Advertisement

Cereals pp 99-126 | Cite as

Rice Breeding

  • Elcio P. Guimarães
Chapter
Part of the Handbook of Plant Breeding book series (HBPB, volume 3)

Rice is the world’s most important food crop with a total production around 600 million ton occupying 11% of the world’s total arable land; it supplies 2,808 calories/person/day, which represents 21% of the total calorie supply. It is source of income for more than 100 million householders around the world (IRRI, 2002). It is one of the crops responsible for the so-called green revolution that happened in the 1960s and 1970s. In addition of having strong breeding programs in all different regions around the world, this crop has three Consultative Groups on International Agricultural Research (CGIAR) centers with the mandate to work with rice: the International Rice Research Institute (IRRI), with global mandate; the West Africa Rice Development Association (WARDA), with mandate to work in West Africa; and the International Centre for Tropical Agriculture (CIAT), with the regional mandate for Latin America.

International centers made a tremendous effort to educate and train rice breeders at the time of the green revolution. Today, 25–35 years later most of the rice breeders working in national programs around theworld represent that period. The international germplasm evaluation nurseries [International Rice Testing Program (IRTP) and International Network for the Genetic Evaluation of Rice (INGER)] were excellent tools to provide new breeders with improved breeding lines as well as additional opportunities for training, including hands-on exercises on breeding techniques.

This chapter aims at proving general information on the following matters: the sources of genetic diversity available to breeders; criteria to be considered when selecting parental material to generate genetic variability for variety development; the most relevant breeding achievements; rice breeding methods used around the world, how biotechnology has been integrated into breeding programs, genetic seed production strategy; and elements related to the world’s capacity to carry out rice breeding programs.

Keywords

Rice Variety Hybrid Rice Recurrent Selection International Rice Research Institute Rice Breeder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alvarado-A, J.R. (1997) Mejoramiento de riego en Chile y utilización de las selección recurrente. In: Guimarães, E.P. (Ed.) Selección recurrente en arroz. Centro Internacional de Agricultura Tropical, Cali, Colombia, pp. 117–123.Google Scholar
  2. Arumuganathan, K. and Earle, E.D. (1991) Nuclear DNA content of some important species. Plant Mol. Biol. Rep. 9, 208–218.Google Scholar
  3. Badan, A.C de., Guimarães, E.P. and Ramis, C. (2005) Genetic gain for resistance to blast in a rice population. In: Guimarães, E.P. (Ed.) Population improvement, A way of exploiting rice genetic resources in Latin America. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, pp. 299–329.Google Scholar
  4. Brondani, C., Rangel, P.H.N., Brondani, R.P.V. and Ferreira, M.E. (2002) QTL, mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor. Appl. Genet. 104, 1192–1203.Google Scholar
  5. Castro, E. Da M. de., Morais, O.P. de., Sant’Ana, E.P., Breseghello, F. and Neto, F.P. de M. (2000) Mejoramiento poblacional de arroz de tierras altas en Brasil. In: Guimarães, E.P. (Ed.) Avances en el mejoramiento poblacional en arroz. Embrapa Arroz e Feijao, Santo Antonio de Goias, Brasil, pp. 221–240.Google Scholar
  6. Chatel, M. and Guimarães, E.P. (1997) Recurrent selection in rice, using a male-sterile gene. Centro Internacional de Agricultura Tropical and Centre de coopération internationale en recherche agronomique pour le développement, Cali, Colombia. pp. 1–70.Google Scholar
  7. Chen, S., Lin, X.H., Xu, C.G. and Zhang, Q.F. (2000) Improvement of bacterial blight resistance of ‘Minghui 63’, an elite line of hybrid rice, by molecular marker-assisted selection. Crop Sci. 40, 239–244.Google Scholar
  8. Chen, M., Presting, G., Barbazuk, W.B., Goicoechea, J.L., Blackmon, B., Frang, G., Kim, H., Frisch, D., Yu, Y., Sun, S., Higingbottom, S., Phimphilai, J., Phimphilai, D., Thurmond, S., Gaudette, B., Li, P., Lui, J., Hatfield, J., Main, D., Farrar, K., Henderson, C., Barnett, L., Costa, R., Williams, B., Walser, S., Atkins, M., Hall, C., Budiman, M.A., Tomkins, J.P., Luo, M., Bancroft, I., Salse, J., Regad, F., Mohapatra, T., Singh, N.K., Tyagi, A.K., Soderlund, C., Dean, R.A. and Wing, R.A. (2002) An integrated physical and genetic map of rice genome. Plant Cell 14, 537–545.Google Scholar
  9. Chen, X., Liu, X., Wu, D. and Shu, Q.Y. (2006) Recent progress of rice mutation breeding and germplasm enhancement in China. Plant Mutat. Rep. 1(1), 4–6.Google Scholar
  10. Courtois, B., Nelson, R. and Roumen, E. (2000) Creacion de un acervo genetico para mejorar la resistancia parcial a Piricularia en el arroz de secanano, mediante la seleccion recurrente. In: Guimarães, E.P. (Ed.) Selección recurrente en arroz. Centro Internacional de Agricultura Tropical, Cali, Colombia, pp. 189–202.Google Scholar
  11. Cuevas-Pérez, F.E., Guimarães, E.P., Berrio, L.E. and Gonzalez, D.I. (1992) Genetic base of irrigated rice in Latin America and the Caribbean, 1971 to 1989. Crop Sci. 32, 1054–1059.Google Scholar
  12. Dilday, R.H. (1990) Contribution of ancestral lines in the development of new cultivars of rice. Crop Sci. 32, 1054–1058.Google Scholar
  13. Dingkuhn, M., Penning De Vries, F.W.T., De Datta, S.K. and van Laar, H.H. (1991) Concepts for a new plant type for direct seeded flooded tropical rice. In: Direct seeded flooded rice in the tropics. International Rice Research Institute, Manila, Philippines, pp. 17–38.Google Scholar
  14. Donald, C.M. (1968) The breeding of crop ideotypes. Euphytica 17(3), 385–403.Google Scholar
  15. Dudley, J.W. and Lambert, R.J. (2004) 100 generations of selection for oil and protein in corn. Plant Breed. Rev. 24(1), 79–110.Google Scholar
  16. FAO (1996) Global Plan of Action of the Conservation and Sustainable Utilization of the Plant Genetic Resources for Food and Agriculture. Rome, Italy.Google Scholar
  17. FAO (2002) International Treaty on Plant Genetic Resources for Food and Agriculture. Rome, Italy.Google Scholar
  18. FAOSTAT (2006) FAO statistical database on food and agriculture. Available at http://faostat.external.fao.org/default. Consulted on 05 December 2006.Google Scholar
  19. Frisch, M., Bohn, M. and Melchinger, A.E. (1999) Comparation of selection strategies for marker-assisted backcrossing of a gene. Crop Sci. 39, 1295–1301.Google Scholar
  20. Fujimaki, H. (1979) Recurrent selection by using male sterility for rice improvement. Jpn. Agric. Res. Qua. 13, 153–156.Google Scholar
  21. Glaszmann, J.C. (1987) Isozymes and classification of Asian rice varieties. Theor. Appl. Genet. 74, 21–30.Google Scholar
  22. Glaszmann, J.C. and Arraudeau, M. (1986) Rice plant type variation, “japonica” – “javanica” relationship. Rice Genet. Newslett. 3, 41–43.Google Scholar
  23. Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B.M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W.L., Chen, L., Cooper, B., Park, S., Wood, T.C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R.M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A. and Briggs, S. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.Google Scholar
  24. Graterol, M.E.J. (2000) Caracterización de poblaciones e introducción de variabilidad para iniciar un programa de mejoramiento poblacional de arroz en Venezuela. In: Guimarães, E.P. (Ed.) Avances en el mejoramiento poblacional en arroz. Embrapa Arroz e Feijao, Santo Antonio de Goias, Brasil, pp. 87–103.Google Scholar
  25. GRUMEGA [Grupo de Mejoramiento Genético Avanzado en Arroz] (2006a) Catalogue Registration of Gene Pools and Populations, for Rice Improvement by Recurrent Selection. Available at http://iserver.ciat.cgiar.org/grumega/tiki-download_wiki_attachment.php?attId = 56. Consulted on 6 December 2006.Google Scholar
  26. GRUMEGA [Grupo de Mejoramiento Genético Avanzado en Arroz] (2006b) Bolivia, “Esperanza” (2006) Nueva variedad de arroz para condiciones de secano. Available at http://iserver.ciat.cgiar.org/grumega/tiki-download_wiki_attachment.php?attId = 18. Consulted on 6 December 2006.Google Scholar
  27. GRUMEGA [Grupo de Mejoramiento Genético Avanzado en Arroz] (2006c) Chile, “R Quila 23” (2006) Available at http://iserver.ciat.cgiar.org/grumega/tiki-download_wiki_attachment.php?attId = 16. Consulted on 6 December 2006.Google Scholar
  28. GRUMEGA [Grupo de Mejoramiento Genético Avanzado en Arroz] (2006d) Cultivar de arroz irrigado da EPAGRI, SCS 113-Tio Taka. Available at http://iserver.ciat.cgiar.org/grumega/tiki-download_wiki_attachment.php?attId = 58. Consulted on 6 December 2006.Google Scholar
  29. Guimarães, E.P. (1997) Selección recurrente en arroz. Centro Internacional de Agricultura Tropical, Cali, Colombia. pp. 1–240.Google Scholar
  30. Guimarães, E.P. (1999) Hibridacao em arroz. In: Borem, A. (Ed.) Hibridação artificial de plantas. Universidade Federal de Vicosa (UFV), Vicosa, Brasil, pp. 101–120.Google Scholar
  31. Guimarães, E.P. (2000) Avances en el mejoramiento poblacional en arroz. Embrapa Arroz e Feijao, Santo Antonio de Goias, Brasil. pp. 1–311.Google Scholar
  32. Guimarães, E.P. (2002) Genetic diversity of rice production in Brazil. In: Nguyen, V.N. (Ed.) Genetic diversity in rice production, Case studies from Brazil, India and Nigeria. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, pp. 11–35.Google Scholar
  33. Guimarães, E.P. (2005) Population improvement, A way of exploiting rice genetic resources in Latin America. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. pp. 1–350.Google Scholar
  34. Guimarães, E.P. and Correa-Victoria, F. (2000) Utilizacion de la seleccion recurrente para desarrollar resistencia a Pyricularria grisea Sacc. en arroz. In: Guimarães, E.P. (Ed.) Avances en el mejoramiento poblacional en arroz. Embrapa Arroz e Feijao, Santo Antonio de Goias, Brasil, pp. 165–175.Google Scholar
  35. Guimarães, E.P., Borrero, J. and Ospina-Rey, Y. (1996) Genetic diversity of upland rice germplasm distributed in Latin America. Pesq. Agropec. Bras. 31(3), 187–194.Google Scholar
  36. Guimarães, E.P., Bedoshvili, D., Morgounov, A., Baboev, S., Iskakov, A., Muninjanov, H., Kueneman, E. and Paganini, M. (2006a) Plant breeding and related biotechnology competence in Central Asia and recommendations to strengthen regional capacity. Agromeridian Theor. Appl. Agric. Res. J. 2, 137–143.Google Scholar
  37. Guimarães, E.P., Kueneman, E. and Carena, M.J. (2006b) Assessment of national plant breeding and biotechnology capacity in Africa and recommendations for future capacity building. Hort. Sci. 41, 50–52.Google Scholar
  38. Guohui, M. and Longping, Y. (2003) Hybrid rice achievements and development in China. In: Virmani, S.S., Mao, C.X. and Hardy, B. (Eds.) Hybrid rice for food security, poverty alleviation, and environmental protection. International Rice Research Institute, Manila, Philippines, pp. 247–256.Google Scholar
  39. Harushima, Y., Nakagahra, M., Yano, M., Sasaki, T. and Murata, N. (2002) Diverse variation of reproductive barriers in three intraspecific rice crosses. Genetics 160, 313–322.Google Scholar
  40. He, Y., Li, X., Zhang, J., Jiang, G., Liu, S., Chen, S., Tu, J., Xu, C. and Zhang, Q. (2004) Gene pyramiding to improve hybrid rice by molecular marker techniques. International Crop Science Congress Brisbane, Australia, 26 Sep–1 Oct. http://www.cropscience.org.au/icsc2004/poster/3/4/4/1041_heyuqing.htm. Consulted on 06 April 2007.Google Scholar
  41. Hernaiz-L, S.I., Alvarado, J.R., Chatel, M., Castillo, D. and Ospina, Y. (2004) Improving irrigated rice populations for temperate climate in Chile. In: Guimarães, E.P. (Ed.) Population improvement, A way of exploiting rice genetic resources in Latin America. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, pp. 129–143.Google Scholar
  42. Hoan, N.T. and Nghia, N.H. (2003) Hybrid rice development and use in Vietnam. In: Virmani, S.S., Mao, C.X. and Hardy, B. (Eds.) Hybrid rice for food security, poverty alleviation, and environmental protection. International Rice Research Institute, Manila, Philippines, pp. 357–371.Google Scholar
  43. Horie, T. (2001) Increasing yield potential in irrigated rice: breaking the yield barrier. In: Peng, S. and Hardy, B. (Eds.) Rice research for food security and poverty alleviation. International Rice Research Institute, Manila, Philippines, pp. 3–25.Google Scholar
  44. Huang, N., Angeles, E.R., Domingo, J., Magpantay, G., Singh, S., Zhang, G., Kumaravadivel, N., Bennet, J. and Khush, G.S. (1997a) Pyramiding of bacterial blight resistance genes in rice: marker assisted selection using RFLP and PCR. Theor. Appl. Genet. 95, 313–320.Google Scholar
  45. Huang, N., Parco, A., Mew, T., Magpantay, G., McCouch, S., Guiderdoni, E., Xu, J., Subudhi, P., Angeles, E.R. and Khush, G.S. (1997b) RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Molecular Breeding 3(2), 105–113.Google Scholar
  46. Hull, F.H. (1945) Recurrent selection for specific combining ability in corn. J. Am. Soc. Agron. 37(2), 134–145.Google Scholar
  47. Ismachin, M. and Sobrizal (2006) A significant contribution of mutation techniques to rice breeding in Indonesia. Plant Mutat. Rep. 1(1), 18–22.Google Scholar
  48. IRRI (2002) Rice almanac, source book for the most important economic activity on earth. Third edition. Maclean, J.L., Dawe, D.C., Hardy, B., and Hettel, G.P. (Eds.) International Rice Research Institute, Manila, Philippines. pp. 1–253.Google Scholar
  49. Jackson, M.T., Loresto, G.C., Appa Rao, S., Jones, M., Guimarães, E.P. and Ng, N.Q. (1997) Rice. In: Fuccillo, D., Sears, L. and Stapleton, P. (Eds.) Biodiversity in trust, conservation and use of plant genetic resources in CGIAR Centres. Cambridge University Press, Cambridge, UK, pp. 273–291.Google Scholar
  50. Jackson, M.T. and Lettington, R.J.L. (2003) Conservation and use of rice germplasm, an evolving paradigm under the International Treaty on Plant Genetic Resources for Food and Agriculture. In: Sustainable rice production for food security. Proceedings of the 20th session of the International Rice Commission. Bangkok, Thailand, 23–26 July 2002, pp. 75–88.Google Scholar
  51. Jones, M., Dingkuhn, M., Aluko, G.K. and Semon, M. (1997) Interspecific Oryza sativa L. x O. glaberrima Steud. progenies in upland rice improvement. Euphytica 94(2), 237–246.Google Scholar
  52. Jones, M. and Wopereis-Pura, M. (2001) History of Nerica and PVS. Internal report, West Africa Rice Development Association (WARDA); Bouake, Côte d’Ivoire.Google Scholar
  53. Julfiquar, A.W., Jamil Hasan, M., Azad, A.K., Anwar Hossain, M. and Virmani, S.S. (2003) Hybrid rice research and development in Bangladesh. In: Virmani, S.S., Mao, C.X. and Hardy, B. (Eds.) Hybrid rice for food security, poverty alleviation, and environmental protection. International Rice Research Institute, Manila, Philippines, pp. 235–245.Google Scholar
  54. Junjian, N., Colowit, P.M. and Mackill, D.J. (2002) Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci. 42(2), 601–607.Google Scholar
  55. Kaneda, C. (1985) Development of very high-yielding rice varieties. Farming Japan 19, 25–29.Google Scholar
  56. Khatiwada, S.P., Senadhira, D., Carpena, A.L., Zeigler, R.S. and Fernandez, P.G. (1996) Variability and genetics of tolerance for aluminum toxicity in rice (Oryza sativa L.) Theor. Appl. Genet. 93(5–6), 738–744.Google Scholar
  57. Khush, G.S. (1977) Disease and insect resistance in rice. Adv. Agron. 29, 265–341.Google Scholar
