The Science of Cryobiology

  • Steven F. Mullen
  • John K. Critser
Part of the Cancer Treatment and Research book series (CTAR, volume 138)

The demand for effective bio-preservation methods in the medical community continues to increase with advances in transplantation and transfusion medicine [1]. In reproductive medicine, pre-implantation embryo cryopreservation has become an integral component of overall patient care, increasing the success rate per oocyte retrieval cycle [2,3]. Oocyte cryopreservation is becoming increasingly important due to legal restrictions on the creation and transplantation of supernumerary preimplantation embryos as well as ethical considerations surrounding the cryopreservation of pre-implantation embryos [4,5].


Cool Rate Cold Shock Mouse Oocyte Vitrification Solution Osmotic Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Komender J. Cell and tissue preservation and storage for transplantation. Present and future. Ann Transplant 2004;9(1):88–90.PubMedGoogle Scholar
  2. 2.
    Toner JP, Brzyski RG, Oehninger S, Veeck LL, Simonetti S, Muasher SJ. Combined impact of the number of pre-ovulatory oocytes and cryopreservation on IVF outcome. Hum Reprod 1991;6(2):284–289.PubMedGoogle Scholar
  3. 3.
    Schnorr JA, Muasher SJ, Jones HW, Jr. Evaluation of the clinical efficacy of embryo cryopreservation. Mol Cell Endocrinol 2000;169(1–2):85–89.PubMedCrossRefGoogle Scholar
  4. 4.
    Benagiano G, Gianaroli L. The new Italian IVF legislation. Reprod Biomed Online 2004;9(2):117–125.PubMedGoogle Scholar
  5. 5.
    Bankowski BJ, Lyerly AD, Faden RR, Wallach EE. The social implications of embryo cryopreservation. Fertil Steril 2005;84(4):823–832.PubMedCrossRefGoogle Scholar
  6. 6.
    Luyet BJ, Gehenio PM. Life and death at low temperatures. Normandy, MI: Biodynamica; 1940.Google Scholar
  7. 7.
    Fahy GM, MacFarlane DR, Angell CA, Meryman HT. Vitrification as an approach to cryopreservation. Cryobiology 1984;21(4):407–426.PubMedCrossRefGoogle Scholar
  8. 8.
    Meryman HT, ed. Cryobiology. New York: Academic Press; 1966.Google Scholar
  9. 9.
    Fuller BJ, Lane N, Benson EE, eds. Life in the Frozen State. Boca Raton: CRC Press; 2004.Google Scholar
  10. 10.
    Bowler K, Fuller BJ, eds. Temperature and Animal Cells. Cambridge: The Company of Biologists, Ltd.; 1987.Google Scholar
  11. 11.
    Baust JG, Baust JM, eds. Advances in Biopreservation. Boca Raton: Taylor and Francis; 2007.Google Scholar
  12. 12.
    Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol 1984;247(3 Pt 1):C125–C142.PubMedGoogle Scholar
  13. 13.
    Karlsson JO, Toner M. Long-term storage of tissues by cryopreservation: critical issues. Biomaterials 1996;17(3):243–256.PubMedCrossRefGoogle Scholar
  14. 14.
    Fuller B, Paynter S. Fundamentals of cryobiology in reproductive medicine. Reprod Biomed Online 2004;9(6):680–691.PubMedGoogle Scholar
  15. 15.
    Fuller BJ. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo-letters 2004;25:375–388.PubMedGoogle Scholar
  16. 16.
    Karow AM, Critser JK, eds. Reproductive Tissue Banking. San Diego: Academic Press; 1997.Google Scholar
  17. 17.
    Walters EM, Benson JD, Woods EJ, Critser JK. History of Sperm Cryopreservation. In: Pacey A, Tomlinson MJ, eds. Practical Guide for Sperm Banking. Cambridge: Cambridge University Press (In Press).Google Scholar
  18. 18.
    Watson PF, Morris GJ. Cold shock injury in animal cells. In: Bowler K, Fuller BJ, eds. Temperature and animal cells. Cambridge: The Company of Biologist Limited; 1987:311–340.Google Scholar
  19. 19.
    Mazur P. Principles of Cryobiology. In: Fuller BJ, Lane N, Benson EE, eds. Life in the Frozen State. Boca Raton: CRC Press; 2004:3–65.Google Scholar
  20. 20.
