graham M.Y., Graham T.L. (2002) Lactofen induces isoflavone accumulation and glyceollin elicitation competency in soybean. Phytochemistry 62, 865–874.CrossRefGoogle Scholar
  36. Landry, L.G., Chapple, C.C., Last, R.L. (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiology, 109, 1159–1166.PubMedCrossRefGoogle Scholar
  37. Logemann, E., Tavernaro, A., Schulz, W., Somssich, I. E., and Hahlbrock, K. (2000) UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley. Proc. Natl. Acad. Sci. (USA) 97, 1903–1907.CrossRefGoogle Scholar
  38. Lozovaya, V. V., Lygin, A. V., Li, S., Hartman, G. L., Widholm, J. M. (2004) Biochemical response of soybean roots to Fusarium solani f. sp. glycines infection. Crop Science 44, 819–826.Google Scholar
  39. Ma, F., Peterson, C. A. (2003) Current insights into the development, structure, and chemistry of the endodermis and exodermis of roots. Canadian Journal of Botany 81, 405–421.CrossRefGoogle Scholar
  40. Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet. 1997 Feb; 13, 67–73.Google Scholar
  41. Meksem K, Njiti VN, Banz WJ, Iqbal MJ, Kassem MM, Hyten DL, Yuang J, Winters TA, Lightfoot DA. (2001) Genomic Regions That Underlie Soybean Seed Isoflavone Content. Journal of Biomedicine & Biotechnology 2001 (1), 38–44.CrossRefGoogle Scholar
  42. Mohr, P. G. and Cahill, D. M. (2001) Relative roles of glyceollin, lignin and the hypersensitive response and the influence of ABA in compatible and incompatible interactions of soybeans with Phytophthora sojae. Physiological and Molecular Plant Pathology 58, 31–41.CrossRefGoogle Scholar
  43. Moy, P., Qutob D., Chapman, B. P., Atkinson, I. and Gijzen, M. (2004) Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Molecular Plant-Microbe Interactions 17, 1051–1062.PubMedCrossRefGoogle Scholar
  44. Paolocci F, Robbins MP, Madeo L, Arcioni S, Martens S, Damiani F. (2007) Ectopic Expression of a Basic Helix-Loop-Helix Gene Transactivates Parallel Pathways of Proanthocyanidin Biosynthesis. Structure, Expression Analysis, and Genetic Control of Leucoanthocyanidin 4-Reductase and Anthocyanidin Reductase Genes in Lotus corniculatus. Plant Physiology 143, 504–516.PubMedCrossRefGoogle Scholar
  45. Primomo, V.S., Poysa, V., Ablett, G.R., Jackson, C.J., Gijzen, M. and Rajcan, I. (2005) Mapping QTL for individual and total isoflavone content in soybean seeds. Crop science, 45, 2454–2464.CrossRefGoogle Scholar
  46. Ralston L., Yu O. (2006) Metabolons involving plant cytochrome P450s. Phytochemistry Review 5, 459–472.CrossRefGoogle Scholar
  47. Schoenbohm, C., Martens, S., Eder, C., Forkmann, G. and Weisshaar,B. (2000) Identification of the Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol. Chem. 381, 749–753.PubMedCrossRefGoogle Scholar
  48. Schopfer, C. R. and Ebel J. (1998a) Identification of elicitor-induced cytochrome P450s of soybean (Glycine max L.) using differential display of mRNA. Molecular and General Genetics 258, 315–322.CrossRefGoogle Scholar
  49. Schopfer, C.R., Kochs, G., Lottspeich, F., Ebel, J. (1998b) Molecular characterization and functional expression of dihydroxypterocarpan 6a-hydroxylase, an enzyme specific for pterocarpanoid phytoalexin biosynthesis in soybean (Glycine max L.) FEBS Lett. 432, 182–186.CrossRefGoogle Scholar
  50. Senda, M., Jumonji, A., Yumoto, S., Ishikawa, R., Harada, T., Niizeki, M., Akada, S. (2002) Analysis of the duplicated CHS1 gene related to the suppression of the seed coat pigmentation in yellow soybeans. Theoretical and Applied Genetics 104, 1086–1091.PubMedCrossRefGoogle Scholar
  51. Shoemaker, R. C., Schlueter J. A., Cregan, P., Vodkin, L. (2003) The status of soybean genomics and its role in the development of soybean biotechnologies. AgBioForum 6, 4–7.Google Scholar
  52. Stacey, G., Libault M., Brechenmacher L., Wan, J. and May, G.D. (2006) Genetics and functional genomics of legume nodulation. Current Opinion in Plant Biology 9, 110–121.PubMedCrossRefGoogle Scholar
  53. Stracke R, Werber M, Weisshaar B. (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol. 2001 Oct; 4(5), 447–56.CrossRefGoogle Scholar
  54. Subramanian S., Graham M.Y., Yu O., Graham T.L. (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol. 137, 1345–1353.PubMedCrossRefGoogle Scholar
  55. Todd, J. J. and Vodkin, L.O. (1993) Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol. 102, 663–670.PubMedGoogle Scholar
  56. Tuteja, J. H., Clough S. J., Chan, W.-C., and Vodkin, L. O. (2004) Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16, 819–835.PubMedCrossRefGoogle Scholar
  57. Waghorn G.C. and McNabb, W.C. (2003) Consequences of plant phenolic compounds for productivity and health of ruminants. Proceedings of the Nutrition Society 62, 383–392.Google Scholar
  58. Zabala, G. and Vodkin L. (2003) Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3’ hydroxylase. Genetics 163, 295–309.PubMedGoogle Scholar
  59. Zabala G., Zhou, J. Jigyasa, T., Gonzalez, D.O., Clough, S.J. and Vodkin, L.O. (2006) Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biology 6:26.PubMedCrossRefGoogle Scholar
  60. Zou, J., Rodriguez-Zas S., Aldea, M., Li, M. Zhu, J., Gonzalez, D.O., Vodkin, L.O., DeLucia, E. and Clough, S.J. (2005) Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Molecular Plant-Microbe Interactions 18, 1161–1174.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Terry Graham
    • 1
  • Madge Graham
  • Oliver Yu
  1. 1.Department of Plant PathologyOhio State UniversityColumbusUSA

Personalised recommendations