Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 138))

Three-dimensional scaffolds are widely used in the field of tissue engineering, which combines the principles and methods of the life sciences with those of engineering to provide a fundamental understanding of structure–function relationships in normal and diseased tissues, to develop materials and methods to repair damaged or diseased tissues, and to create entire tissue replacements [1]. A synthetic scaffold can serve as a stroma that creates a cellular environment designed to provide the factors that stimulate maturation of ovarian follicles, but lacks the factors found in the native stroma that inhibit follicle maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langer R, Tirell DA. Designing materials for biology and medicine. Nature 2004; 428:487–492.

    Article  PubMed  CAS  Google Scholar 

  2. Kreeger PK, Fernandes NN, Woodruff TK, et al. Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol Reprod 2005;73:942–950.

    Article  PubMed  CAS  Google Scholar 

  3. Kreeger PK, Deck JW, Woodruff TK, et al. The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials 2006;27:714–723.

    Article  PubMed  CAS  Google Scholar 

  4. Pangas SA, Saudye H, Shea LD, et al. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes. Tissue Eng 2003;9:1013–1021.

    Article  PubMed  CAS  Google Scholar 

  5. West ER, Shea LD, Woodruff TK. Engineering the follicle microenvironment. Semin Reprod Med. 2007;25(4):287–299.

    Article  PubMed  CAS  Google Scholar 

  6. Xu M, West E, Shea LD, et al. Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biol Reprod 2006;75:916–923.

    Article  PubMed  CAS  Google Scholar 

  7. Xu M, Kreeger PK, Shea LD, et al. Tissue-engineered follicles produce live, fertile offspring. Tissue Eng 2006;12:2739–2746.

    Article  PubMed  CAS  Google Scholar 

  8. Jang JH, Rives CB, Shea LD. Plasmid delivery in vivo from porous tissue-engineering scaffolds: transgene expression and cellular transfection. Mol Ther 2005;12:475–483.

    Article  PubMed  CAS  Google Scholar 

  9. Sheridan MH, Shea LD, Peters MC, et al. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release. 2000;64:91–102.

    Article  PubMed  CAS  Google Scholar 

  10. Salha O, Abusheikha N, Sharma V. Dynamics of human follicular growth and in-vitro oocyte maturation. Hum Reprod Update 1998;4:816–832.

    Article  PubMed  CAS  Google Scholar 

  11. Eppig JJ, O’Brien M, Wigglesworth K. Mammalian oocyte growth and development in vitro. Mol Reprod Dev 1996;44:260–273.

    Article  PubMed  CAS  Google Scholar 

  12. Gosden R, Krapez J, Briggs D. Growth and development of the mammalian oocyte. Bioessays 1997;19:875–882.

    Article  PubMed  CAS  Google Scholar 

  13. Thomas FH, Walters KA, Telfer EE. How to make a good oocyte: an update on in-vitro models to study follicle regulation. Hum Reprod Update 2003;9:541–555.

    Article  PubMed  Google Scholar 

  14. Demeestere I, Centner J, Gervy C, et al. Impact of various endocrine and paracrine factors on in vitro culture of preantral follicles in rodents. Reproduction 2005;130:147–156.

    Article  PubMed  CAS  Google Scholar 

  15. Juneja SC, Barr KJ, Enders GC, et al. Defects in the germ line and gonads of mice lacking connexin43. Biol Reprod 1999;60:1263–1270.

    Article  PubMed  CAS  Google Scholar 

  16. Herlands RL, Schultz RM. Regulation of mouse oocyte growth: probable nutritional role for intercellular communication between follicle cells and oocytes in oocyte growth. J Exp Zool 1984;229:317–325.

    Article  PubMed  CAS  Google Scholar 

  17. Spears N, Boland NI, Murray AA, et al. Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile. Hum Reprod 1994;9:527–532.

    PubMed  CAS  Google Scholar 

  18. Eppig JJ, Schroeder AC. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro. Biol Reprod 1989;41:268–276.

    Article  PubMed  CAS  Google Scholar 

  19. Cortvrindt RG, Hu Y, Liu J, et al. Timed analysis of the nuclear maturation of oocytes in early preantral mouse follicle culture supplemented with recombinant gonadotropin. Fertil Steril 1998;70:1114–1125.

    Article  PubMed  CAS  Google Scholar 

  20. Eppig JJ, O’Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod 1996;54:197–207.

    Article  PubMed  CAS  Google Scholar 

  21. dela Pena EC, Takahashi Y, Katagiri S, et al. Birth of pups after transfer of mouse embryos derived from vitrified preantral follicles. Reproduction 2002;123:593–600.

    Google Scholar 

  22. Liu J, Van der Elst J, Van den Broecke R, et al. Live offspring by in vitro fertilization of oocytes from cryopreserved primordial mouse follicles after sequential in vivo transplantation and in vitro maturation. Biol Reprod 2001;64:171–178.

    Article  PubMed  CAS  Google Scholar 

  23. Donnez J, Dolmans MM, Demylle D, et al. Restoration of ovarian function after orthotopic (intraovarian and periovarian) transplantation of cryopreserved ovarian tissue in a woman treated by bone marrow transplantation for sickle cell anaemia: case report. Hum Reprod 2006;21:183–188.