  58. Khush, G.S. (1994) Increasing the genetic yield potential of rice, prospects and approaches. Int. Rice Comm. Newsl. 43, 1–8.Google Scholar
  59. Khush, G.S. and Brar, D.S. (2003) Biotechnology for rice breeding: progress and impact. In: Sustainable rice production for food security. Proceedings of the 20th session of the International Rice Commission, Bangkok, Thailand, 23–26 July 2002, pp. 41–58.Google Scholar
  60. Khush, G.S. and Peng, S. (1996) Breaking the yield frontier of rice. In: Reynolds, M.P. (Eds.) Increasing yield potential in wheat: Breaking the barriers. Proceedings of the workshop held on 26–28 March 1996, Ciudad Obregon, Sonora, Mexico. International Maize and Wheat Improvement Center, El Batan, Mexico. pp. 36–51.Google Scholar
  61. Khush, G.S., Singh, R.J., Sur, S.C. and Librojo, A.L. (1984) Primary trisomics of rice, origin, morphology, cytology and use in linkage mapping. Genetics 107, 141–163.Google Scholar
  62. Khush, G.S., Bacalangco, E. and Ogawa, T. (1990) A new gene for resistance to bacterial blight from O. longistaminata. Rice Genet. Newsl. 7, 121–122.Google Scholar
  63. Khush, G.S., Coffman, W.R. and Beachell, H.M. (2001) The history of rice breeding: IRRI’s contribution. In: Rockwood, W.G. (Ed.) Rice research and production in the 21st century: Symposium honouring Robert F. Chandler Jr. International Rice Research Institute, Manila, Philippines, pp. 117–135.Google Scholar
  64. Latha, R., Thiyaqarajan, K. and Senthilvel, S. (2004) Genetics, fertility behaviour and molecular analysis of a new TGMS line, TS6, in rice. Plant Breed. 123(3), 235–240.Google Scholar
  65. Lu, C., Shen, L., Tan, Z., Xu, Y., He, P., Chen, Y., and Zhu, L. (1996) Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor. Appl. Genet. 93(8), 1211–1217.Google Scholar
  66. Mao, C.X. (2001) Improving seed production to speed up the global commercialization of hybrid rice. In: Peng, S. and Hardy, B. (Eds.) Rice research for food security and poverty alleviation. International Rice Research Institute, Manila, Philippines, pp. 221–229.Google Scholar
  67. Marassi, J.E., Marassi, M.A., Chatel, M. and Borrero, J. (2000) Desarrollo de poblaciones de arroz en Argentina. In: Guimarães, E.P. (Ed.) Avances en el mejoramiento poblacional en arroz. Embrapa Arroz e Feijao, Santo Antonio de Goias, Brasil, pp. 173–186.Google Scholar
  68. Marassi, M.A., Marassi, J.E., Chatel, M. and Ospina, Y. (2004) Exploiting the genetic resources of rice in Argentina through population improvement. In: Guimarães, E.P. (Ed.) Population improvement, A way of exploiting rice genetic resources in Latin America. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, pp. 113–127.Google Scholar
  69. Maluszynski, M., Ahloowalia, B., Ashri, A., Nichterlein, K. and Zanten, L.V. (1998) Induced mutation in rice breeding and germplasm enhancement. In: Assessment and orientation towards the 21st century. Proceedings of the 19th session of the International Rice Commission, Cairo, Egypt, 7–9 September 1998, pp. 194–204.Google Scholar
  70. McCouch, S.R., Kochert, G., Yu, Z.H., Wang, Z.Y., Khush, G.S., Coffaman, D.R. and Tanksley, S.D. (1988) Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76, 815–829.Google Scholar
  71. Mishra, B. (2002) Varietal improvement for rice production in India. In: Nguyen, V.N. (Ed.) Genetic diversity in rice production, Case studies from Brazil, India and Nigeria. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, pp. 37–91.Google Scholar
  72. Mishra, B., Viraktamath, B.C., IIyas Ahmed, M., Ramesha, M.S. and Vijayakumar, C.H.M. (2003) Hybrid rice development and use in India. In: Virmani, S.S., Mao, C.X. and Hardy, B. (Eds.) Hybrid rice for food security, poverty alleviation, and environmental protection. International Rice Research Institute, Manila, Philippines, pp. 265–286.Google Scholar