    Muldrew K, Acker JP, Elliott JAW, McGann LE. The water to ice transition: implications for living cells. In: Fuller BJ, Lane N, Benson EE, eds. Life in the Frozen State. Boca Raton: CRC Press; 2004:67–108.Google Scholar
  21. 21.
    Ashwood-Smith MJ. Mechanism of cryoprotectant action. In: Bowler K, Fuller BJ, eds. Temperature and Animal Cells. Cambridge: The Company of Biologists, Ltd.; 1987:395–406.Google Scholar
  22. 22.
    Cocks FH, Brower WE. Phase diagram relationships in cryobiology. Cryobiology 1974;11(4): 340–358.PubMedCrossRefGoogle Scholar
  23. 23.
    Baudot A, Odagescu V. Thermal properties of ethylene glycol aqueous solutions. Cryobiology 2004;48(3):283–294.PubMedCrossRefGoogle Scholar
  24. 24.
    Leibo SP, McGrath JJ, Cravalho EG. Microscopic observation of intracellular ice formation in unfertilized mouse ova as a function of cooling rate. Cryobiology 1978;15(3):257–271.PubMedCrossRefGoogle Scholar
  25. 25.
    Toner M, Cravalho EG, Karel M, Armant DR. Cryomicroscopic analysis of intracellular ice formation during freezing of mouse oocytes without cryoadditives. Cryobiology 1991;28(1):55–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Gao D, Mazur P, Critser JK. Fundamental Cryobiology of Mammalian Spermatozoa. In: Karow AM, Critser JK, eds. Reproductive Tissue Banking, Scientific Principles. San Diego: Academic Press; 1997:263–328.CrossRefGoogle Scholar
  27. 27.
    Terwilliger TC, Solomon AK. Osmotic water permeability of human red cells. J Gen Physiol 1981;77(5):549–570.PubMedCrossRefGoogle Scholar
  28. 28.
    Hunter J, Bernard A, Fuller B, McGrath J, Shaw RW. Plasma membrane water permeabilities of human oocytes: the temperature dependence of water movement in individual cells. J Cell Physiol 1992;150(1):175–179.PubMedCrossRefGoogle Scholar
  29. 29.
    Mazur P. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 1977;14(3):251–272.PubMedCrossRefGoogle Scholar
  30. 30.
    Mazur P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 1963;47:47–69.CrossRefGoogle Scholar
  31. 31.
    Karlsson JO, Cravalho EG, Borel Rinkes IH, Tompkins RG, Yarmush ML, Toner M. Nucleation and growth of ice crystals inside cultured hepatocytes during freezing in the presence of dimethyl sulfoxide. Biophys J 1993;65(6):2524–2536.PubMedCrossRefGoogle Scholar
  32. 32.
    Whittingham DG, Leibo SP, Mazur P. Survival of mouse embryos frozen to–196 degrees and–269 degrees C. Science 1972;178(59):411–414.PubMedCrossRefGoogle Scholar
  33. 33.
    Shimada K, Asahina E. Visualization of intracellular ice crystals formed in very rapidly frozen cells at–27 degree C. Cryobiology 1975;12(3):209–218.PubMedCrossRefGoogle Scholar
  34. 34.
    Bank H. Visualization of freezing damage. II. Structural alterations during warming. Cryobiology 1973;10(2):157–170.PubMedCrossRefGoogle Scholar
  35. 35.
    Karlsson JO. A theoretical model of intracellular devitrification. Cryobiology 2001;42(3): 154–169.PubMedCrossRefGoogle Scholar
  36. 36.
    Acker JP, McGann LE. Protective effect of intracellular ice during freezing? Cryobiology 2003;46(2):197–202.PubMedCrossRefGoogle Scholar
  37. 37.
    Mazur P. The role of cell membranes in the freezing of yeast and other single cells. Ann N Y Acad Sci 1965;125:658–676.PubMedCrossRefGoogle Scholar
  38. 38.
    Acker JP, Elliott JA, McGann LE. Intercellular ice propagation: experimental evidence for ice growth through membrane pores. Biophys J 2001;81(3):1389–1397.PubMedCrossRefGoogle Scholar
  39. 39.
    Acker JP, Larese A, Yang H, Petrenko A, McGann LE. Intracellular ice formation is affected by cell interactions. Cryobiology 1999;38(4):363–371.PubMedCrossRefGoogle Scholar
  40. 40.
    Irimia D, Karlsson JO. Kinetics of intracellular ice formation in one-dimensional arrays of interacting biological cells. Biophys J 2005;88(1):647–660.PubMedCrossRefGoogle Scholar
  41. 41.
