Cereals pp 367-394 | Cite as

Breeding for Silage Quality Traits

  • Y. Barrière
  • S. Guillaumie
  • M. Pichon
  • J.C. Emile
Part of the Handbook of Plant Breeding book series (HBPB, volume 3)


Forage plants are the basis of ruminant nutrition. Among cereal forages, maize cropped for silage making is the most widely used. Much research in genetics, physiology, and molecular biology of cereal forages is thus devoted to maize, even if silage of sorghum or immature small-grain cereals and straws of small-grain cereals are also given to cattle. Cell wall digestibility is the limiting factor of forage feeding value and is, therefore, the first target for improving their feeding value. Large genetic variation for cell wall digestibility was proven from both in vivo and in vitro experiments in numerous species. Among the regular maize hybrids [excluding brown-midrib (bm) ones], the cell wall digestibility nearly doubled from 32.9% to 60.1%. Genetic variation has also been proven in cell wall digestibility of sorghum and wheat, barley or rice forage, or straw, with lower average values than in maize. Despite lignin content is well known as an important factor making cell wall indigestible, breeding for a higher digestibility of plant needs the use of specific traits estimating the plant cell wall digestibility. Quantitative trait loci (QTL) analysis, studies of single-nucleotide polymorphism (SNP) × feeding value traits relationships, studies of mutants and deregulated plants, and expression studies will contribute to the comprehensive knowledge of the lignin pathway and cell wall biogenesis. Plant breeders will then be able to choose the best genetic and genomic targets for the improvement of plant digestibility. Favorable alleles or favorable QTL for cereal cell wall digestibility will thus be introgressed in elite lines through marker-assisted introgression. Efficient breeding of maize and others annual forage plants demands a renewing of genetic resources because only a limited number of lines are actually known with a high cell wall digestibility. Among bm genes, the bm3 mutant in maize and the bmr12 (and possibly bmr18) mutant in sorghum, which are both altered in the caffeic acid O-methyltransferase (COMT) activity, appeared as the most efficient in cell wall digestibility improvement. Genetic engineering is both an inescapable tool in mechanism understanding and an efficient way in cereal breeding for improved feeding value. Moreover, gene mining and genetic engineering in model plant and systems (Arabidopsis, Zinnia, Brachypodium, …) are also essential complementary approaches for improvement of cell wall digestibility in grass and cereal forage crops.


Quantitative Trait Locus Ferulic Acid Lignin Content Maize Silage Cell Wall Digestibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abou-el-Enin, O.H., Fadel, J.G. and Mackill, D.J. (1999) Differences in chemical composition and fibre digestion of rice straw with, and without, anhydrous ammonia from 53 rice varieties. Anim. Feed Sci. Technol. 79:129–136.Google Scholar
  2. Agbagla-Dohnan, A., Nozière, P., Clément, G. and Doreau, M. (2001) In sacco degradability, chemical and morphological composition of 15 varieties of European rice straw. Anim. Feed Sci. Technol. 94:15–27.Google Scholar
  3. Akin, D.E., Rigsby, L.L., Hanna, W.W. and Gates, R.N. (1991) Structure and digestibility of tissues in normal and brown midrib pearl millet (Pennisetum glaucum). J. Sci. Food Agric. 56:523–538.Google Scholar
  4. Andersen, J. and Lübberstedt, T. (2003) Functional markers in plants. Trends Plant Sci. 8:554–560.PubMedGoogle Scholar
  5. Andersen, J.R., Zein, I., Wenzel, G., Krutzfeldt, B., Eder, J., Ouzunova, M. and Lübberstedt, T. (2007) High levels of linkage disequilibrium and associations with forage quality at a phenylalanine ammonia-lyase locus in European maize (Zea mays L.) inbreds. Theor. Appl. Genet. 114:307–319.PubMedGoogle Scholar
  6. Argillier, O., Barrière, Y. and Hébert, Y. (1995) Genetic variation and selection criteria for digestibility traits of forage maize. Euphytica 82:175–184.Google Scholar
