Translocation of Oncogenic T-DNA and Effector Proteins to Plant Cells

  • Krishnamohan Atmakuri
  • Peter J. Christie

Agrobacterium tumefaciens has evolved as a phytopathogen by adapting a DNA conjugation system for the novel purpose of delivering oncogenic T-DNA and protein substrates to susceptible plant cells. This transfer system is a member of a large family of translocation systems termed the type IV secretion (T4S) systems. The T4S systems are structurally complex machines assembled from a dozen or more membrane proteins often in response to environmental signals. In A. tumefaciens and other Gram-negative bacteria, the T4S machines assemble as a cell-envelope spanning secretion channel and an extracellular pilus. Recent studies of the A. tumefaciens VirB/D4 T4S system and closely related systems have advanced our understanding of T4S secretion in several fundamental areas, including: (i) T-DNA processing reactions and requirements for T-DNA and protein substrate recruitment, (ii) stages leading to assembly and polar positioning of the transfer apparatus, (iii) VirB subunit membrane topologies and structures and transfer channel architecture, (iv) energetic contributions to machine assembly and function, and (v) the T-DNA translocation route through the VirB/D4 transfer channel. These studies are generating a picture of the VirB/D4 T4S system as multifunctional and structurally dynamic. The wealth of information generated by many laboratories in recent years has established the A. tumefaciens VirB/D4 T4S system as an important paradigm for unraveling the mechanistic details of DNA and protein trafficking between diverse cell types.


Agrobacterium Tumefaciens Secretion System Effector Protein Substrate Transfer Machine Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11 References

  1. Anderson LB, Hertzel AV, Das A (1996) Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proc Natl Acad Sci USA 93: 8889-8894PubMedCrossRefGoogle Scholar
  2. Atmakuri K, Cascales E, Burton OT, Banta LM and Christie PJ (2007) Agrobacte-rium ParA-like VirC1 spatially coordinates early conjugative DNA transfer reactions. EMBO J 26:2540-2551PubMedCrossRefGoogle Scholar
  3. Atmakuri K, Cascales E, Christie PJ (2004) Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54: 1199-1211PubMedCrossRefGoogle Scholar
  4. Atmakuri K, Ding Z, Christie PJ (2003) VirE2, a type IV secretion substrate, in-teracts with the VirD4 transfer protein at cell poles of Agrobacterium tumefa-ciens. Mol Microbiol 49: 1699-1713PubMedCrossRefGoogle Scholar
  5. Bailey S, Ward D, Middleton R, Grossmann JG, Zambryski PC (2006) Agrobacte-rium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc Natl Acad Sci USA 103: 2582-2587PubMedCrossRefGoogle Scholar
  6. Bakholdina SI, Sanina NM, Krasikova IN, Popova OB, Solov’eva TF (2004) The impact of abiotic factors (temperature and glucose) on physicochemical prop-erties of lipids from Yersinia pseudotuberculosis. Biochimie 86: 875-881PubMedCrossRefGoogle Scholar
  7. Baron C (2005) From bioremediation to biowarfare: on the impact and mechanism of type IV secretion systems. FEMS Microbiol Lett 253: 163-170PubMedCrossRefGoogle Scholar
  8. Baron C, Llosa M, Zhou S, Zambryski PC (1997) VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1*. J Bacteriol 179: 1203-1210Google Scholar
  9. Bates S, Cashmore AM, Wilkins BM (1998) IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae: involvement of the tra2 mating system. J Bacteriol 180: 6538-6543PubMedGoogle Scholar
