Cereals pp 227-250 | Cite as


  • R.D. Horsley
  • J.D. Franckowiak
  • P.B. Schwarz
Part of the Handbook of Plant Breeding book series (HBPB, volume 3)


Barley (Hordeum vulgare L.) is the cereal crop with the widest range of production areas in the world. Compared to other cereals, barley is fourth in world production behind maize (Zea mays L.), wheat (Triticum aestivum L.), and rice (Oryza sativa L.). Barley has many uses, including livestock feed and forage, human food, and malt beverages. Barley to be used for malting must meet specifications for germination, kernel size and weight, grain protein, activity of several enzymes, and many other traits. Barley for livestock and human food uses has much fewer restrictions, but they are also critical in cultivar utilization. Likewise, quality traits for barley used as forage are less well-defined, but they are important in cultivar acceptance. This chapter outlines the different types of barley (e.g. six- vs. two-rowed and malting vs. feed), items to consider when choosing parents for crossing, current goals barley breeders, major breeding achievements, an example of a breeding scheme for developing malting barley cultivars, examples of integration of biotechnology methods into breeding programs, and issues related to cultivar release and intellectual property protection.


Barley Cultivar Malting Barley Hulless Barley Cereal Cyst Nematode Malt Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors express their appreciation to Mr. Jan Hartmann of BayWa AG in Munich, Germany; Mr. Scott Heisel of the American Malting Barley Association in Milwaukee, Wisconsin, USA; and Ms. Erin Armstrong of the Brewing and Malting Barley Research Institute in Winnipeg, Canada, for supplying and reviewing information utilized in the “Cultivar Release and Intellectual Property Issues” section of this chapter.