  7. Argillier, O., Méchin, V. and Barrière, Y. (2000) Genetic variation, selection criteria and utility of inbred line per se evaluation in hybrid breeding for digestibility related traits in forage maize. Crop Sci. 40:1596–1600.Google Scholar
  8. Aufrère, J. and Michalet-Doreau, B. (1983) In vivo digestibility and prediction of digestibility of some by products. EEC seminar, September 26–29, Mlle Gontrode, Belgium.Google Scholar
  9. Aydin, G., Grant, R.J. and O'Rear J. (1999) Brown midrib sorghum in diets of lactating dairy cows. J. Dairy Sci. 82:2127–2135.PubMedGoogle Scholar
  10. Bal, M.A., Shaver, R.D., Al-Jobeile, H., Coors, J.G. and Lauer, J.G. (2000) Corn silage hybrid effects on intake, digestion, and milk production by dairy cows. J. Dairy Sci. 83:2849–2858.PubMedGoogle Scholar
  11. Ballard, C.S., Thomas, E.D., Tsang, D.S., Mandevu, P., Sniffen, C.J., Endres, M.I. and Carter, M.P. (2001) Effect of corn silage hybrid on dry matter yield, nutrient composition, in vitro digestion, intake by dairy heifers, and milk production by dairy cows. J. Dairy Sci. 84:442–452.PubMedGoogle Scholar
  12. Barnes, R.F., Muller, L.D., Bauman, L.F. and Colenbrander, V.F. (1971) In vitro dry-matter disappearance of brown midrib mutants. J. Anim. Sci. 33:881–884.Google Scholar
  13. Barrière, Y. and Argillier, O. (1997) In vivo silage feeding value of early maize hybrids released in France between 1958 and 1994. Euphytica 99:175–182.Google Scholar
  14. Barrière, Y. and Emile, J.C. (1990) Effet des teneurs en grain et de la variabilité génétique sur la valeur énergétique du maïs-ensilage mesuré par des vaches laitières. Agronomie 10:201–212.Google Scholar
  15. Barrière, Y., Gallais, A., Derieux M. and Panouillé A. (1987) Etude de la valeur agronomique en plante entière au stade de récolte ensilage de différentes variétés de maïs grain sélectionnées entre 1950 et 1980. Agronomie 7:73–79.Google Scholar
  16. Barrière, Y., Argillier, O., Chabbert, B., Tollier, M.T. and Monties, B. (1994) Breeding silage maize with brown-midrib genes. Feeding value and biochemical characteristics 3. Agronomie 14:15–25.Google Scholar
  17. Barrière, Y., Emile, J.C., Traineau, R. and Hébert, Y. (1995a) Genetic variation in the feeding efficiency of maize genotypes evaluated from experiments with dairy cows. Plant Breed. 114:144–148.Google Scholar
  18. Barrière, Y., Emile, J.C. and Hébert Y. (1995b) Genetic variation in the feeding efficiency of maize genotypes evaluated from experiments with fattening bulls. Agronomie 15:539–546.Google Scholar
  19. Barrière, Y., Argillier, O., Michalet-Doreau, B., Hébert, Y., Guingo, E., Giauffret, C. and Emile, J.C. (1997) Relevant traits, genetic variation and breeding strategies in early silage maize. Agronomie 17:395–411.Google Scholar
  20. Barrière, Y., Guillet, C., Goffner, D. and Pichon, M. (2003a.) Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crop. A review. Anim. Res. 52:193–186.Google Scholar
  21. Barrière, Y., Emile, J.C. and Surault, F. (2003b) Genetic variation of silage maize ingestibility in dairy cattle. Anim. Res. 52:489–500.Google Scholar
  22. Barrière, Y., Emile, J.C., Traineau, R., Surault, F., Briand, M. and Gallais, A. (2004a) Genetic variation for organic matter and cell wall digestibility in silage maize. Lessons from a 34-year long experiment with sheep in digestibility crates. Maydica 49:115–126.Google Scholar
  23. Barrière, Y., Ralph, J., Méchin, V., Guillaumie, S., Grabber, J.H., Argillier, O., Chabbert, B. and Lapierre, C. (2004b) Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. C. R. Biol. 327:847–860.Google Scholar
  24. Barrière, Y., Dias-Goncalvès, G., Emile, J.C. and Lefèvre, B. (2004c) Higher ingestibility of the DK265 corn silage in dairy cattle. J. Dairy Sci. 87:1439–1445.Google Scholar
  25. Barrière, Y., Alber, D., Dolstra, O., Lapierre, C., Motto, M., Ordas, A., Van Waes, J., Vlasminkel, L., Welcker, C. and Monod, J.P. (2005) Past and prospects of forage maize breeding in Europe. I. The grass cell wall as a basis of genetic variation and future improvements in feeding value. Maydica 50:259–274.Google Scholar
  26. Barrière Y., Alber, D., Dolstra, O., Lapierre, C., Motto, M., Ordas, A., Van Waes, J., Vlasminkel, L., Welcker, C. and Monod, J.P. (2006) Past and prospects of forage maize breeding in Europe. II. History, germplasm evolution and correlative agronomic changes. Maydica 51:435–449.Google Scholar