    Article  PubMed  CAS  Google Scholar 

  24. Meirow D, Levron J, Eldar-Geva T, et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med 2005;353:318–321.

    Article  PubMed  CAS  Google Scholar 

  25. Silber SJ, Lenahan KM, Levine DJ, et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. N Engl J Med 2005;353:58–63.

    Article  PubMed  CAS  Google Scholar 

  26. O’Brien MJ, Pendola JK, Eppig JJ. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod 2003;68:1682–1686.

    Article  PubMed  CAS  Google Scholar 

  27. Lenie S, Cortvrindt R, Adriaenssens T, et al. A reproducible two-step culture system for isolated primary mouse ovarian follicles as single functional units. Biol Reprod 2004;71:1730–1738.

    Article  PubMed  CAS  Google Scholar 

  28. Cortvrindt R, Smitz J, Van Steirteghem AC. In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepuberal mice in a simplified culture system. Hum Reprod 1996;11:2656–2666.

    PubMed  CAS  Google Scholar 

  29. Cortvrindt RG, Smitz JE. Follicle culture in reproductive toxicology: a tool for in-vitro testing of ovarian function? Hum Reprod Update 2002;8:243–254.

    Article  PubMed  CAS  Google Scholar 

  30. Gutierrez CG, Ralph JH, Telfer EE, et al. Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biol Reprod 2000;62:1322–1328.

    Article  PubMed  CAS  Google Scholar 

  31. Tambe SS, Nandedkar TD. Steroidogenesis in sheep ovarian antral follicles in culture: time course study and supplementation with a precursor. Steroids 1993;58:379–383.

    Article  PubMed  CAS  Google Scholar 

  32. Abir R, Franks S, Mobberley MA, et al. Mechanical isolation and in vitro growth of preantral and small antral human follicles. Fertil Steril 1997;68:682–688.

    Article  PubMed  CAS  Google Scholar 

  33. Roy SK, Treacy BJ. Isolation and long-term culture of human preantral follicles. Fertil Steril 1993;59:783–790.

    PubMed  CAS  Google Scholar 

  34. Nayudu PL, Osborn SM. Factors influencing the rate of preantral and antral growth of mouse ovarian follicles in vitro. J Reprod Fertil 1992;95:349–362.

    PubMed  CAS  Google Scholar 

  35. Wycherley G, Downey D, Kane MT, et al. A novel follicle culture system markedly increases follicle volume, cell number and oestradiol secretion. Reproduction 2004;127:669–677.

    Article  PubMed  CAS  Google Scholar 

  36. Fehrenbach A, Nusse N, Nayudu PL. Patterns of growth, oestradiol and progesterone released by in vitro cultured mouse ovarian follicles indicate consecutive selective events during follicle development. J Reprod Fertil 1998;113:287–297.

    Article  PubMed  CAS  Google Scholar 

  37. Boland NI, Gosden RG. Effects of epidermal growth factor on the growth and differentiation of cultured mouse ovarian follicles. J Reprod Fertil 1994;101:369–374.

    PubMed  CAS  Google Scholar 

  38. Hartshorne GM, Sargent IL, Barlow DH. Meiotic progression of mouse oocytes throughout follicle growth and ovulation in vitro. Hum Reprod 1994;9:352–359.

    PubMed  CAS  Google Scholar 

  39. Rowghani NM, Heise MK, McKeel D, et al. Maintenance of morphology and growth of ovarian follicles in suspension culture. Tissue Eng 2004;10:545–552.

    Article  PubMed  Google Scholar 

  40. Kong HJ, Smith MK, Mooney DJ. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 2003;24:4023–4029.

    Article  PubMed  CAS  Google Scholar 

  41. West E, Woodruff TK, Shea LD. Oxidized and irradiated alginate for the culture of ovarian follicles. [submitted].

    Google Scholar 

  42. Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and their experimental determination. Biomaterials 1996;17:1647–1657.

    Article  PubMed  CAS  Google Scholar 

  43. Heise M, Koepsel R, Russell AJ, et al. Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology. Reprod Biol Endocrinol 2005;3:47.

    Article  PubMed  CAS  Google Scholar 

  44. Marler JJ, Guha A, Rowley J, et al. Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts. Plast Reconstr Surg 2000;105:2049–2058.

    Article  PubMed  CAS  Google Scholar 

  45. Davis KA, Anseth KS. Controlled release from crosslinked degradable networks. Crit Rev Ther Drug Carrier Syst 2002;19:385–423.

    Article  PubMed  CAS  Google Scholar 

  46. Burdick JA, Mason MN, Hinman AD, et al. Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. J Control Release 2002;83:53–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xu, M., Woodruff, T.K., Shea, L.D. (2007). Bioengineering and the Ovarian Follicle. In: Woodruff, T.K., Snyder, K.A. (eds) Oncofertility Fertility Preservation for Cancer Survivors. Cancer Treatment and Research, vol 138. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72293-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72293-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-72292-4

  • Online ISBN: 978-0-387-72293-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics