Cereals pp 127-156 | Cite as

Spring Wheat Breeding

  • M. Mergoum
  • P.K. Singh
  • J.A. Anderson
  • R.J. Peña
  • R.P. Singh
  • S.S. Xu
  • J.K. Ransom
Part of the Handbook of Plant Breeding book series (HBPB, volume 3)


Wheat (various species of the genus Triticum) is a grass originating from the Levant area of the Middle East. However, only hexaploid common wheat (Triticum eastivum), and tetraploid durum wheat (Triticum turgidum ssp. durum) are presently cultivated worldwide. Not only is wheat an important crop today, it may well have influenced human history. Wheat was a key factor enabling the emergence of civilization because it was one of the first crops that could be easily cultivated on a large scale, and had the additional advantage of yielding a harvest that provides long-term storage of food. Today, there are different classes and uses of wheat. Although, it is mainly used as a staple food to make flour for leavened, flat and steamed breads, wheat can also be used as livestock feed, for fermentation to make beer and other alcoholic liquids, and recently, as a source of bio-energy. Global wheat production must increase at about 2% annually to meet future demands. The potential of increasing the global arable land is limited; hence, future increases in wheat production must be achieved by enhancing the wheat productivity to the land already in use. The objectives of most breeding programs include: high and stable yields, superior end-use quality, desirable agronomic characteristics, biotic (mainly, pests) resistance, and abiotic (environmental stresses) tolerance. While it is virtually impossible to combine all these characteristics into a single ‘perfect’ variety, continuous breeding efforts toward achieving these objectives will ensure that new varieties possess as many desirable and economic traits as possible. Details of the different breeding approaches to enhance modern wheat breeding are discussed in this chapter.


Double Haploid Fusarium Head Blight Common Wheat Wheat Breeding Bacterial Artificial Chromosome Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson, J.A., Churchill G.A., Autrique J.E., Tanksley S.D. and Sorrells M.E. (1993). Optimizing parental selection for genetic linkage maps. Genome 36, 181–186.Google Scholar
  2. Anderson, J.A., Stack R.W., Liu S., Waldron B.L., Fjeld A.D., Coyne C., Moreno-Sevilla B., Mitchell F.J., Song Q.J., Cregan P.B. and Frohberg R.C. (2001). DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor. Appl. Genet. 102, 1164–1168.Google Scholar
  3. Arbelbide, M. and Bernardo R. (2006). Mixed-model QTL mapping for kernel hardness and dough strength in bread wheat. Theor. Appl. Genet. 112, 885–890.Google Scholar
  4. Arumuganathan, K. and Earle E.D. (1991). Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218.Google Scholar
  5. Békés, F., Kémeny S. and Morell M. (2006). An integrated approach to predicting end-product quality of wheat. Eur. J. Agron. 25, 155–162.Google Scholar
  6. Bergthaller, W.J. (1997). New uses of wheat gluten and non-starch wheat components. In: J.L. Steele and O.K. Chung (eds.). Proceedings of the First International Wheat Quality Conference. Grain Industry Alliance, Kansas, USA. pp. 285–301.Google Scholar
  7. Bonnett, D.G., Rebetzke G.J. and Spielmeyer W. (2005). Strategies for efficient implementation of molecular markers in wheat breeding. Mol. Breed. 15, 75–85.Google Scholar