  10. Bayliss R, Harris R, Coutte L, Monier A, Fronzes R, Christie PJ, Driscoll P, Waksman G (2007) NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. Proc Natl Acad Sci USA 104: 1673-1678PubMedCrossRefGoogle Scholar
  11. Beaupre CE, Bohne J, Dale EM, Binns AN (1997) Interactions between VirB9 and VirB10 membrane proteins involved in movement of DNA from Agro-bacterium tumefaciens into plant cells. J Bacteriol 179: 78-89PubMedGoogle Scholar
  12. Beijersbergen A, Dulk Ras AD, RAS, Hooykaas PJ (1992) Comjugative transfer by the virulence system of Agrobacterium tumefaciens. Science 256: 1324-1327PubMedCrossRefGoogle Scholar
  13. Beijersbergen A, Smith SJ, Hooykaas PJJ (1994) Localization and topology of VirB proteins of Agrobacterium tumefaciens. Plasmid 32: 212-218PubMedCrossRefGoogle Scholar
  14. Berger BR, Christie PJ (1993) The Agrobacterium tumefaciens virB4 gene product is an essential virulence protein requiring an intact nucleoside triphosphate-binding domain. J Bacteriol 175: 1723-1734PubMedGoogle Scholar
  15. Berger BR, Christie PJ (1994) Genetic complementation analysis of the Agrobac-terium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol 176: 3646-3660PubMedGoogle Scholar
  16. Binns AN, Beaupre CE, Dale EM (1995) Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010. J Bacteriol 177: 4890-4899PubMedGoogle Scholar
  17. Bohne J, Yim A, Binns AN (1998) The Ti plasmid increases the efficiency of Agrobacterium tumefaciens as a recipient in virB-mediated conjugal transfer of an IncQ plasmid. Proc Natl Acad Sci USA 95: 7057-7062PubMedCrossRefGoogle Scholar
  18. Bolton GW, Nester EW, Gordon MP (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Sci-ence 232: 983-985Google Scholar
  19. Brencic A, Angert ER, Winans SC (2005) Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumour free. Mol Microbiol 57: 1522-1531PubMedCrossRefGoogle Scholar
  20. Buchanan-Wollaston V, Passiatore JE, Cannon F (1987) The mob and oriT mobi-lization functions of a bacterial plasmid promote its transfer to plants. Nature 328: 172-175CrossRefGoogle Scholar
  21. Cangelosi GA, Hung L, Puvanesarajah V, Stacey G, Ozga DA, Leigh JA, Nester EW (1987) Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. J Bacteriol 169: 2086-2091PubMedGoogle Scholar
  22. Cao TB, Saier MH, Jr. (2001) Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions. Microbiology 147: 3201-3214PubMedGoogle Scholar
  23. Carle A, Hoppner C, Ahmed Aly K, Yuan Q, den Dulk-Ras A, Vergunst A, O’Callaghan D, Baron C (2006) The Brucella suis type IV secretion system assembles in the cell envelope of the heterologous host Agrobacterium tumefaciens and increases IncQ plasmid pLS1 recipient competence. Infect Immun 74: 108-117PubMedCrossRefGoogle Scholar
  24. Cascales E, Atmakuri K, Liu Z, Binns AN, Christie PJ (2005) Agrobacterium tu-mefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol Microbiol 58: 565-579PubMedCrossRefGoogle Scholar
  25. Cascales E, Christie PJ (2003) The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1: 137-149PubMedCrossRefGoogle Scholar
  26. Cascales E, Christie PJ (2004a) Agrobacterium VirB10, an ATP energy sensor re-quired for type IV secretion. Proc Natl Acad Sci USA 101: 17228-17233PubMedCrossRefGoogle Scholar
  27. Cascales E, Christie PJ (2004b) Definition of a bacterial type IV secretion path-way for a DNA substrate. Science 304: 1170-1173PubMedCrossRefGoogle Scholar
  28. Chen CY, Kado CI (1994) Inhibition of Agrobacterium tumefaciens oncogenicity by the osa gene of pSa. J Bacteriol 176: 5697-5703PubMedGoogle Scholar