  27. Barrière Y., Riboulet C., Méchin V., Maltese S., Pichon M., Cardinal A., Martinant J.P., Lübberstedt T. and Lapierre C. (2007) Genetics and genomics of lignification in grass cell walls based on maize as a model system. Genes, Genomes and Genomics 1:133–156.Google Scholar
  28. Blaxter, K.L., Wainman, F.W. and Wilson, R.S. (1961) The regulation of food intake by sheep. Anim. Prod. 3:51–61.Google Scholar
  29. Block, E., Muller, L.D., Griel, L.C., Garwood, J.R. and Garwood, D.L. (1981) Brown-midrib3 corn silage and heat-extruded soybeans for early lactating dairy cows. J. Dairy Sci. 64:1813–1825.Google Scholar
  30. Boudet, A.M. (2000) Lignin and lignification: selected issues. Plant Physiol. Biochem. 38:81–96.Google Scholar
  31. Bout, S. and Vermerris, W. (2003) A candidate-gene approach to clone the sorghum brown midrib gene encoding caffeic acid O-methyltransferase. Mole. Genet. Genomics 269:205–214.Google Scholar
  32. Buanafina, M.M., Langdon, T., Hauck, B., Dalton, S.J. and Morris, P. (2006) Manipulating the phenolic acid content and digestibility of Italian ryegrass (Lolium multiflorum) by vacuolar-targeted expression of a fungal ferulic acid esterase. Appl. Biochem. Biotechnol. 10.1007/978-1-59745-268-7_34:129–132,416–426.Google Scholar
  33. Burnham, C.R. (1947) Maize genetics. Cooperation Newsletter 21:36.Google Scholar
  34. Burnham, C.R. and Brinks, R.A. (1932) Linkage relations of a second brown-midrib gene (bm2) in maize. J. Am. Soc. Agric. 24:960–963.Google Scholar
  35. Capper, B.S., Thomson, E.F. and Herbert, F. (1988) Genetic variation in the feeding value of barley and wheat straw. In: Reed J.D., Capper, B.S. and Neate, J.H. (Eds.), Plant breeding and the nutritive value of crop residues, Addis Abeba, Ethiopia, International livestock for Africa, pp. 177–193.Google Scholar
  36. Capper, B.S., Sage, G., Hanson, P.R. and Adamson A.H. (1992) Influence of variety, row type and time of sowing on the morphology, chemical composition and in vitro digestibility of barley straw. J. Agric. Sci. 188:165–173.Google Scholar
  37. Cardinal, A.J., Lee, M. and Moore, K.J. (2003) Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize. Theor. Appl. Genet. 106:866–874.PubMedGoogle Scholar
  38. Casler, M. and Jung H.(1999)Selection and evaluation of smooth bromegrass clones with divergent lignin or etherified ferulic acid concentration. Crop Sci.39: 1866–1873. Google Scholar
  39. Casler, M.D. and Kaeppler, H.F. (2001) Molecular breeding for herbage quality in forage crops, In: Spangenberg G. (Ed.), Molecular breeding of forage crops, pp. 175–188.Google Scholar
  40. Chen, C., Baucher, M., Christensen, J.H. and Boerjan, W. (2001) Biochetchnology in trees: towards improved paper pulping by lignin engineering. Euphytica 118:185–195.Google Scholar
  41. Chen, F., Srinivasa Reddy, M.S., Temple, S., Jackson, L., Shadle, G. and Dixon, R.A. (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J. 48:113–124.PubMedGoogle Scholar
  42. Chen, L., Auh, C.K., Dowling, P., Bell, J., Chen, F., Hopkins, A., Dixon, R.A. and Wang, Z.Y. (2003) Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol. J. 1:437–449.PubMedGoogle Scholar
  43. Cherney, J.H., Axtell, J.D., Hassen, M.M. and Anliker K.S. (1988) Forage quality characterization of chemically induced brown-midrib mutant in pearl millet. Crop Sci. 28:783–787.Google Scholar
  44. Cherney, D.J.R., Patterson, J.A. and Johnson K.D. (1990) Digestibility and feeding value of pearl millet as influenced by the brown-midrib, low lignin trait. J. Anim. Sci. 68:4345–1351.PubMedGoogle Scholar
  45. Ciba-semences. (1990) Valorisation laitière d’une variété de maïs en ensilage. Synthesis of an experimentation conducted by the EDE of Vendée during 1988–89–90, 13 p.Google Scholar
  46. Ciba-semences. (1995) Comparaison de la valorisation par des vaches laitières de deux hybrides de maïs, Miscellaneous paper, 7 p.Google Scholar
  47. Civardi, L., Rigau, J. and Puigdomenech, P. (1999) Nucleotide sequence of two cDNAs coding for caffeoyl coenzyme A O-methyltransferase (CCoAOMT) and study of their expression in Zea mays. Plant Physiol. 120:1206.Google Scholar
  48. Cox, W.J. and Cherney, D.J.R. (2001) Influence of brown midrib, leafy and transgenic hybrids on corn forage production. Agron. J. 93:790–796.Google Scholar
  49. Cummings, D.G. and McCullough, M.E. (1969) A comparison of the yield and quality of corn and sorghum silage, University of Georgia, College of agriculture experimental station. Res. Bull. 67:5–19.Google Scholar
  50. Damiani, I., Morreel, K., Danoun, S., Goeminne, G., Yahiaoui, N., Marque, C., Kopka, J., Messens, E., Goffner, D., Boerjan, W., Boudet, A.M. and Rochange, S. (2005) Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem. Plant Mol. Biol. 59:753–769.PubMedGoogle Scholar
  51. Derieux, M., Darrigand, M., Gallais A., Barrière, Y., Bloc, Y. and Montalant, Y. (1987) Estimation du progrès génétique réalisé chez le maïs grain en France entre 1950 et 1985. Agronomie 7:1–11.Google Scholar
  52. Dixon, R.A., Chen, F., Guo, D. and Parvathi, K. (2001) The biosynthesis of monolignols, a “metabolic grid”, or independent pathways to guaiacyl and syringyl units. Phytochem. 57:1069–1084.Google Scholar
  53. Do, C.T., Pollet, B., Thévenin, J., Sibout, R., Denoue, D., Barrière, Y., Lapierre, C. and Jouanin, L. (2007) Both caffeoyl coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta. 226:1117–1129PubMedGoogle Scholar
  54. Dolstra, O. and Medema, J.H. (1990) An effective screening method for genetic improvement of cell-wall digestibility in forage maize. In: Proceedings of the 15th congress maize and sorghum section of Eucarpia, Baden, Austria, June 4–8, pp. 258–270.Google Scholar
  55. Droushiotis, D.N. (1989) Mixtures of annual legumes and small-grained cereals for forage production under low rainfall. J. Agric. Sci. Camb. 113:249–253.Google Scholar
  56. Emerson, R.A. (1935) Cornell University. Agric. Exp. Stn. Memoir No. 180. Google Scholar
  57. Emile, J.C., Barrière, Y. and Mauries, M. (1996) Effects of maize and alfalfa genotypes on dairy cow performances. Ann. Zootechn. 45:17–27.Google Scholar
  58. Fernandez, I., Martin, C., Champion, M. and Michalet-Doreau, B. (2004) Effect of corn hybrid and chop length of whole-plant corn silage on digestion and intake by dairy cows. J. Dairy Sci. 87:1298–1309.PubMedGoogle Scholar
  59. Fontaine, A.S., Bout, S., Barrière, Y. and Vermerris, W. (2003) Variation in cell wall composition among forage maize (Zea mays L.) inbred lines and its impact on digestibility: analysis of neutral detergent fiber composition by pyrolysis-gas chromatography-mass spectrometry. J. Agric. Food Chem. 51:8080–8087.PubMedGoogle Scholar
  60. Frenchick, G.E., Johnson, D.G, Murphy, J.M. and Otterby, D.E. (1976) Brown midrib corn silage in dairy cattle ration. J. Dairy Sci. 59:2126–2129.Google Scholar
  61. Frey, T.J., Coors, J.G., Shaver, R.D., Lauer J.G., Eilert, D.T. and Flannery, P.J (2004) Selection for silage quality in the Wisconsin Quality Synthetic and related maize populations. Crop Sci. 44:1200–1208.Google Scholar
  62. Fritz, J.O., Cantrell, R.P., Lechtenberg, V.L., Axtell, J.D. and Hertel, J.M. (1981) Brown midrib mutants in sudangrass and grain sorghum. Crop Sci. 21:706–709.Google Scholar
  63. Goering, H.K. and van Soest, P.J. (1971) Forage fiber analysis (apparatus, reagents, procedures and some applications). Agric. Handb. No. 379. US Government Print Office, Washington, DC.Google Scholar
  64. Grabber, J., Ralph J., Lapierre, C. and Barrière, Y. (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. C. R. Biol. 327:455–465.PubMedGoogle Scholar
  65. Grant, R.J., Haddad, S.G., Moore, K.J. and Pederson, J.F. (1995) Brown midrib sorghum silage for midlactation dairy cows. J. Dairy Sci. 78:1970–1980.PubMedGoogle Scholar
  66. Guillaumie, S., San Clemente, H., Deswarte, C., Martinez, Y., Lapierre, C., Murigneux, A., Barrière, Y., Pichon, M. and Goffner, D. (2007a) MAIZEWALL, a database and developmental gene expression profiling of cell wall biosynthesis and assembly maize genes. Plant Physiol. 143:339–363.Google Scholar
  67. Guillaumie, S., Pichon, M., Martinant, J.P., Bosio, M., Goffner, D. and Barrière, Y. (2007b) Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young isogenic mutant maize plants. Planta 266:235–250.Google Scholar