    Mazur P, Pinn IL, Seki S, Kleinhans FW, Edashige K. Effects of hold time after extracellular ice formation on intracellular freezing of mouse oocytes. Cryobiology 2005;51(2):235–239.PubMedCrossRefGoogle Scholar
  42. 42.
    Mazur P, Seki S, Pinn IL, Kleinhans FW, Edashige K. Extra- and intracellular ice formation in mouse oocytes. Cryobiology 2005;51(1):29–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Guenther JF, Seki S, Kleinhans FW, Edashige K, Roberts DM, Mazur P. Extra- and intra-cellular ice formation in Stage I and II Xenopus laevis oocytes. Cryobiology 2006;52(3):401–416.PubMedCrossRefGoogle Scholar
  44. 44.
    Toner M, Cravalho EG, Huggins CE. Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J Appl Physiol 1990;69:1582–1593.Google Scholar
  45. 45.
    Toner M, Cravalho EG, Stachecki J, et al. Nonequilibrium freezing of one-cell mouse embryos. Membrane integrity and developmental potential. Biophys J 1993;64(6):1908–1921.PubMedCrossRefGoogle Scholar
  46. 46.
    Muldrew K, McGann LE. Mechanisms of intracellular ice formation. Biophys J 1990;57(3):525–532.PubMedCrossRefGoogle Scholar
  47. 47.
    Muldrew K, McGann LE. The osmotic rupture hypothesis of intracellular freezing injury. Biophys J 1994;66(2 Pt 1):532–541.PubMedCrossRefGoogle Scholar
  48. 48.
    Dowgert MF, Steponkus PL. Effect of Cold Acclimation on Intracellular Ice Formation in Isolated Protoplasts. Plant Physiol 1983;72(4):978–988.PubMedCrossRefGoogle Scholar
  49. 49.
    Steponkus PL, Dowgert MF, Gordon-Kamm WJ. Destabilization of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle: the influence of cold acclimation. Cryobiology 1983;20(4):448–465.PubMedCrossRefGoogle Scholar
  50. 50.
    Mazur P, Leibo SP, Farrant J, Chu EHY, Hanna Jr MG, Smith LH. Interactions of cooling rate, warming rate and protective additive on the survival of frozen mammalian cells. In: Wolstenholme GEW, OiConnor M, eds. The Frozen Cell. London: J and A Churchill; 1970:69–58.CrossRefGoogle Scholar
  51. 51.
    Fahy GM. The relevance of cryoprotectant “toxicity” to cryobiology. Cryobiology 1986; 23(1):1–13.PubMedCrossRefGoogle Scholar
  52. 52.
    Karow AM, Jr. Cryoprotectants–a new class of drugs. J Pharm Pharmacol 1969;21(4): 209–223.PubMedGoogle Scholar
  53. 53.
    Acker JP. The use of intracellular protectants in cell biopreservation. In: Baust JG, Baust JM, eds. Advances in Biopreservation. Boca Raton, FL: Taylor & Francis; 2007:299–320.Google Scholar
  54. 54.
    Lovelock JE. The haemolysis of human red blood cells by freezing and thawing. Biochim Biophys Acta 1953;10:414–426.PubMedCrossRefGoogle Scholar
  55. 55.
    Pegg DE. Mechanisms of freezing damage. In: Bowler K, Fuller BJ, eds. Temperature and Animal Cells. Cambridge: The Company of Biologists, Ltd.; 1987:363–378.Google Scholar
  56. 56.
    Pegg DE, Diaper MP. On the mechanism of injury to slowly frozen erythrocytes. Biophys J 1988;54(3):471–488.PubMedCrossRefGoogle Scholar
  57. 57.
    Lovelock JE. The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta 1953;11:28–36.PubMedCrossRefGoogle Scholar
  58. 58.
    Nash T. Chemical constitution and physical properties of compounds able to protect living cells against damage due to freezing and thawing. In: Meryman HT, ed. Cryobiology. New York: Academic Press; 1966:179–211.Google Scholar
  59. 59.
    Korber C, Scheiwe MW, Boutron P, Rau G. The influence of hydroxyethyl starch on ice formation in aqueous solutions. Cryobiology 1982;l9(5):478–492.PubMedCrossRefGoogle Scholar
  60. 60.
    Meryman HT. Osmotic stress as a mechanism of freezing injury. Cryobiology 1971;8(5):489–500.PubMedCrossRefGoogle Scholar
  61. 61.