  73. Moncada, P., Martínez, C.P., Borrero, J., Gauch, H. Jr., Guimarães, E.P., Tohme, J. and McCouch, S.R. (2001) Quantitative trait loci for yield and yield components in an Oryza sativa x Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor. Appl. Genet. 102, 41–52.Google Scholar
  74. Montalban, R., Destro, D., Silva, E.F. and Montano, J.C. (1998) Genetic base of Brazilian upland rice cultivars. J. Genet. Breed. 52, 203–209.Google Scholar
  75. Morinaga, T. (1954) Classification of rice varieties on the basis of affinity. In: International Rice Commission. Working Party on Rice Breeding Rep. 5th Meeting.Google Scholar
  76. Morishima, H. (1984) Species relationships and the search for ancestros. In: Tsunoda, S. and Takahashi, N. (Eds.) Biology of rice. Japan Sci. Soc. Press. Tokio, Japan, pp. 3–30.Google Scholar
  77. Morishima, H. and Oka, H.I. (1981) Phylogenetic differentiation of cultivated rice. XXVII Numerical evaluation of the Indica – Japonica differentiation. JPN. J. Breed. 31, 402–413.Google Scholar
  78. Mou, T.M., Xing-Gui, L., Hoan, N.T. and Virmani, S.S. (2003) Two-line hybrid rice breeding in and outside China. In: Virmani, S.S., Mao, C.X. and Hardy, B. (Eds.) Hybrid rice for food security, poverty alleviation, and environmental protection. International Rice Research Institute, Manila, Philippines, pp. 31–52.Google Scholar
  79. Muralidharan, K., Prasad, G.S.V. and Rao, C.S. (2002) Yield performance of rice genotypes in international multi-environment trials during 1976–1997. Curr. Sci. 83(5), 610–619.Google Scholar
  80. Murchie, E.H., Hubbart, S., Peng, S. and Horton, P. (2001) Raising rice yield potential by manipulating photosynthesis: improvement of radiation conversion efficiency. In: Peng, S. and Hardy, B. (Eds.) Rice research for food security and poverty alleviation. International Rice Research Institute, Manila, Philippines, pp. 119–128.Google Scholar
  81. Oka, H.I. (1958) Intervarietal variation and classification of cultivated rice. Indian J. Genet. Plant Breed. 18, 79–89.Google Scholar
  82. Oka, H.I. (1964) Pattern of interspecific relationships and evolutionary dynamics in Oryza. In: Rice genetics and cytogenetics. Elsevier, Amsterdam, Netherlands. pp. 71–90.Google Scholar
  83. Oladele, O.I. and Sakagami, J.I. (2004) Impact of technology innovation on rice yield gap in Asia and West Africa – Technology transfer issues. In: Rural Poverty Reduction though Research for Development and Transformation, Proceeding of the Deutscher Tropentag, October 5–7, 2004. Humboldt-Universität, Berlin, Germany. p. 184.Google Scholar
  84. Peng, S. and Khush, G.S. (2003) Four decades of breeding for varietal improvement of irrigated lowland rice in the International Rice Research Institute. Plant Prod. Sci. 6(3), 157–164.Google Scholar
  85. Peng, S., Cassman, K.G., Virmani, S.S., Sheehy, J. and Khush, G.S. (2005) Yield potential of Tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci. 39, 1552–1559.Google Scholar
  86. Pérez-Polanco, R., Chatel, M. and Guimarães, E.P. (2000) Mejoramiento poblacional del arroz en Cuba, Situacion actual y perspectives. In: Guimarães, E.P. (Ed.) Avances en el mejoramiento poblacional en arroz. Embrapa Arroz e Feijao, Santo Antonio de Goias, Brasil, pp. 131–144.Google Scholar
  87. Picard, E., Hours, C., Grégoire, S., Phan, T.H., and Meunier, J.P. (2004) Significant improvement of androgenetic haploid and double haploid induction from wheat plants treated with a chemical hybridization agent. Theor. Appl. Genet. 74(3), 289–297.Google Scholar
  88. Rai, M. (2003) Genetic diversity in rice production, past contribution and the potential of utilization for sustainable rice production. In: Sustainable rice production for food security. Proceedings of the 20th session of the International Rice Commission, Bangkok, Thailand, 23–26 July 2002, pp. 89–115.Google Scholar
  89. Rangel, P.H.N. and Neves, P.C.F. (1997) Selección recurrente aplicada al arroz de riego en Brasil. In: Guimarães, E.P. (Ed.) Selección recurrente en arroz. Centro Internacional de Agricultura Tropical, Cali, Colombia, pp. 79–97.Google Scholar
  90. Rangel, P.H.N., Guimarães, E.P. and Neves, P.C.F. (1996) Base genetica das cultivares de arroz (Oryza sativa L.) irrigado do Brasil. Pesq. Agropec. Bras. 31(5), 349–357.Google Scholar
  91. Rangel, P.H.N., Zimmermann, F.J.P. and Fagundes, P.R.R. (2000) Mejoramiento poblacional del arroz de riego en Brasil. In: Guimarães, E.P. (Ed.) Avances en el mejoramiento poblacional en arroz. Embrapa Arroz e Feijao, Santo Antonio de Goias, Brasil, pp. 65–85.Google Scholar
  92. Rangel, P.H.N., Cordeiro, A.C.C., Lopes, S.I.G., Morais, O.P. de, Brondani, C., Brondani, R.P.V., Yokoyama, S., Schiocchet, M., Bacha, R. and Ishy, T. (2005) Advances in population improvement of irrigated rice in Brazil. In: Guimarães, E.P. (Ed.) Population improvement, A way of exploiting rice genetic resources in Latin America. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, pp. 145–186.Google Scholar
  93. Santos, P.G., Soares, P.C., Soares, A.A., Morais, O.P. and Cornelio, V.M.O. (1997) Estimativa do progresso genetico do programa de mejoramento de arroz irrigado desenvolvido em Minas Gerais no periodo 1974 a 1996. In: Anais da XXII Reuniao da Cultura do Arroz Irrigado, 1997. Balneario Camboriu, Santa Catarina, Brasil. pp. 27–20.Google Scholar
  94. Sarkarung, S. (1991) A simplified crossing method for rice breeding. Fondo Latinoamericano de Arroz de Riego (FLAR) and CIAT, Cali, Colombia. pp. 1–32.Google Scholar
  95. Second, G. (1982) Origin of the genetic diversity of cultivated rice (Oryza spp): study of the polymorphism scored at 40 isozyme loci. Jpn. J. Genet. 57, 25–57.Google Scholar
  96. Sheehy, J.E., Mitchell, P.L., Dionora, J. and Ferrer, A. (2001) What governs ceiling yield and its rate of attainment? In: Peng, S. and Hardy, B. (Eds.) Rice research for food security and poverty alleviation. International Rice Research Institute, Manila, Philippines, pp. 69–77.Google Scholar
  97. Shih-Cheng, L. and Loung Ping, Y. (1980) Hybrid rice breeding in China. In: Innovative approaches to rice breeding: Selected papers form the 1979 International Rice Research Conference. International Rice Research Institute, Los Baños, Philippines, pp. 35–51.Google Scholar
  98. Singh, R.J. and Ikehashi, H.I. (1981) Monogenic male sterility in rice, induction, identification and inheritance. Crop Sci. 21(2), 286–289.Google Scholar
  99. Sprague, G.F. and Tatum, L.A. (1941) General vs. specific combining ability in single crosses of corn. J. Am. Soc. Agron. 34, 9223–932.Google Scholar
  100. Sun, C.Q., Wang, X.K., Li, Z.C., Yoshimura, A. and Iwata, N. (2001) Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theor. Appl. Genet. 102, 57–162.Google Scholar
  101. Suwarno, Nuswantoro, M.W., Munarso, Y.P. and Direja, M. (2003) Hybrid rice development and use in Indonesia. In: Virmani, S.S., Mao, C.X. and Hardy, B. (Eds.) Hybrid rice for food security, poverty alleviation, and environmental protection. International Rice Research Institute, Manila, Philippines, pp. 287–296.Google Scholar
  102. Taillebois, J. and Guimarães, E.P. (1989) CAN-IRAT5 upland rice population. Int. Rice Res. Newsl. 14(3), 8.Google Scholar
  103. Taillebois, J. and Castro, E. da M. de (1986) A new crossing technique. Int. Rice Res. Newsl. 11(6), 6.Google Scholar
  104. Tan, X.L., Vanavichit, A., Amornsilpa, S. and Trangoorung, S. (1998) Genetic analysis of rice CMS-WA fertility restotation based on QTL mapping. Theor. Appl. Genet. 97(5/6), 994–999.Google Scholar
  105. Tran, D.Q., Dao, T.T.B., Nguyen, H.D., Lam, Q.D., Bui, H.T., Nguyen, V.B., Nguyen, V.X., Le, V.N., Do, H.A. and Phan, P. (2006) Rice mutation breeding in Institute of Agricultural Genetics, Viet Nam. Plant Mutati. Rep. 1(1), 47–49.Google Scholar
  106. Vaughan, D.A. (1994) The wild relatives of rice, A genetic resources handbook. International Rice Research Institute, Manila, Philippines. pp. 1–137.Google Scholar