  68. Guillet-Claude, C., Birolleau-Touchard, C., Manicacci, D., Rogowsky, P.M., Rigau, J., Murigneux, A., Martinant, J.P. and Barriere, Y. (2004a) Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet. 5:19.Google Scholar
  69. Guillet-Claude, C., Birolleau-Touchard, C., Manicacci, D., Fourmann, M., Barraud, S., L'Homedet, J., Carret, V., Martinant, J.P. and Barrière, Y. (2004b) Nucleotide diversity associated in silage corn digestibility for three O-methyltransferase genes involved in lignin biosynthesis. Theor. Appl. Genet. 110:126–135.Google Scholar
  70. Goicoechea, M., Lacombe, E., Legay, S., Mihaljevic, S., Rech, P., Jauneau, A., Lapierre, C., Pollet, B., Verhaegen, D., Chaubet-Gigot, N. and Grima-Pettenati, J. (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J. 43:553–597.PubMedGoogle Scholar
  71. Guo, D., Chen, F., Inoue, K., Blount, J.W. and Dixon, R.A. (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in trangenic alfalfa. Impacts on lignin structure and implications for the synthesis of G and S lignin. Plant Cell 13:73–88.PubMedGoogle Scholar
  72. Halpin, C. (2004) Re-designing lignin for industry and agriculture. Biotechnol. Genet. Eng. Rev. 21:229–245.PubMedGoogle Scholar
  73. Halpin, C., Foxon, G.A. and Fentem P.A. (1995) Transgenic plants with improved energy characteristics. In: Chesson A., Wallace R.J. (Eds.), Biotechnology in animal feeds and animal feeding, VCH Publishers, Weinheim, pp. 279–293.Google Scholar
  74. Halpin, C., Holt, K., Chojecki, J., Olivier, D., Chabbert, B., Monties, B., Edwards, K., Barakate, A. and Foxon, G.A. (1998) Brown-midrib maize (bm1), a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J. 14:545–553.PubMedGoogle Scholar
  75. Hawkins, G.E., Parr, G.E. and Little, J.A. (1964) Composition, intake, digestibility and prediction of digestibility of coastal Bermudgrass hay. J. Dairy Sci. 47:865–870.Google Scholar
  76. He, X., Hall, M.B., Gallo-Meagher, M. and Smith, R.L. (2003) Improvement of forage quality by downregulation of maize O-methylteransferase. Crop Sci. 43:2240–2251.Google Scholar
  77. Hoden, A., Barrière, Y., Gallais, A., Huguet, L., Journet, M. and Mourguet, M. (1985) Le maïs brown-midrib plante entière. III Utilisation sous forme d'ensilage par des vaches laitières. Bull. Tech. CRZV Theix, INRA 60:43–58.Google Scholar
  78. Hoffmann, L., Maury, S., Martz, F., Geoffroy, P. and Legrand, M. (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J. Biol. Chem. 278:95–103.PubMedGoogle Scholar
  79. Hoffmann, L., Besseau, S., Geoffroy, P., Ritzenthaler, C., Meyer, D., Lapierre, C., Pollet, B. and Legrand, M. (2004) Silencing of hydroxycinnamoyl coenzyme A shikimate/quinate hydroxycinnamolyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465.PubMedGoogle Scholar
  80. Hunt, C.W., Kezar, W., Hinnam, D.D., Combs, J.J., Loesche, J.A. and Moen, T. (1993) Effects of hybrids and ensiling with and without a microbial inoculant on the nutritional characteristics of whole-plant corn. J. Anim. Sci. 71:39–43.Google Scholar
  81. Istasse, L., Gielen, M., Dufrasne, L., Clinquart, A., Van Eenaeme, C. and Bienfait, J.M. (1990) Ensilage de maïs plante entière, comparaison de 4 variétés. 2. Performances zootechniques. Landbouwtijdschrift – Revue de l'Agriculture 43:996–1005.Google Scholar
  82. Jorgenson, L.R. (1931) Brown midrib in maize and its lignage relations. J. Am. Soc. Agron. 23:549–557.Google Scholar
  83. Jung, H.G. and Allen M.S. (1995) Characteristics of plant cell wall affecting intake and digestibility of forages by ruminants. J. Anim. Sci. 73:2774–2790.PubMedGoogle Scholar
  84. Keith, E.A., Colenbrander, V.F., Lechtenberg, V.L. and Bauman, L.F. (1979) Nutritional value of brown midrib corn silage for lactating dairy cows. J. Dairy Sci. 52:788–792.Google Scholar
  85. Kim, H., Ralph, J., Lu, F., Pilate, G., Leplé, J.C., Pollet, B. and Lapierre, C. (2002) Identification of the structure and origin of thioacidolysis marker compounds for cinnamyl alcohol dehydrogenase deficiency in angiosperms. J. Biol. Chem. 277:47412–47419.PubMedGoogle Scholar