  8. Branlard, G., Dardevet M., Saccomano R., Lagoutte F. and Gourdon J. (2001). Genetic diversity of wheat storage proteins and bread wheat quality. In: Z. Bedo and L. Lang (eds.). Wheat in a Global Environment. Kluger Academic Publishers, The Netherlands. pp. 157–169.Google Scholar
  9. Buerstmayr, H., Lemmens M., Hartl L., Doldi L., Steiner B., Stierschneider M. and Ruckenbauer P. (2002). Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor. Appl. Genet. 104, 84–91.Google Scholar
  10. Byerlee, D. and Traxler G. (1995). National and international wheat improvement research in the post green revolution period. Evolution and impacts. Am. J. Agric. Econ. 77, 268–278.Google Scholar
  11. Culshaw, D. (1997). Straw as fuel. In: G.M. Campbell, C. Webb and S.L. McKee (eds.). Cereals, Novel Uses, and Processes. Plenum Press, New York, pp. 153–158.Google Scholar
  12. Devos, K.M. (2005). Updating the ‘Crop circle. Curr. Opin. Plant Biol. 8, 155–162.Google Scholar
  13. Dubcovsky, J. (2004). Marker assisted selection in public breeding programs: The wheat experience. Crop Sci. 44, 1895–1898.Google Scholar
  14. Dupont, F.M., Hurkman W.J., Vensel W.H., Tanaka C., Kothari K.M., Chung O.K. and Altenbach S.B. (2006). Protein accumulation and composition in wheat grains: Effects of mineral nutrients and high temperature. Eur. J. Agron. 25, 96–107.Google Scholar
  15. Duveiller, E., Singh R.P. and Nicol J.M. (2007). The challenges of maintaining wheat productivity: Pests, diseases, and potential epidemics. Euphytica 157, 417–450.Google Scholar
  16. Dvořák, J. (1998). Genome analysis in the Triticum-Aegilops alliance, In: A.E. Slinkard (eds.), Proceedings of the 9th International Wheat Genetics Symposium, Vol. 1, Saskatoon, Saskatchewan, Canada, University Extension Press, University of Saskatchewan, Saskatoon, Saskatchewan. pp. 8–11.Google Scholar
  17. Endo, T.R. and Gill B.S. (1996). The deletion stocks of common wheat. J. Hered. 87, 295–307.Google Scholar
  18. Faridi, H. (1988). Flat breads. In: Y. Pomeranz (ed.). Wheat Chemistry and Technology. American Association of Cereal Chemists, St. Paul, MN. pp 457–506.Google Scholar
  19. Feuillet, C., Travella S., Stein N., Albar L. and Keller B. (2003). Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. USA 100, 15253–15258.Google Scholar
  20. Gale, K.R. (2005). Diagnostic DNA markers for quality traits in wheat. J. Cereal Sci. 41, 181–192.Google Scholar
  21. Gill, B.S., Appels R., Botha-Oberholster A.M., Buell C.R., Bennetzen J.L., Chalhoub B., Chumley F., Dvořák J., Iwanaga M., Keller B., Li W., McCombie W.R., Ogihara Y., Quetier F. and Sasaki T. (2004). A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 168, 1087–1096.Google Scholar
  22. He, Z.H., Liu A.H., Peña R.J. and Rajaram S. (2003). Suitability of Chinese wheat cultivars for production of northern style Chinese steamed bread. Euphytica 131, 155–163.Google Scholar
  23. He, Z.H., Liu L., Xia X.C., Liu J.J. and Peña R.J. (2005). Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chem. 82, 345–350.Google Scholar
  24. Huang, L., Brooks S.A., Li W., Fellers J.P., Trick H.N. and Gill B.S. (2003). Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploidy genome of bread wheat. Genetics 164, 655–664.Google Scholar
  25. Janda, J., Bartoš J., Šafář J., Kubaláková M., Valárik M., Číhalíková J., Šimková H., Caboche M., Sourdille P., Bernard M., Chalhoub B. and Doležel J. (2004). Construction of a subgenomic BAC library specific for chromosomes 1D, 4D, and 6D of hexaploid wheat. Theor. Appl. Genet. 109, 1337–1345.Google Scholar
  26. Johnson, R. (1988). Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding. In: N.W. Simmonds and S. Rajaram (eds.). Breeding strategies for resistance to the rusts of wheat, CIMMYT, Mexico. pp. 63–75.Google Scholar
  27. Kahlon, T.S. (1989). Nutritional implications and uses of wheat and oat kernel oil. Cereal Foods World 34, 872–875.Google Scholar
  28. Lagudah, E.S., Moullet O. and Appels R. (1997). Map-based cloning of a gene sequence encoding a nucleotide binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 40, 659–665.Google Scholar
  29. Li, W., Zhang P., Fellers J.P., Friebe B. and Gill B.S (2004). Sequence composition, organization and evolution of the core Triticeae genome. Plant J. 40, 500–511.Google Scholar
  30. Lillemo, M., Chen X.M., He Z.H. and Singh R.P. (2005). Leaf rust resistance gene Lr34 is involved in powdery mildew resistance of CIMMYT bread wheat line Saar. In: H.T. Buck, J.E. Nisi and N. Solomon (eds.). Wheat Production in Stressed Environments. Mar del Plata, Argentina. pp. 17.Google Scholar
  31. Liu, J.J., He Z.H., Zhao Z.D., Peña R.J. and Rajaram S. (2003). Wheat quality traits and quality parameters of cooked dry white Chinese noodles. Euphytica 131, 147–154.Google Scholar
  32. Liu, S. and Anderson J.A. (2003). Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Sci. 43, 760–766.Google Scholar
  33. Maningat, C.C. and Seib P.A. (1997). Update on wheat starch and its uses. In: J.L. Steele and O.K. Chung (eds.). Proceedings of the First International Wheat Quality Conference. Grain Industry Alliance, Kansas, USA. pp. 261–284.Google Scholar
  34. McKee, D. (2006). Focus on Thailand. World Grain 24(8), 16–20.Google Scholar
  35. Mergoum, M., Frohberg R.C., Miller J.D. and Stack R.W. (2005a). Registration of ‘Steele-ND’ wheat. Crop Sci. 45, 1163–1164.Google Scholar
  36. Mergoum, M., Frohberg R.C. and Stack R.W. (2005b). Breeding hard red spring wheat for Fusarium head blight resistance: Successes and challenges. In: H.T. Buck, J.E. Nisi and N. Solomon (eds.). Wheat Production in Stressed Environments. Mar del Plata, Argentina. pp. 161–167.Google Scholar
  37. Mergoum, M., Frohberg R.C., Olson, T., Friesen T.L., Rasmussen J.B. and Stack R.W. (2006a). Registration of ‘Howard’ wheat. Crop Sci. 46, 2702–2703.Google Scholar
  38. Mergoum, M., Frohberg R.C., Olson T., Friesen T.L., Rasmussen J.B. and Stack R.W. (2006b). Registration of ‘Glenn’ wheat. Crop Sci. 46, 473–474.Google Scholar
  39. Mergoum, M., Singh P.K., Ali S., Elias E.M., Anderson J.A., Glover K.D. and Adhikari T.B. (2007). Reaction of elite wheat genotypes from the northern Great Plains of North America to Septoria diseases. Plant Dis. 91, 1310–1315.Google Scholar
  40. Mujeeb-Kazi, A. and Rajaram S. (2002). Transferring alien genes from related species and genera for wheat improvement. Bread Wheat: Improvement and Production. In: B.C. Curtis, S. Rajaram and H. Gómez Macpherson (eds.). FAO Plant Production and Protection Series No 30. Food and Agriculture Organization of United Nations, Rome.Google Scholar
  41. Otteson, B.N., Mergoum M. and Ransom J.K. (2007). Response of spring wheat to varying seeding rate and nitrogen management. Agron. J. (in press: A07–0002).Google Scholar
  42. Palazzolo, G. (2003). Cereal bars: they’re not just for breakfast anymore. Cereal Foods World 48, 70–72.Google Scholar
  43. Peña, R.J. and Pfeiffer W.H. (2005). Breeding methodologies and strategies for durum wheat quality improvement. In: C. Royo, M.N. Nachit, N. Di Fonzo, J.L. Araus, W.H. Pfeiffer and G.A. Slafer (eds.). Durum Wheat Breeding: Current Approaches and Future Strategies. Food Product Press. The Haworth Press Inc., New York. pp. 663–772.Google Scholar
  44. Peña, R.J., Trethowan R.M., Pfeiffer W.H. and van Ginkel M. (2002). Quality (end-use) improvement in wheat. Compositional, genetic, and environmental factors. In: A.S. Basra and L.S. Randhawa (eds.). Quality Improvement in Field Crops. Food Product Press, Haworth Press, Inc., New York. pp. 1–37.Google Scholar
  45. Peng, J.R., Richards D.E., Hartley N.M., Murphy G.P., Devos K.M., Flintham J.E., Beales J., Fish L.J., Worland A.J., Pelica F., Sudhakar D., Christou P., Snape J.W., Gale M.D. and Harberd N.P. (1999). ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261.Google Scholar
  46. Pfeiffer, W.H, Trethowan R.M., van Ginkel M., Ortiz M.I. and Rajaram S. (2005). Breeding for abiotic stress tolerance in wheat. In: M. Ashraf and P.J.C. Harris (eds.). Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches. The Haworth Press, Inc. NY. pp. 401–489.Google Scholar
  47. Popineau, Y., Huchet B., Larré C. and Bérot S. (2002). Foaming and emulsifying properties of fractions of gluten peptides obtained by limited enzymatic hydrolysis and ultrafiltration. J. Cereal Sci. 35, 327–335.Google Scholar
  48. Prior, D. (1997). The cradle of civilization: A snapshot of the flour milling industry Feed & Grain, October 1997, pp. 15–17.Google Scholar
  49. Rajaram, S. (2001). Prospects and promise of wheat breeding in the 21st century. Euphytica 119, 3–15.Google Scholar
  50. Ransom, J.K., Endres G.J. and Schatz B.G. (2007). Sustainable improvement of wheat yield potential: The role of crop management. J. Agric. Sci. 14, 55–61.Google Scholar
  51. Riley, R. and Chapman V. (1958). Genetic control of the cytological diploid behavior of hexaploid wheat. Nature 182, 713–715.Google Scholar
  52. Šafář, J., Bartos J., Janda J., Bellec A., Kubaláková M., Valárik M., Pateyron, S., Weiserová J., Tušková J., Číhalíková J., Vrána J., Šimková H., Faivre-Rampant P., Sourdille P., Caboche M., Bernard M., Doležel J. and Chalhoub B. (2004). Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosome from bread wheat. Plant J. 39, 960–968.Google Scholar
  53. Sasaki, T., Yamamoto Y., Ezaki B., Katsuhara M, Ahn S.J., Ryan P.R., Delhaize E. and Matsumoto H. (2004). A wheat gene encoding an aluminum activated malate transporter. Plant J. 37, 645–653.Google Scholar
  54. Sayre, K.D., Rajaram S. and Fisher R.A. (1997). Yield potential progress in short bread wheat in the northwest Mexico. Crop Sci. 37, 36–42.Google Scholar
  55. Sears, E.R. (1954). The aneuploids of common wheat. Mol. Agr. Exp. Sta. Res. Bull. 572, 1–59.Google Scholar
  56. Sears, E.R. (1966). Nullisomic-tetrasomic combinations in hexaploid wheat. In: R. Riley and K.R. Lewis (eds.). Chromosome Manipulation and Plant Genetics. Oliver & Boyd, Edinburgh. pp. 29–45.Google Scholar
  57. Simons, K.J., Fellers J.P., Trick H.N., Zhang Z., Tai Y.S., Gill B.S. and Faris J.D. (2006). Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547–555.Google Scholar
  58. Singh, P.K., Mergoum M., Ali S., Adhikari T.B., Elias E.M., Anderson J.A., Glover K.D. and Berzonsky W.A. (2006a). Evaluation of elite wheat germplasm for resistance to tan spot. Plant Dis. 90, 1320–1325.Google Scholar
  59. Singh, R.P., Hodson D.P., Jin Y., Huerta-Espino J., Kinyua M.G., Wanyera R., Njau P. and Ward R.W. (2006b). Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 1 (No. 054), 13pp.Google Scholar
  60. Singh, R.P., Huerta-Espino J., Sharma R., Joshi A.K. and Trethowan R.M. (2007). High yielding spring bread wheat germplasm for irrigated agro-ecosystems. Euphytica 157, 351–363.Google Scholar