  107. Virmani, S.S. (2003) Advances in hybrid rice research and development in the tropics. In: Virmani, S.S., Mao, C.X. and Hardy, B. (Eds.) Hybrid rice for food security, poverty alleviation, and environmental protection. International Rice Research Institute, Manila, Philippines, pp. 7–20.Google Scholar
  108. Virmani, S.S., Viraktamath, B.C., Casal, C.L., Toledo, R.S., Lopez, M.T. and Manalo, J.O. (1997) Hybrid rice breeding manual. International Rice Research Institute, Manila, Philippines. pp. 1–151.Google Scholar
  109. Virmani, S.S., Mao, C.X., Toledo, R.S., Hossain, M. and Janaiah, A. (2001) Hybrid rice seed production technology for improving seed industries and rural employment opportunities in Asia. Paper presented at the International Workshop on Seed and Seeding Sciences and Technology. Taiwan, China, 10–17 June 2001.Google Scholar
  110. Wang, L.Q. (1992) Advances in plant mutation breeding in China: a full analysis. Bull. Nucl. Agric. Sci. 13, 282–295.Google Scholar
  111. Wang, X.W., Lai, J.R., Fan, L. and Zhang, R.B. (1996) Effects of recurrent selection on populations of various generations in wheat by using the Tai Gu single dominant male-sterile gene. J. Agric. Sci. 126(4), 397–402.Google Scholar
  112. WARDA [West Africa Rice Development Association] (2003) Assessing the impact of NERICA rice varieties: not just surveys and simple mathematics. Available at http://www.warda.cgiar.org/publications/AR2002–03/assessing%20the%20impact.pdf. Consulted on 7 December 2006.Google Scholar
  113. Wenfu, C., Zhenjin, X., Longbu, Z. and Shouren, Y. (2001) Development of the new rice plant type and advances in research on breeding for super high yield. In: Peng, S. and Hardy, B. (Eds.) Rice research for food security and poverty alleviation. International Rice Research Institute, Manila, Philippines, pp. 43–50.Google Scholar
  114. Werner, B.K. and Wilcox, J.R. (2004) Recurrent selection for yield in Glycine max using genetic male-sterility. Euphytica 50(1), 19–26.Google Scholar
  115. Xiao, J., Grandillo, S., Ahn, S.N., McCouch, S.R., Tanksley, S.D., Li, J. and Yuan, L.P. (1996) Genes from wild rice improve yield. Nature 384, 223–224.Google Scholar
  116. Xiao, J., Li, J., Grandillo, S., Ahn, S.N., Yuan, L., Tanksley, S.D. and McCouch, S.R. (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150, 899–909.Google Scholar
  117. Yang, S.R., Zhang, L.B. and Chen, W.F. (1996) Theories and methods of rice breeding for maximum yield. Acta Agron. Sin. 22(3), 295–304.Google Scholar
  118. Yamaguchi, Y., Ikeda, R., Hirasawa, H., Minami, M. and Ujikara, A. (1997) Linkage analysis of termosensitive genetic male sterility gene, tms 2, in rice (Oryza sativa L.). Breed. Sci. 47, 371–373.Google Scholar
  119. Yu, J., Hu, S., Wang, J., Wong, K.S., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., Geng, J., Han, Y., Li, L., Li, W., Hu, G., Huang, X., Li, W., Li, J., Liu, Z., Li, L., Liu, J., Qi, Q., Liu, J., Li, L., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Zhang, J., Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Ren, X., Chen, X., He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Wang, J., Zhao, W., Li, P., Chen, W., Wang, X., Zhang, Y., Hu, J., Wang, J., Liu, S., Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Zheng, W., Chen, S., Guo, W., Li, G., Liu, S., Tao, M., Wang, J., Zhu, L., Yuan, L., and Yang, H. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.Google Scholar
  120. Yuan, L.P. (2003) The second generation of hybrid rice in China. In: Sustainable rice production for food security. Proceedings of the 20th session of the International Rice Commission. Bangkok, Thailand, 23–26 July 2002, pp. 117–120.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Food and Agriculture Organization of the United Nations (FAO)Viale delle Termi di Caracalla, Crop and Grassland Service (AGPC) – Room C-778RomeItaly

Personalised recommendations