  29. Chen CY, Kado CI (1996) Osa protein encoded by plasmid pSa is located at the inner membrane but does not inhibit membrane association of VirB and VirD virulence proteins in Agrobacterium tumefaciens. FEMS Microbiol Lett 135: 85-92PubMedCrossRefGoogle Scholar
  30. Cho H, Winans SC (2005) VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical sig-nals. Proc Natl Acad Sci USA 102: 14843-14848PubMedCrossRefGoogle Scholar
  31. Christie PJ (2004) Bacterial type IV secretion: the Agrobacterium VirB/D4 and re-lated conjugation systems. Biochim Biophys Acta 1694: 219-234PubMedCrossRefGoogle Scholar
  32. Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59: 451-485PubMedCrossRefGoogle Scholar
  33. Christie PJ, Cascales E (2005) Structural and dynamic properties of bacterial type IV secretion systems (review). Mol Membr Biol 22: 51-61PubMedCrossRefGoogle Scholar
  34. Christie PJ, Vogel JP (2000) Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8: 354-360PubMedCrossRefGoogle Scholar
  35. Christie PJ, Ward JE Jr, Gordon MP, Nester EW (1989) A gene required for trans-fer of T-DNA to plants encodes an ATPase with autophosphorylating activity. Proc Natl Acad Sci USA 86: 9677-9681PubMedCrossRefGoogle Scholar
  36. Christie PJ, Ward JE, Winans SC, Nester EW (1988) The Agrobacterium tumefa-ciens virE2 gene product is a single-stranded-DNA-binding protein that asso-ciates with T-DNA. J Bacteriol 170: 2659-2667PubMedGoogle Scholar
  37. Citovsky V, Zambryski PC (1993) Transport of nucleic acids through membrane channels: snaking through small holes. Annu Rev Microbiol 47: 167-197PubMedCrossRefGoogle Scholar
  38. Dang TA, Christie PJ (1997) The VirB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface. J Bacte-riol 179: 453-462Google Scholar
  39. Dang TA, Zhou XR, Graf B, Christie PJ (1999) Dimerization of the Agrobacte-rium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette muta-tions on the assembly and function of the T-DNA transporter. Mol Microbiol 32: 1239-1253PubMedCrossRefGoogle Scholar
  40. Das A, Anderson LB, Xie YH (1997) Delineation of the interaction domains of Agrobacterium tumefaciens VirB7 and VirB9 by use of the yeast two-hybrid assay. J Bacteriol 179: 3404-3409PubMedGoogle Scholar
  41. Das A, Xie YH (2000) The Agrobacterium T-DNA transport pore proteins VirB8, VirB9, and VirB10 interact with one another. J Bacteriol 182: 758-763PubMedCrossRefGoogle Scholar
  42. De Vos G, Zambryski PC (1989) Expression of Agrobacterium nopaline specific VirD1, VirD2, and VirC1 proteins and their requirement for T-strand produc-tion in E. coli. Mol Plant-Microbe Interact 2: 43-52PubMedGoogle Scholar
  43. Deng W, Chen L, Peng WT, Liang X, Sekiguchi S, Gordon MP, Comai L, Nester EW (1999) VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol 31: 1795-1807PubMedCrossRefGoogle Scholar
  44. Ding Z, Zhao Z, Jakubowski SJ, Krishnamohan A, Margolin W, Christie PJ (2002) A novel cytology-based, two-hybrid screen for bacteria applied to pro-tein-protein interaction studies of a type IV secretion system. J Bacteriol 184: 5572-5582PubMedCrossRefGoogle Scholar
  45. Draper O, Middleton R, Doucleff M, Zambryski PC (2006) Topology of the VirB4 C-terminus in the Agrobacterium tumefaciens VirB/D4 type IV secre-tion system. J Biol Chem 281: 37628-37635PubMedCrossRefGoogle Scholar
  46. Duckely M, Hohn B (2003) The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett 223: 1-6PubMedCrossRefGoogle Scholar
  47. Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV, Pugsley AP (2006) Secretion by numbers: Protein traffic in prokaryotes. Mol Microbiol 62: 308-319PubMedCrossRefGoogle Scholar