  1. Ardiel, G.S., T.S. Grewal, P. Deberdt, B.G. Rossnagel, and G.J. Scoles. 2002. Inheritance of resistance to covered smut in barley and development of a tightly linked SCAR. Theor. Appl. Genet. 104:457–464.Google Scholar
  2. Behall, K.M., and J.G. Hallfrisch. 2006. Effects of barley consumption in CVD risk factors. Cereal Foods World 51:12–15.Google Scholar
  3. Behall, K.M., D.J. Scholfield, J.G. Hallfrisch. 2004. Lipids significantly reduced by diet containing barley compared to whole wheat and brown rice in moderately hypercholesterolemic men. J. Am. Med. Assoc. 23:55–62.Google Scholar
  4. Bergal, P., and M. Clemencet. 1962. The botany of the barley plant. In A.H. Cook (ed.) Barley and malt: biology, biochemistry and technology, pp. 1–23. Academic Press, New York, 1962.Google Scholar
  5. Blake, T., J.G.P. Bowman, P. Hensleigh, G. Kushna, G. Carlson, L. Welty, J. Eckhoff, K. Kephart, D. Wichman and P.M. Hayes. 2002. Registration of “Valier” barley. Crop Sci. 42:1748–1749.Google Scholar
  6. Bothmer, R. von, J. Flink, N. Jacobsen, M. Katimäki, and T. Landström. 1983. Interspecific hybridization with cultivated barley. Hereditas 99:219–244.Google Scholar
  7. Bothmer, R. von, K. Sato, T. Komatsuda, S. Yasuda, and G. Fischbeck. 2003. The domestication of cultivated barley. In R. von Bothmer, Th. van Hintum, H. Knüpffer, and K. Sato (eds.), Diversity in Barley (Hordeum vulgare), pp. 9–27. Elsevier Science B.V., Amsterdam, The Netherlands.Google Scholar
  8. Chen, F., and P.M. Hayes. 1989. A comparison of Hordeum bulbosum mediated haploid production efficiency in barley using in vitro floret and tiller culture. Theor. Appl. Genet. 77:701–704.Google Scholar
  9. Choo, T.M., B. Vigier, K.H. Ho, S. Ceccarelli, S. Grando, J.D. Franckowiak. 2005. Comparison of black, purple, and yellow barleys. Genet. Resour. Crop Evol. 52:121–126.Google Scholar
  10. Collard, B.C.Y., M.Z.Z. Jahufer, J.B. Brouwer, and E.C.K. Pang. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169–196.Google Scholar
  11. Dahleen, L., H. Agrama, R. Horsley, B. Steffenson, P. Schwarz, A. Mesfin, and J. Franckowiak. 2003. Identification of QTLs associated with Fusarium head blight resistance in Zhedar 2 barley. Theor. Appl. Genet. 108:95–104.Google Scholar
  12. Davis, M.P., J.D. Franckowiak, T. Konishi, and U. Lundqvist (eds.). 1997. Barley Genetics Newsletter, Volume 26. American Malting Barley Assoc., Inc. Milwaukee, WI.Google Scholar
  13. Eglinton, J., S. Coventry, and K. Chalmers. 2006. Breeding outcomes from molecular genetics. APBC Paper.Google Scholar
  14. Erkkilä, M.J., R. Leah, H. Ahokas, and V. Cameron-Mills. 1998. Allele-dependent barley grain β-amylase activity. Plant Physiol. 117:679–685.Google Scholar
  15. Emebiri, L., D.B. Moody, C. Black, M. van Ginkel, and E. Hernandez. 2007. Improvements in malting barley grain yield by manipulation of genes influencing grain protein content. Euphytica 155:xx-xx.Google Scholar
  16. Fetch, T. G., Jr., B.J. Steffenson, and E. Nevo. 2003. Diversity and sources of multiple disease resistance in Hordeum spontaneum. Plant Dis. 87:1439–1448.Google Scholar
  17. Franckowiak, J.D., and U. Lundqvist. 1997. BGS 6, Six-rowed spike 1, vrs1. Barley Genet. Newsl. 26:49–50.Google Scholar
  18. Horsley, R., D. Schmierer, C. Maier, C. Urrea, B. Steffenson, P. Schwarz, J. Franckowiak, M. Green, B. Zhang, and A. Kleinhofs. 2006. Identification of QTL associated with Fusarium head blight resistance in barley accession CIho 4196. Crop Sci. 46:145–156.Google Scholar
  19. Horsley, R.D., P.B. Schwarz, and J.J. Hammond. 1995. Genetic diversity in malt quality of North American six-rowed spring barley. Crop Sci. 35:113–118.Google Scholar
  20. Jorgensen, J.H., 1992. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152.Google Scholar
  21. Juskiw, P., J. Helm, L. Oatway, and J. Nyachiro. 2005. Breeding for feed barley quality in hulled two-row barley. 12th Australian Barley Technical Symposium (ABTS) http://www.cdesign.com.au/proceedings_abts2005/papers%20(pdf)/tues_1620.pdf.Google Scholar
  22. Komatsuda, T., M. Pourkheirandish, C. He, P. Azhaguvel, H. Kanamori, D. Perovic, N. Stein, A. Graner, T. Wicker, A. Tagiri, U. Lundqvist, T. Fujimura, M. Matsuoka, T. Matsumoto, and M. Yano. 2007. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. PNAS 104:1424–1429.Google Scholar
  23. Kunze, W. 2004. Technology brewing and malting; 3rd International edition – in English. VLB, Berlin.Google Scholar
  24. Ma, Z., B. Steffenson, L. Prom, and L. Lapitan. 2000. Mapping of quantitative trait loci for Fusarium head blight resistance in barley. Phytopathology 90:1079–1088.Google Scholar
  25. Manoharan, M., L.S. Dahleen, T.M. Hohn, S.M. Neate, X. Yu, N.J. Alexander, S.P. McCormick, P. Bregitzer, P.B. Schwarz, and R.D. Horsley. 2006. Expression of 3-Oh-Triothecene acetyltransferase in barley and effects on Fusarium head blight. Plant Sci. 171:699–706.Google Scholar
  26. Mathre, D.E. (ed.) 1997. Compendium of Barley Diseases, second edition. Amer. Phytopath. Soc., St. Paul, MN.Google Scholar
  27. Matus, I., A. Corey, T. Filchkin, P.M. Hayes, M.I. Vales, J. Kling, O. Riera-Lizarazu, K. Sato, W. Powell, and R. Waugh. 2003. Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Genome 46:1010–1023.Google Scholar
  28. Mesfin, K., K. Smith, R. Dill-Macky, C. Evans, R. Waugh, C. Gustus, and G. Muehlbauer. 2003. Quantitative traits loci for Fusarium head blight resistance in barley detected in a two-rowed by six rowed population. Crop Sci. 43:307–318.Google Scholar
  29. Ogbonnaya, F.C., D.B. Moody, A. Rehman, J.M. Kollmorgen, and H.A. Eagles. 1998. Marker assisted selection for resistance to cereal cyst nematode and boron tolerance in barley. p. 189. In Plant & Animal Genome VI Conference Abstracts.Google Scholar
  30. de la Pena, R., K. Smith, F. Capettini, G. Muehlbauer, M. Gallo-Meagher, R. Dill-Macky, D. Somers and D. Rasmusson.1999. Quantitative trait loci associated with resistance to Fusarium head blight and kernel discoloration in barley. Theor. Appl. Genet. 99:561–569.Google Scholar
  31. Pickering, R.A. 1989. Plant regeneration and variants from calli derived from immature embryos of diploid barley (Hordeum vulgare L.) and H. bulbosum L. crosses. Theor. Appl. Genet. 78:105–112.Google Scholar
  32. Pickering, R., A. Hill, M. Michel, and G. Timmerman-Vaughan. 1995. The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (Hordeum vulgare L.) chromosome 2 (2I). Theor. Appl. Genet. 91:1288–1292.Google Scholar
  33. Pillen, K., and J. Leon. 2003. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor. Appl. Genet. 107:340–352.Google Scholar
  34. Rasmusson, D.C. and R.L. Phillips. 1997. Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci. 37:303–310.Google Scholar
  35. Russell, J.R., R.P. Ellis, W.T.B. Thomas, R. Waugh, J. Provan, A. Booth, J. Fuller, P. Lawrence, G. Young, and W. Powell. 2000. A retrospective analysis of spring barley germplasm development from “foundation genotypes” to currently successful cultivars. Mol. Breed. 6:533–568.Google Scholar
  36. Steffenson, B.J. 1992. Analysis of durable resistance to stem rust in barley. Euphytica 63:153–167.Google Scholar
  37. Steffenson, B.J., P.M. Hayes, and A. Kleinhofs. 1996. Genetics of seedling and adult plant resistant to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor. Appl. Genet. 92:552–558.Google Scholar
  38. Tingay, S., D. McElroy, R. Kalla, S. Fleg, M. Wang, S. Thornton, and R.I.S. Brettell. 1997. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11:1369–1376.Google Scholar
  39. Ullrich, S.E., D.M. Wesenberg, H.E. Blockelman, and J.D. Franckowiak. 1995. International cooperation in barley germplasm activities. In R.R. Duncan (ed.) International germplasm transfer: past and present, pp. 157–170. CSSA Special Publ. 23. CSSA and ASA, Madison, WI.Google Scholar
  40. Vivar, H.E. 2001. Two decades of barley breeding. In H.E. Vivar and A. McNab (eds.). Breeding Barley in the New Millennium: Proceedings of an International Symposium, pp. 77–82. CIMMYT, Mexico., D.F.Google Scholar
  41. Wan, Y., and P. Lemaux. 1994. Generation of large numbers of independent transformed fertile barley plants. Plant Physiol. 104:37–48.Google Scholar
  42. Wiebe, G.A. 1968. Breeding. In Barley: Origin, botany, culture, winterhardiness, genetics, utilization, pests. pp.96–104. (Agric. Handbook No. 338, Agric. Res. Service, U.S. Dept. Agric., Washington, D.C. or USDA Agric. Handb. No. 338.).Google Scholar
  43. Wilcoxson, R.D., D.C. Rasmusson, and M.R. Miles. 1990. Development of barley resistant to spot blotch and genetics of resistance. Plant Dis. 74:207–210.Google Scholar
  44. Zhu, H., L. Gilchrist, P. Hayes, A. Kleinhofs, D. Kudrna, Z. Liu, L, Prom, B. Steffenson, T. Toojinda, and H. Vivar. 1999. Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor. Appl. Genet. 99:1221–1232.Google Scholar
  45. Ziuddin, A., A. Marsolais, E. Simion, and K.J. Kasha. 1992. Improved plant regeneration from wheat anther and barley microspore culture using phenylacetic acid (PAA). Plant Cell Rep. 11:489–498.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • R.D. Horsley
  • J.D. Franckowiak
  • P.B. Schwarz

There are no affiliations available

Personalised recommendations