  86. Krakowsky, M.D., Lee, M., Woodman-Clikeman, W.L., Long, M.J. and Sharopova, N. (2004) QTL mapping of resistance to stalk tunneling by the European corn borer in RILs of maize population B73 x De811. Crop Sci. 44:274–282.Google Scholar
  87. Krakowsky, M.D., Lee, M. and Coors, J.G. (2005) Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.) 1: Stalk tissue. Theor. Appl. Genet. 111:337–346.PubMedGoogle Scholar
  88. Kuc, J. and Nelson, O.E. (1964) The abnormal lignins produced by the brown midrib mutants of maize. 1. The brown-midrib-1 mutant. Arch. Biochem. Biophys. 105:103–113.PubMedGoogle Scholar
  89. Lauer, J.G., Coors, J.G. and Flannery, P.J. (2001) Forage yield and quality of corn cultivars developed in different eras. Crop Sci. 41:1441–1455.Google Scholar
  90. Li, L.G., Cheng, X.F., Leshkevich, J., Umezawa, T., Harding, S.A. and Chiang, V.L. (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567–1585.PubMedGoogle Scholar
  91. Lübberstedt, T., Melchinger, A.E., Klein, D., Degenhardt, H. and Paul, C. (1997) QTL mapping in testcrosses of European flint lines of maize: II. Comparison of different testers for forage quality traits. Crop Sci. 37:1913–1922.Google Scholar
  92. Lübberstedt, T., Zein, I., Andersen, J., Wenzel, G., Krutzfeldt, B., Eder, J., Ouzunova, M. and Chun, S (2005) Development and application of functional markers in maize. Euphytica 146:101–108.Google Scholar
  93. Lusk, S.W., Karau, P.K., Balogu, D.O. and Gourley L.M. (1984) Brown midrib sorghum or corn silage for milk production. J. Dairy Sci. 67:1739–1744.Google Scholar
  94. MacAdam, J.W. and Grabber J.H. (2002) Relationship of growth cessation with the formation of diferulate cross-links and p-coumaroylated lignins in tall fescue leaf blades. Planta 215:785–793.PubMedGoogle Scholar
  95. Mahanta, S.K. and Pachauri, V.C. (2005) Nutritional evaluation of two promising varieties of forage sorghum in sheep fed as silage. Asian-Aust. J. Anim. Sci. 18:1715–1720.Google Scholar
  96. Mahesh, V., Million-Rousseau, R., Ullmann, P., Chabrillange, N., Bustamante, J., Mondolot, L., Morant, M., Noirot, M., Hamon, S., de Kochko, A., Werck-Reichhart, D. and Campa, C. (2007) Functional characterization of two p-coumaroyl ester 3′-hydroxylase genes from coffee tree: evidence of a candidate for chlorogenic acid biosynthesis. Plant Mol. Biol. 64:145–159.PubMedGoogle Scholar
  97. Méchin V., Argillier, O., Barrière Y. and Menanteau V. (1998) Genetic variation in stems of normal and brown-midrib3 maize inbred lines. Towards similarity for in vitro digestibility and cell-wall composition. Maydica 43:205–210.Google Scholar
  98. Méchin, V., Argillier, O., Barrière, Y., Mila, I., Polet B. and Lapierre C. (2000) Relationships of cell-wall composition to in vitro cell-wall digestibility of maize inbred line stems. J. Sci. Food Agric. 80:574–580.Google Scholar
  99. Méchin, V., Argillier, O., Hébert Y., Guingo, E., Moreau, L., Charcosset, A. and Barrière Y. (2001) QTL mapping and genetic analysis of cell wall digestibility and lignification in silage maize. Crop Sci. 41:690–697.Google Scholar
  100. Minson, D.J. and Wilson, J.R. (1994) Prediction of intake as an element of forage quality. In: Fahey G.C. (Ed.), Forage quality, evaluation and utilisation, American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, WI, pp. 533–563.Google Scholar
  101. Mitchell, R.A.C. and Shewry P.R. (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol. 144:43–53.PubMedGoogle Scholar
  102. Moreira, V.R., Santos, H.S., Satter, L.D. and Sampaio, I.B.M. (2003) Feeding high forage diets to lactating dairy cows. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia 55:197–202.Google Scholar
  103. Nair, R.B., Bastress, K.L., Ruegger, M.O., Denault, J.W. and Chapple, C. (2004) The Arabidopsis thaliana reduced epidermal fluorescence1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554.PubMedGoogle Scholar
  104. Oba, M. and Allen, M.S. (1999) Evaluation of the importance of the digestibility of neutral detergent fiber from forage. Effects on dry matter intake and milk yield of dairy cows. J. Dairy Sci. 82:589–596.PubMedGoogle Scholar
  105. Oba, M. and Allen, M.S. (2000) Effect of brown midrib 3 mutation in corn silage on productivity of dairy cows fed two concentrations of dietary neutral detergent fiber, 1. Feeding behavior and nutrient utilization. J. Dairy Sci. 83:1333–1341.PubMedGoogle Scholar
  106. Oliver, A.L., Grant, R.J., Pedersen, J.F. and O'Rear, J. (2004) Comparison of brown-midrib-6 and -18 forage sorghum with conventional sorghum and corn silage in diets of lactating dairy cows. J. Dairy Sci. 87:637–644.PubMedGoogle Scholar
  107. Oliver, A.L., Pedersen, J.F., Grant, R.J. and Klopfenstein, T.J. (2005a). Comparative effects of the sorghum bmr-6 and bmr-12 genes. I. Forage sorghum yield and quality. Crop Sci. 45:2234–2239.Google Scholar
  108. Oliver, A.L., Pedersen, J.F., Grant, R.J., Klopfenstein, T.J. and Jose, H.D. (2005b). Comparative effects of the sorghum bmr-6 and bmr-12 genes. I. Grain Yield, stover yield, and stover quality in grain sorghum. Crop Sci. 45:2240–2245.Google Scholar
  109. Orskov, E.R., Tait, G.A.G., Reid, G.W. and Flachowski, G. (1988) Effect of straw quality and ammonia treatment on voluntary intake, milk yield and degradation characteristics of faecal fibre. Anim. Prod. 46:23–27.Google Scholar
  110. Pedersen, J.F., Funnell, D.L., Toy, J.J., Oliver, A.L. and Grant, R.J. (2006a). Registration of Atlas bmr-12 forage sorghum. Crop Sci. 46:478.Google Scholar
  111. Pedersen, J.F., Funnell, D.L., Toy, J.J., Oliver, A.L. and Grant, R.J. (2006b). Registration of seven forage sorghum genetic stocks near-isogenic for the brown midrib genes bmr-6 and bmr-12. Crop Sci. 46:490–491.Google Scholar
  112. Pedersen, J.F., Funnell, D.L., Toy, J.J., Oliver, A.L. and Grant, R.J. (2006c). Registration of twelve forage sorghum genetic stocks near-isogenic for the brown midrib genes bmr-6 and bmr-12. Crop Sci. 46:491–492.Google Scholar
  113. Pichon, M., Courbou, I., Beckert, M., Boudet, A.M. and Grima-Pettenati, J. (1998) Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (CCR) and differential expression of the corresponding genes. Plant Mol. Biol. 38:671–676.PubMedGoogle Scholar
  114. Pichon, M., Deswarte, C., Gerentes, D., Guillaumie, S, Lapierre, C.,Toppan, A.,Barrière, Y. and Goffner, D. (2006) Variation in lignin and cell wall digestibility traits in caffeic acid O-methyl-transferase down-regulated maize half-sib progenies in field experiments. Mol. Breed. 18:253–261.Google Scholar
  115. Piquemal, J., Chamayou, S., Nadaud, I., Beckert, M., Barrière, Y., Mila, I., Lapierre, C., Rigau, J., Puigdomenech P., Jauneau A., Digonnet,C., Boudet,A.M., Goffner,D. and Pichon M. (2002) Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiol. 130:1675–1685.PubMedGoogle Scholar
  116. Plénet, D. and Cruz, P. (1997) Diagnosis of the nitrogen status in crops. Maize and Sorghum, Chap. 5. In: G. Lemaire (Ed.), Springer-Verlag, Berlin, Heidelberg, pp. 93–106.Google Scholar
  117. Porter, K.S., Axtell, J.D., Lechtenberg, V.L. and Colenbrander, V.F. (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci. 18:205–208.Google Scholar
  118. Ralph, J., Guillaumie, S., Grabber, J.H., Lapierre, C. and Barrière, Y. (2004) Genetic and molecular basis of grass cell wall biosynthesis and degradability. III. Towards a forage grass ideotype. C. R. Biol. 327:467–479.PubMedGoogle Scholar
  119. Ranocha, P., Chabannes, M., Chamayou, S., Danoun, S., Jauneau, A., Boudet, A.M. and Goffner, D. (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol. 129:145–155.PubMedGoogle Scholar
  120. Reddy, M.S., Chen, F., Shadle, G., Jackson, L., Aljoe, H. and Dixon, R.A. (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc. Natl. Acad. Sci. USA. 102:16573–16578.PubMedGoogle Scholar
  121. Reid, G.W., Orskov, E.R. and Kay, M. (1988) A note on the effect of variety, type of straw and ammonia treatment an digestibility and on growth rate on steers. Anim. Prod. 47:157–160.Google Scholar
  122. Rohde, A., Morreel, K., Ralph, J., Goeminne, G., Hostyn, V., De Rycke, R., Kushnir, S., Van Doorsselaere, J., Joseleau, J.P., Vuylsteke, M., Van Driessche, G., Van Beeumen, J, Messens, E. and Boerjan W. (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana revealed far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771.PubMedGoogle Scholar
  123. Rook, J.A., Muller, L.D. and Shank, D.B. (1977) Intake and digestibility of brown midrib corn silage by lactating dairy cows. J. Dairy Sci. 60:1894–1904.Google Scholar
  124. Roussel, V., Gibelin, C., Fontaine, A.S. and Barrière, Y. (2002) Genetic analysis in recombinant inbred lines of early dent forage maize. II – QTL mapping for cell wall constituents and cell wall digestibility from per se value and top cross experiments. Maydica 47:9–20.Google Scholar
  125. Russell, W.A. (1984) Agronomic performance of maize cultivars representing different eras of breeding. Maydica 29:375–390.Google Scholar
  126. Schiere, J.B., Joshi, A.L., Seetharam, A., Oosting, S.J., Goodchild, A.V., Deinum, B. and Van Keulen, H. (2004) Grain and straw for whole plant value. Implications for crop management and genetic improvement strategies. Explor. Agric. 40:277–294.Google Scholar
  127. Schoch, G., Goepfert, S., Morant, M., Hehn, A., Meyer, D., Ullmann, P. and Werck-Reichhart, D. (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J. Biol. Chem. 276:36566–36574.PubMedGoogle Scholar
  128. Shadle, G., Chen, F., Srinivasa Reddy, M.S., Jackson, L., Nakashima, J., Dixon, R.A. (2007) Down-regulation of hydroxycinnamoyl CoA: Shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochem. 68:1521–1529.Google Scholar
  129. Skibbe, D., Liu, F., Wen, T., Yandeau, M., Cui, X., Cao, J., Simmons, C. and Schnable, P. (2002) Characterization of the aldehyde dehydrogenase gene families of Zea mays and Arabidopsis. Plant Mol. Biol. 48:751–764.PubMedGoogle Scholar
  130. Sommerfeldt, J.L., Schingoethe, D.J. and Muller, L.D. (1979) Brown midrib corn silage for lactating dairy cows. J. Dairy Sci. 62:1611–1618.Google Scholar
  131. Stallings, C.C., Donaldson, B.M., Thomas, J.W. and Rossman, E.C. (1982) In vivo evaluation of brown-midrib corn silage by sheep and lactating dairy cows. J. Dairy Sci. 65:1945–1949.Google Scholar
  132. Struik, P.C. (1983) Physiology of forage maize (Zea mays L.) in relation to its productivity. Doctoral thesis, Wageningen, the Netherlands, 97 p.Google Scholar
  133. Tamagone, L., Merida, A., Parr, A., Mackay, S., Culianez-Marcia, F.A., Roberts, K. and Martin, C. (1998) The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135–154.Google Scholar
  134. Taylor, C.C. and Allen, M.S. (2005) Corn grain endosperm type and brown midrib 3 corn silage. Feeding behaviour and milk yield of lactating dairy cows. J. Dairy Sci. 88:1425–1433.PubMedGoogle Scholar
  135. Tilley, J.M.A. and Terry, R.A. (1963) A two stage technique for the in vitro digestion of forage crops. J. Br. Grassland Soc. 18:104–111.Google Scholar
  136. Tine, M.A., McLeod, K.R., Erdman, R.A. and Baldwin R.L. (2000) Effects of brown midrib corn silage on the energy balance of dairy cattle. J. Dairy Sci. 84:885–895.Google Scholar
  137. Tingle, J.N. and Dawley, W.K. (1974) Yield and nutritive value of whole plant cereals at a silage stage. Can. J. Plant Sci. 54:621–624.Google Scholar
  138. Troyer, A.F. (1999) Background of US hybrid corn. Crop Sci. 39:601–626.Google Scholar
  139. Troyer, A.F. (2002) Germplasm ownership: related corn inbred. Crop Sci. 42:3–11.PubMedGoogle Scholar
  140. Vadiveloo, J. (1992) Varietal differences in the chemical composition and in vitro digestibility of rice straw. J. Agric. Sci. Camb. 119:27–33.Google Scholar
  141. Vignols, F., Rigau, J., Torres, M.A., Capellades, M. and Puigdomenech, P. (1995) The brown midrib 3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416.PubMedGoogle Scholar
  142. Watanabe, H. and Kasuga, S. (2000) Effect of brown midrib and water soluble matter content on digestibility of forage sorghum (Sorghum bicolor Moench, Sorghum sudanense Stapf) foliage. Grassland Sci. 45:397–403.Google Scholar
  143. Weller, R.F. and Phipps, R.H. (1986) The feeding value of normal and brown midrib-3 maize silage. J. Agric. Sci. 106:31–35.Google Scholar
  144. Wilson, W.A., Harrington, S.E., Woodman, W.L., Lee, M., Sorrells, M.E. and McCouch, S. (1999) Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics 153:453–473.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Y. Barrière
    • 1
  • S. Guillaumie
  • M. Pichon
  • J.C. Emile
  1. 1.Unitè de Gènètique et d’Amèlioration des Plantes FourragèresINRAFrance

Personalised recommendations