  48. Eisenbrandt R, Kalkum M, Lai EM, Lurz R, Kado CI, Lanka E (1999) Conjuga-tive pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 274: 22548-22555PubMedCrossRefGoogle Scholar
  49. Eisenbrandt R, Kalkum M, Lurz R, Lanka E (2000) Maturation of IncP pilin pre-cursors resembles the catalytic Dyad-like mechanism of leader peptidases. J Bacteriol 182: 6751-6761PubMedCrossRefGoogle Scholar
  50. Engstrom P, Zambryski P, Van Montagu M, Stachel S (1987) Characterization of Agrobacterium tumefaciens virulence proteins induced by the plant factor ace-torsyingone. J Mol Microbiol 4: 635-645Google Scholar
  51. Fernandez D, Dang TAT, Spudich GM, Zhou X-R, Berger BR, Christie PJ (1996a) The Agrobacterium tumefaciens VirB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. J Bacteriol 178: 3156-3167PubMedGoogle Scholar
  52. Fernandez D, Spudich GM, Zhou X-R, Christie PJ (1996b) The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol 178: 3168-3176PubMedGoogle Scholar
  53. Frenkiel-Krispin D, Grayer Wolf S, Albeck S, Unger T, Peleg Y, Jacobovitch J, Michael Y, Daube S, Sharon M, Robinson CV, Svergun DI, Fass D, Tzfira T, Elbaum M (2006) Plant transformation by Agrobacterium tumefaciens: Modu-lation of ssDNA-VirE2 complex assembly by VirE1. J Biol Chem (in press)Google Scholar
  54. Galan JE (2001) Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17: 53-86PubMedCrossRefGoogle Scholar
  55. Ghigo JM (2001) Natural conjugative plasmids induce bacterial biofilm develop-ment. Nature 412: 442-445PubMedCrossRefGoogle Scholar
  56. Gomis-Ruth FX, Moncalian G, Perez-Luque R, Gonzalez A, Cabezon E, de la Cruz F, Coll M (2001) The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409: 637-641PubMedCrossRefGoogle Scholar
  57. Gomis-Ruth FX, Sola M, de la Cruz F, Coll M (2004) Coupling factors in macro-molecular type-IV secretion machineries. Curr Pharm Des 10: 1551-1565PubMedCrossRefGoogle Scholar
  58. Hamilton CM, Lee H, Li PL, Cook DM, Piper KR, von Bodman SB, Lanka E, Ream W, Farrand SK (2000) TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 182: 1541-1548PubMedCrossRefGoogle Scholar
  59. Hapfelmeier S, Domke N, Zambryski PC, Baron C (2000) VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. J Bacteriol 182: 4505-4511PubMedCrossRefGoogle Scholar
  60. Haque MA, Russell NJ (2004) Strains of Bacillus cereus vary in the phenotypic adaptation of their membrane lipid composition in response to low water ac-tivity, reduced temperature and growth in rice starch. Microbiology 150: 1397-1404PubMedCrossRefGoogle Scholar
  61. Hare S, Bayliss R, Baron C, Waksman G (2006) A large domain swap in the VirB11 ATPase of Brucella suis leaves the hexameric assembly intact. J Mol Biol 360: 56-66PubMedCrossRefGoogle Scholar
  62. Hodges LD, Cuperus J, Ream W (2004) Agrobacterium rhizogenes GALLS pro-tein substitutes for Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 186: 3065-3077PubMedCrossRefGoogle Scholar
  63. Hodges LD, Vergunst AC, Neal-McKinney J, den Dulk-Ras A, Moyer DM, Hooykaas PJ, Ream W (2006) Agrobacterium rhizogenes GALLS protein contains domains for ATP binding, nuclear localization, and type IV secretion. J Bacteriol 188: 8222-8230PubMedCrossRefGoogle Scholar
  64. Hoppner C, Liu Z, Domke N, Binns AN, Baron C (2004) VirB1 orthologs from Brucella suis and pKM101 complement defects of the lytic transglycosylase required for efficient type IV secretion from Agrobacterium tumefaciens. J Bacteriol 186: 1415-1422PubMedCrossRefGoogle Scholar
  65. Hormaeche I, Alkorta I, Moro F, Valpuesta JM, Goni FM, De La Cruz F (2002) Purification and properties of TrwB, a hexameric, ATP-binding integral membrane protein essential for R388 plasmid conjugation. J Biol Chem 277: 46456-46462PubMedCrossRefGoogle Scholar