  61. Singh, R.P. and Rajaram S. (2002). Breeding for disease resistance in wheat. In: B.C. Curtis, S. Rajaram and H. Gomez Macpherson (eds.). Bread Wheat Improvement and Production. FAO, Rome. pp. 141–156.Google Scholar
  62. Singh, R.P., William H.M., Huerta-Espino J. and Rosewarne G. (2004). Wheat Rust in Asia: Meeting the Challenges with Old and New Technologies. New directions for a diverse planet: Proceedings of the 4th International Crop Science Congress Brisbane, Australia, 26 Sep–1 Oct 2004 | ISBN 1 920842 20 9 | www.cropscience.org.auGoogle Scholar
  63. Srichumpa, P., Brunner S., Keller B. and Yahiaoui N. (2005). Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol. 139, 885–895.Google Scholar
  64. Somers, D.J., Isaac P. and Edwards K. (2004). A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109, 1105–1114.Google Scholar
  65. Souza, E.J., Graybosch R.A. and Guttieri M.J. (2002). Breeding wheat for improved milling and baking quality. In: A.S. Basra and L.S. Randhawa (eds.). Quality Improvement in Field Crops. Food Product Press, Haworth Press, Inc., New York. pp. 39–74.Google Scholar
  66. Spielmeyer, W., McIntosh R.A., Kolmer J. and Lagudah E.S. (2005). Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor. Appl. Genet. 111, 731–735.Google Scholar
  67. Spiertz, J.H.J., Hamer, R.J., Xu, H.Y., Primo-Martin, C., Don C. and van der Putten, P.E.L. 2006. Heat stress in wheat; effects on grain weight and quality within genotypes. Europ. J. Agr. 25, 89–95.Google Scholar
  68. Varady, K.A., Wang Y. and Jones P.J.H. (2003). Role of policosanols in the prevention and treatment of cardiovascular disease. Nutr. Rev. 61, 376–383.Google Scholar
  69. Williams, C.E., Collier N., Sardesai C.C. and Ohm H.W. (2003). Phenotypic assessment and mapped markers for H31, a new wheat gene conferring resistance to Hessian fly (Diptera: Cecidomyiidae). Theor. Appl. Genet. 107, 1516–1523.Google Scholar
  70. Yan, L., Fu D., Li C., Blechl A., Tranquilli G., Bonafede M., Sanchez A., Valarik M., Yasuda S. and Dubcovsky J. (2006). The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 103, 19581–19586.Google Scholar
  71. Yan, L., Loukoianov A., Blechl A., Tranquilli G., Ramakrishna W., SanMiguel P., Bennetzen J.L., Echenique V. and Dubcovsky J. (2004). The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644.Google Scholar
  72. Yan, L., Loukoianov A., Tranquilli G., Helguera M., Fahima T. and Dubcovsky J. (2003). Positional cloning of the wheat vernalization gene Vrn1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.Google Scholar
  73. Zhang, Y., He Z., Zhang A., van Ginkel M., Peña R.J. and Ye G. (2006). Pattern analysis on protein properties of Chinese and CIMMYT spring wheat cultivars sown in China and CIMMYT. Aus. J. Agric. Res. 57, 811–822.Google Scholar
  74. Zhang, G. and Mergoum M. (2007a). Developing evaluation methods for kernel shattering in spring wheat. Crop Sci. 47, 1841–1850.Google Scholar
  75. Zhang, G. and Mergoum M. (2007b). Molecular mapping of kernel shattering and its association with Fusarium head blight resistance in a Sumai3 derived population. Theor. Appl. Genet. 115, 757–766.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • M. Mergoum
    • 1
  • P.K. Singh
    • 1
  • J.A. Anderson
    • 1
  • R.J. Peña
    • 1
  • R.P. Singh
    • 1
  • S.S. Xu
    • 1
  • J.K. Ransom
    • 1
  1. 1.Department of Plant SciencesNorth Dakota State UniversityFargoUSA

Personalised recommendations