    Anchordoguy TJ, Cecchini CA, Crowe JH, Crowe LM. Insights into the cryoprotective mechanism of dimethyl sulfoxide for phospholipid bilayers. Cryobiology 1991;28(5):467–473.PubMedCrossRefGoogle Scholar
  62. 62.
    Xie G, Timasheff SN. The thermodynamic mechanism of protein stabilization by trehalose. Biophys Chem 1997;64(1–3):25–43.PubMedCrossRefGoogle Scholar
  63. 63.
    Carpenter JF, Crowe JH. The mechanism of cryoprotection of proteins by solutes. Cryobiology 1988;25(3):244–255.PubMedCrossRefGoogle Scholar
  64. 64.
    Anchordoguy TJ, Carpenter JF, Cecchini CA, Crowe JH, Crowe LM. Effects of protein perturbants on phospholipid bilayers. Arch Biochem Biophys 1990;283(2):356–361.PubMedCrossRefGoogle Scholar
  65. 65.
    Rudolph AS, Crowe JH. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 1985;22(4):367–377.PubMedCrossRefGoogle Scholar
  66. 66.
    Crowe JH, Crowe LM, Tablin F, Wolkers W, Oliver AE. Stabilization of cells diring freeze-drying: the trehalose myth. In: Fuller BJ, Lane N, Benson EE, eds. Life in the Frozen State. Boca Raton: CRC Press; 2004:581–601.Google Scholar
  67. 67.
    Crowe JH, Crowe LM, Carpenter JF, et al. Interactions of sugars with membranes. Biochim Biophys Acta 1988;947(2):367–384.PubMedGoogle Scholar
  68. 68.
    Crowe JH, Carpenter JF, Crowe LM. The role of vitrification in anhydrobiosis. Annu Rev Physiol 1998;60:73–103.PubMedCrossRefGoogle Scholar
  69. 69.
    Benson EE. Cryoconserving algal and plant diversity: historical perspectives and future challenges. In: Fuller BJ, Lane N, Benson EE, eds. Life in the Frozen State. Boca Raton: CRC Press; 2004:299–328.Google Scholar
  70. 70.
    Diller KR. Pioneers in cryobiology: Nikolay Aleksandrovich Maximov (1890–1952). Cryo-Letters 1997;18:81–92.Google Scholar
  71. 71.
    Mazur P, Rall WF, Rigopoulos N. Relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes. Biophys J 1981;36(3):653–675.PubMedCrossRefGoogle Scholar
  72. 72.
    Barrett J. Thermal hysteresis proteins. Int J Biochem Cell Biol 2001;33(2):105–117.PubMedCrossRefGoogle Scholar
  73. 73.
    Knight CA, DeVries AL, Oolman LD. Fish antifreeze protein and the freezing and re-crystallization of ice. Nature 1984;308(5956):295–296.PubMedCrossRefGoogle Scholar
  74. 74.
    Hew CL, Yang DS. Protein interaction with ice. Eur J Biochem 1992;203(1–2):33–42.PubMedCrossRefGoogle Scholar
  75. 75.
    Wilson PW. A model for thermal hysteresis utilizing the anisotropic interfacial energy of ice crystals. Cryobiology 1994;31:406–412.CrossRefGoogle Scholar
  76. 76.
    Raymond JA, Wilson P, DeVries AL. Inhibition of growth of nonbasal planes in ice by fish antifreezes. Proc Natl Acad Sci USA 1989;86(3):881–885.PubMedCrossRefGoogle Scholar
  77. 77.
    Kristiansen E, Zachariassen KE. The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 2005;51(3):262–280.PubMedCrossRefGoogle Scholar
  78. 78.
    Storey KB, Storey JM. Freeze tolerance in animals. Physiol Rev 1988;68(1):27–84.PubMedGoogle Scholar
  79. 79.
    Storey KB, Baust JG, Wolanczyk JP. Biochemical modification of plasma ice nucleating activity in a freeze-tolerant frog. Cryobiology 1992;29(3):374–384.PubMedCrossRefGoogle Scholar
  80. 80.
    Wolanczyk JP, Storey KB, Baust JG. Ice nucleating activity in the blood of the freeze-tolerant frog, Rana sylvatica. Cryobiology 1990;27(3):328–335.PubMedCrossRefGoogle Scholar
  81. 81.
    Vazquez Illanes MD, Storey KB. 6–Phosphofructo-2-kinase and control of cryoprotectant synthesis in freeze tolerant frogs. Biochim Biophys Acta 1993;1158(1):29–32.PubMedGoogle Scholar
  82. 82.
    Storey KB, Storey JM. Natural freeze tolerance in ectothermic vertebrates. Annu Rev Physiol 1992;54:619–637.PubMedCrossRefGoogle Scholar
  83. 83.
    Hazel JR. Effects of temperature on the structure and metabolism of cell membranes in fish. Am J Physiol 1984;246(4 Pt 2):R460–R470.PubMedGoogle Scholar
  84. 84.
    Fahy GM, Karow AM, Jr. Ultrastructure-function correlative studies for cardiac cryopreservation. V. Absence of a correlation between electrolyte toxicity and cryoinjury in the slowly frozen, cryoprotected rat heart. Cryobiology 1977;14(4):418–427.PubMedCrossRefGoogle Scholar
  85. 85.
    Kahn RA. Biochemical changes in frozen platelets. In: Greenwalt TJ, Jamieson GA, eds. The blood platelet in transfusion therapy. New York: Alan R. Liss; 1978:167–180.Google Scholar
  86. 86.
    Fahy GM. Analysis of “solution effects” injury: rabbit renal cortex frozen in the presence of dimethyl sulfoxide. Cryobiology 1980;17(4):371–388.PubMedCrossRefGoogle Scholar
  87. 87.
    Armitage WJ, Mazur P. Osmotic tolerance of human granulocytes. Am J Physiol 1984;247(5 Pt 1):C373–C381.PubMedGoogle Scholar
  88. 88.
    Armitage WJ, Parmar N, Hunt CJ. The effects of osmotic stress on human platelets. J Cell Physiol 1985;123(2):241–248.PubMedCrossRefGoogle Scholar
  89. 89.
    Agca Y, Liu J, Rutledge JJ, Critser ES, Critser JK. Effect of osmotic stress on the developmental competence of germinal vesicle and metaphase II stage bovine cumulus oocyte complexes and its relevance to cryopreservation. Mol Reprod Dev 2000;55(2):212–219.PubMedCrossRefGoogle Scholar
  90. 90.
    Pukazhenthi B, Noiles E, Pelican K, Donoghue A, Wildt D, Howard J. Osmotic effects on feline spermatozoa from normospermic versus teratospermic donors. Cryobiology 2000;40(2):139–150.PubMedCrossRefGoogle Scholar
  91. 91.
    Blanco JM, Gee G, Wildt DE, Donoghue AM. Species variation in osmotic, cryoprotectant, and cooling rate tolerance in poultry, eagle, and peregrine falcon spermatozoa. Biol Reprod 2000;63(4):1164–1171.PubMedCrossRefGoogle Scholar
  92. 92.
    Mazur P, Schneider U. Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications. Cell Biophys 1986;8(4):259–285.PubMedGoogle Scholar
  93. 93.
    Williams RJ, Shaw SK. The relationship between cell injury and osmotic volume reduction: II. Red cell lysis correlates with cell volume rather than intracellular salt concentration. Cryobiology 1980;17(6):530–539.PubMedCrossRefGoogle Scholar
  94. 94.
    Zieger MA, Woods EJ, Lakey JR, Liu J, Critser JK. Osmotic tolerance limits of canine pancreatic islets. Cell Transplant 1999;8(3):277–284.PubMedGoogle Scholar
  95. 95.
    Gao DY, Chang Q, Liu C, et al. Fundamental cryobiology of human hematopoietic progenitor cells. I: Osmotic characteristics and volume distribution. Cryobiology 1998;36(1):40.PubMedCrossRefGoogle Scholar
  96. 96.
    Men H, Agca Y, Mullen SF, Critser ES, Critser JK. Osmotic stress on the cellular actin filament organization of in vitro produced porcine embryos. Reproduction, Fertility, and Development 2004;12(1, 2):177.CrossRefGoogle Scholar
  97. 97.
    Koshimoto C, Gamliel E, Mazur P. Effect of osmolality and oxygen tension on the survival of mouse sperm frozen to various temperatures in various concentrations of glycerol and raffinose. Cryobiology 2000;41(3):204–231.PubMedCrossRefGoogle Scholar
  98. 98.
    Songsasen N, Yu I, Murton S, et al. Osmotic sensitivity of canine spermatozoa. Cryobiology 2002;44(1):79–90.PubMedCrossRefGoogle Scholar
  99. 99.
    Mullen SF, Agca Y, Broermann DC, Jenkins CL, Johnson CA, Critser JK. The effect of osmotic stress on the metaphase II spindle of human oocytes, and the relevance to cryopreservation. Hum Reprod 2004;19(5):1148–1154.PubMedCrossRefGoogle Scholar
  100. 100.
    Agca Y, Liu J, Mullen S, et al. Osmotic tolerance and membrane permeability characteristics of Rhesus (Macaca mulatta) spermatozoa. Cryobiology 2004;49(3):316–317.Google Scholar
  101. 101.
    Walters E, Men H, Agca Y, Mullen S, Critser E, Critser J. Osmotic tolerance of mouse spermatozoa from various genetic backgrounds. Cryobiology 2004;49(3):344.Google Scholar
  102. 102.
    Walters EM, Men H, Agca Y, Mullen SF, Critser ES, Critser JK. Osmotic tolerance of mouse spermatozoa from various genetic backgrounds: Acrosome integrity, membrane integrity, and maintenance of motility. Cryobiology 2005;50(2):193–205.PubMedCrossRefGoogle Scholar
  103. 103.
    De Loecker R, Penninckx F. Osmotic effects of rapid dilution of cryoprotectants II. Effects on human erythrocyte hemolysis. Cryo-Letters 1987;8:140–145.Google Scholar
  104. 104.
    Agca Y, Mullen S, Liu J, et al. Osmotic tolerance and membrane permeability characteristics of rhesus monkey (Macaca mulatta) spermatozoa. Cryobiology 2005;51(1):1–14.PubMedCrossRefGoogle Scholar
  105. 105.
    Men H, Agca Y, Mullen SF, Critser ES, Critser JK. Osmotic tolerance of in vitro produced porcine blastocysts assessed by their morphological integrity and cellular actin filament organization. Cryobiology 2005;51(2):119–129.PubMedCrossRefGoogle Scholar
  106. 106.
    Adams SL, Kleinhans FW, Mladenov PV, Hessian PA. Membrane permeability characteristics and osmotic tolerance limits of sea urchin (Evechinus chloroticus) eggs. Cryobiology 2003;47(1):1–13.PubMedCrossRefGoogle Scholar
  107. 107.
    Shaw PW, Fuller BJ, Bernard A, Shaw RW. Vitrification of mouse oocytes: improved rates of survival, fertilization, and development to blastocysts. Mol Reprod Dev 1991;29(4):373–378.PubMedCrossRefGoogle Scholar
  108. 108.
    Isachenko V, Montag M, Isachenko E, Nawroth F, Dessole S, van der Ven H. Developmental rate and ultrastructure of vitrified human pronuclear oocytes after step-wise versus direct rehydration. Hum Reprod 2004;19(3):660–665.PubMedCrossRefGoogle Scholar
  109. 109.
    Fiéni F, Beckers JP, Buggin M, et al. Evaluation of cryopreservation techniques for goat embryos. Reproduction, Nutrition, Development 1995;35(4):367–373.PubMedCrossRefGoogle Scholar
  110. 110.
    Kedem O, Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 1958;27:229–246.PubMedCrossRefGoogle Scholar
  111. 111.
    Kleinhans FW. Membrane permeability modeling: Kedem–Katchalsky vs a two-parameter formalism. Cryobiology 1998;37(4):271–289.PubMedCrossRefGoogle Scholar
  112. 112.
    Gao DY, Liu J, Liu C, et al. Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Hum Reprod 1995;10(5):1109–1122.PubMedGoogle Scholar
  113. 113.
    Baxter SJ, Lathe GH. Biochemical effects of kidney of exposure to high concentrations of dimethyl sulphoxide. Biochem Pharmacol 1971;20(6):1079–1091.PubMedCrossRefGoogle Scholar
  114. 114.
    Fahy GM, Lilley TH, Linsdell H, Douglas MS, Meryman HT. Cryoprotectant toxicity and cryoprotectant toxicity reduction: in search of molecular mechanisms. Cryobiology 1990;27(3):247–268.PubMedCrossRefGoogle Scholar
  115. 115.
    Johnson MH, Pickering SJ. The effect of dimethylsulphoxide on the microtubular system of the mouse oocyte. Development 1987;100(2):313–324.PubMedGoogle Scholar
  116. 116.
    Vincent C, Johnson MH. Cooling, cryoprotectants, and the cytoskeleton of the mammalian oocyte. Oxf Rev Reprod Biol 1992;14:73–100.PubMedGoogle Scholar
  117. 117.
    Vincent C, Pickering SJ, Johnson MH, Quick SJ. Dimethylsulphoxide affects the organisation of microfilaments in the mouse oocyte. Mol Reprod Dev 1990;26(3):227–235.PubMedCrossRefGoogle Scholar
  118. 118.
    Fahy GM, Wowk B, Wu J, Paynter S. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 2004;48(1):22–35.PubMedCrossRefGoogle Scholar
  119. 119.
    Doebbler GF, Rinfret AP. The influence of protective compounds and cooling and warming conditions on hemolysis of erythrocytes by freezing and thawing. Biochim Biophys Acta 1962;58:449–458.PubMedCrossRefGoogle Scholar
  120. 120.
    Mazur P. Cryobiology: the freezing of biological systems. Science 1970;168(934):939–949.PubMedCrossRefGoogle Scholar
  121. 121.
    Sjostrom M. Ice crystal growth in skeletal muscle fibres. J Microsc 1975;105(1):67–80.PubMedGoogle Scholar
  122. 122.
    Mazur P, Schmidt JJ. Interactions of cooling velocity, temperature, and warming velocity on the survival of frozen and thawed yeast. Cryobiology 1968;5(1):1–17.PubMedCrossRefGoogle Scholar
  123. 123.
    Rall WF, Mazur P, McGrath JJ. Depression of the ice-nucleation temperature of rapidly cooled mouse embryos by glycerol and dimethyl sulfoxide. Biophys J 1983;41(1):1–12.PubMedCrossRefGoogle Scholar
  124. 124.
    Myers SP, Pitt RE, Lynch DV, Steponkus PL. Characterization of intracellular ice formation in Drosophila melanogaster embryos. Cryobiology 1989;26(5):472–484.PubMedCrossRefGoogle Scholar
  125. 125.
    Harris CL, Toner M, Hubel A, Cravalho EG, Yarmush ML, Tompkins RG. Cryopreservation of isolated hepatocytes: intracellular ice formation under various chemical and physical conditions. Cryobiology 1991;28(5):436–444.PubMedCrossRefGoogle Scholar
  126. 126.
    Diller KR. Intracellular freezing of glycerolized red cells. Cryobiology 1979;16(2):125–131.PubMedCrossRefGoogle Scholar
  127. 127.
    Karlsson JO, Cravalho EG, Toner M. A model of diffusion-limited ice growth inside biological cells during freezing. J Appl Physiol 1994;75:4442–4450.CrossRefGoogle Scholar
  128. 128.
    Meryman HT, Williams RJ, Douglas MS. Freezing injury from “solution effects” and its prevention by natural or artificial cryoprotection. Cryobiology 1977;14(3):287–302.PubMedCrossRefGoogle Scholar
  129. 129.
    Meryman HT. The exceeding of a minimum tolerable cell volume in hypertonic suspensions as a cause of freezing injury. In: Wolstenholme GEW, OMConnor M, eds. The Frozen Cell. London: J and A Churchill; 1970:51–64.CrossRefGoogle Scholar
  130. 130.
    Mazur P, Cole KW. Influence of cell concentration on the contribution of unfrozen fraction and salt concentration to the survival of slowly frozen human erythrocytes. Cryobiology 1985;22(6):509–536.PubMedCrossRefGoogle Scholar
  131. 131.
    Mazur P, Cole KW. Roles of unfrozen fraction, salt concentration, and changes in cell volume in the survival of frozen human erythrocytes. Cryobiology 1989;26(1):1–29.PubMedCrossRefGoogle Scholar
  132. 132.
    Mazur P, Rigopoulos N. Contributions of unfrozen fraction and of salt concentration to the survival of slowly frozen human erythrocytes: influence of warming rate. Cryobiology 1983;20(3):274–289.PubMedCrossRefGoogle Scholar
  133. 133.
    Zade-Oppen AM. Posthypertonic hemolysis in sodium chloride systems. Acta Physiol Scand 1968;73(3):341–364.PubMedCrossRefGoogle Scholar
  134. 134.
    Pegg DE, Diaper MP. The effect of initial tonicity on freeze/thaw injury to human red cells suspended in solutions of sodium chloride. Cryobiology 1991;28(1):18–35.PubMedCrossRefGoogle Scholar
  135. 135.
    Baust JM, Van B, Baust JG. Cell viability improves following inhibition of cryopreservation–induced apoptosis. In Vitro Cell Dev Biol Anim 2000;36(4):262–270.PubMedCrossRefGoogle Scholar
  136. 136.
    Baust JM, Vogel MJ, Van Buskirk R, Baust JG. A molecular basis of cryopreservation failure and its modulation to improve cell survival. Cell Transplant 2001;10(7):561–571.PubMedGoogle Scholar
  137. 137.
    Morris GJ, Watson PF. Cold-Shock injury–a comprehensive bibliography. Cryo-Letters 1984;5:352–372.Google Scholar
  138. 138.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.Google Scholar
  139. 139.
    Quinn PJ. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology 1985;22(2):128–146.PubMedCrossRefGoogle Scholar
  140. 140.
    Chapman D. Phase transitions and fluidity characteristics of lipids and cell membranes. Q Rev Biophys 1975;8(2):185–235.PubMedCrossRefGoogle Scholar
  141. 141.
    Parks JE. Hypothermia and Mammalian Gametes. In: Karow AM, Critser JK, eds. Reproductive Tissue Banking, Scientific Principles. San Diego: Academic Press; 1997:229–261.CrossRefGoogle Scholar
  142. 142.
    Sen A, Brain AP, Quinn PJ, Williams WP. Formation of inverted lipid micelles in aqueous dispersions of mixed sn-3–galactosyldiacylglycerols induced by heat and ethylene glycol. Biochim Biophys Acta 1982;686(2):215–224.PubMedCrossRefGoogle Scholar
  143. 143.
    Watson PF. The effects of cold shock on sperm cell membranes. In: Morris GJ, Clarke A, eds. Effects of low temperatures on biological membranes. New York: Academic Press; 1981:189–218.Google Scholar
  144. 144.
    Pace MM, Graham EF. Components in egg yolk which protect bovine spermatozoa during freezing. J Anim Sci 1974;39(6):1444–1449.Google Scholar
  145. 145.
    Quinn PJ, Chow PY, White IG. Evidence that phospholipid protects ram spermatozoa from cold shock at a plasma membrane site. J Reprod Fertil 1980;60(2):403–407.PubMedCrossRefGoogle Scholar
  146. 146.
    Phadtare S, Alsina J, Inouye M. Cold-shock response and cold-shock proteins. Curr Opin Microbiol 1999;2(2):175–180.PubMedCrossRefGoogle Scholar
  147. 147.
    Rieder CL, Cole RW. Cold-shock and the Mammalian cell cycle. Cell Cycle 2002;1(3):169–175.PubMedGoogle Scholar
  148. 148.
    Fujita J. Cold shock response in mammalian cells. J Mol Microbiol Biotechnol 1999;1(2):243–255.PubMedGoogle Scholar
  149. 149.
    Al-Fageeh MB, Marchant RJ, Carden MJ, Smales CM. The cold-shock response in cultured mammalian cells: harnessing the response for the improvement of recombinant protein production. Biotechnol Bioeng 2006;93(5):829–835.PubMedCrossRefGoogle Scholar
  150. 150.
    Al-Fageeh MB, Smales CM. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 2006;397(2):247–259.PubMedCrossRefGoogle Scholar
  151. 151.
    Inouye M, Phadtare S. Cold shock response and adaptation at near-freezing temperature in microorganisms. Sci STKE 2004;2004(237):pe26.Google Scholar
  152. 152.
    Phadtare S, Inouye M. Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J Bacteriol 2004;186(20):7007–7014.CrossRefGoogle Scholar
  153. 153.
    Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at–196 degrees C by vitrification. Nature 1985;313(6003):573–575.PubMedCrossRefGoogle Scholar
  154. 154.
    Kuwayama M, Vajta G, Kato O, Leibo SP. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online 2005;11(3):300–308.PubMedGoogle Scholar
  155. 155.
    Lane M, Gardner DK. Vitrification of mouse oocytes using a nylon loop. Mol Reprod Dev 2001;58(3):342–347.PubMedCrossRefGoogle Scholar
  156. 156.
    Martino A, Songsasen N, Leibo SP. Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol Reprod 1996;54(5):1059–1069.PubMedCrossRefGoogle Scholar
  157. 157.
    Otoi T, Yamamoto K, Koyama N, Tachikawa S, Suzuki T. Cryopreservation of mature bovine oocytes by vitrification in straws. Cryobiology 1998;37(1):77–85.PubMedCrossRefGoogle Scholar
  158. 158.
    Woods EJ, Benson JD, Agca Y, Critser JK. Fundamental cryobiology of reproductive cells and tissues. Cryobiology 2004;48(2):146–156.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Steven F. Mullen
  • John K. Critser

There are no affiliations available

Personalised recommendations