  66. Hubber A, Vergunst AC, Sullivan JT, Hooykaas PJ, Ronson CW (2004) Symbi-otic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54: 561-574PubMedCrossRefGoogle Scholar
  67. Hwang HH, Gelvin SB (2004) Plant proteins that interact with VirB2, the Agro-bacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16: 3148-3167PubMedCrossRefGoogle Scholar
  68. Jakubowski SJ, Cascales E, Krishnamoorthy V, Christie PJ (2005) Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacte-riol 187: 3486-3495CrossRefGoogle Scholar
  69. Jakubowski SJ, Krishnamoorthy V, Cascales E, Christie PJ (2004) Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion System. J Mol Biol 341: 961-977PubMedCrossRefGoogle Scholar
  70. Jakubowski SJ, Krishnamoorthy V, Christie PJ (2003) Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes re-quired for type IV secretion. J Bacteriol 185: 2867-2878PubMedCrossRefGoogle Scholar
  71. Jones AL, Lai EM, Shirasu K, Kado CI (1996) VirB2 is a processed pilin-like pro-tein encoded by the Agrobacterium tumefaciens Ti plasmid. J Bacteriol 178: 5706-5711PubMedGoogle Scholar
  72. Jones AL, Shirasu K, Kado CI (1994) The product of the virB4 gene of Agrobac-terium tumefaciens promotes accumulation of VirB3 protein. J Bacteriol 176: 5255-5261PubMedGoogle Scholar
  73. Judd PK, Kumar RB, Das A (2005a) Spatial location and requirements for the as-sembly of the Agrobacterium tumefaciens type IV secretion apparatus. Proc Natl Acad Sci USA 102: 11498-11503PubMedCrossRefGoogle Scholar
  74. Judd PK, Kumar RB, Das A (2005b) The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol Microbiol 55: 115-124PubMedCrossRefGoogle Scholar
  75. Judd PK, Mahli D, Das A (2005c) Molecular characterization of the Agrobacte-rium tumefaciens DNA transfer protein VirB6. Microbiology 151: 3483-3492PubMedCrossRefGoogle Scholar
  76. Kahng LS, Shapiro L (2003) Polar localization of replicon origins in the multipar-tite genomes of Agrobacterium tumefaciens and Sinorhizobium meliloti. J Bacteriol 185: 3384-3391PubMedCrossRefGoogle Scholar
  77. Koraimann G (2003) Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cell Mol Life Sci 60: 2371-2388PubMedCrossRefGoogle Scholar
  78. Krause S, Barcena M, Pansegrau W, Lurz R, Carazo JM, Lanka E (2000a) Se-quence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc Natl Acad Sci USA 97: 3067-3072PubMedCrossRefGoogle Scholar
  79. Krause S, Pansegrau W, Lurz R, de la Cruz F, Lanka E (2000b) Enzymology of type IV macromolecule secretion systems: the conjugative transfer regions of plasmids RP4 and R388 and the cag pathogenicity island of Helicobacter py-lori encode structurally and functionally related nucleoside triphosphate hy-drolases. J Bacteriol 182: 2761-2770PubMedCrossRefGoogle Scholar
  80. Kuldau GA, De Vos G, Owen J, McCaffrey G, Zambryski P (1990) The virB op-eron of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Mol Gen Genet 221: 256-266PubMedCrossRefGoogle Scholar
  81. Kumar RB, Das A (2001) Functional analysis of the Agrobacterium tumefaciens T-DNA transport pore protein VirB8. J Bacteriol 183: 3636-3641PubMedCrossRefGoogle Scholar
  82. Kumar RB, Das A (2002) Polar location and functional domains of the Agrobacte-rium tumefaciens DNA transfer protein VirD4. Mol Microbiol 43: 1523-1532PubMedCrossRefGoogle Scholar
  83. Kumar RB, Xie YH, Das A (2000) Subcellular localization of the Agrobacterium tumefaciens T-DNA transport pore proteins: VirB8 is essential for the assem-bly of the transport pore. Mol Microbiol 36: 608-617PubMedCrossRefGoogle Scholar
  84. Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98: 1871-1876PubMedCrossRefGoogle Scholar
  85. Lai EM, Chesnokova O, Banta LM, Kado CI (2000) Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagella-tion of Agrobacterium tumefaciens. J Bacteriol 182: 3705-3716PubMedCrossRefGoogle Scholar
  86. Lai EM, Kado CI (1998) Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180: 2711-2717PubMedGoogle Scholar
  87. Lawley TD, Klimke WA, Gubbins MJ, Frost LS (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224: 1-15PubMedCrossRefGoogle Scholar
  88. Lee L-Y, Gelvin SB, Kado CI (1999) pSa causes oncogenic suppression of Agro-bacterium by inhibiting VirE2 protein export. J Bacteriol 181: 186-196PubMedGoogle Scholar
  89. Lessl M, Balzer D, Pansegrau W, Lanka E (1992a) Sequence similarities between the RP4 Tra2 and the Ti VirB region strongly support the conjugation model for T-DNA transfer. J Biol Chem 267: 20471-20480PubMedGoogle Scholar
  90. Lessl M, Pansegrau W, Lanka E (1992b) Relationship of DNA-transfer-systems: essential transfer factors of plasmids RP4, Ti and F share common sequences. Nucleic Acids Res 20: 6099-6100PubMedCrossRefGoogle Scholar
  91. Letoffe S, Delepelaire P, Wandersman C (1996) Protein secretion in gram-negative bacteria: assembly of the three components of ABC protein-mediated exporters is ordered and promoted by substrate binding. EMBO J 15: 5804-5811PubMedGoogle Scholar
  92. Liu Z, Binns AN (2003) Functional subsets of the virB type IV transport complex proteins involved in the capacity of Agrobacterium tumefaciens to serve as a recipient in virB-mediated conjugal transfer of plasmid RSF1010. J Bacteriol 185: 3259-3269PubMedCrossRefGoogle Scholar
  93. Llosa M, Zunzunegui S, de la Cruz F (2003) Conjugative coupling proteins inter-act with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci USA 100: 10465-10470PubMedCrossRefGoogle Scholar
  94. Llosa M, Zupan J, Baron C, Zambryski PC (2000) The N- and C-terminal portions of the Agrobacterium VirB1 protein independently enhance tumorigenesis. J Bacteriol 182: 3437-3445PubMedCrossRefGoogle Scholar
  95. Massey TH, Mercogliano CP, Yates J, Sherratt DJ, Lowe J (2006) Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol Cell 23: 457-469PubMedCrossRefGoogle Scholar
  96. Matthysse AG (1987) Characterization of nonattaching mutants of Agrobacterium tumefaciens. J Bacteriol 169: 313-323PubMedGoogle Scholar
  97. McCullen CA, Binns AN (2006) Agrobacterium tumefaciens plant cell interac-tions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22: 101-127PubMedCrossRefGoogle Scholar
  98. Melchers LS, Regensburg-Tuink AJ, Schilperoort RA, Hooykaas PJ (1989) Speci-ficity of signal molecules in the activation of Agrobacterium virulence gene expression. Mol Microbiol 3: 969-977PubMedCrossRefGoogle Scholar
  99. Middleton R, Sjolander K, Krishnamurthy N, Foley J, Zambryski P (2005) Pre-dicted hexameric structure of the Agrobacterium VirB4 C terminus suggests VirB4 acts as a docking site during type IV secretion. Proc Natl Acad Sci USA 102: 1685-1690PubMedCrossRefGoogle Scholar
  100. Moncalian G, Cabezon E, Alkorta I, Valle M, Moro F, Valpuesta JM, Goni FM, de La Cruz F (1999) Characterization of ATP and DNA binding activities of TrwB, the coupling protein essential in plasmid R388 conjugation. J Biol Chem 274: 36117-36124PubMedCrossRefGoogle Scholar
  101. Pansegrau W, Schoumacher F, Hohn B, Lanka E (1993) Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation. Proc Natl Acad Sci USA 90: 11538-11542PubMedCrossRefGoogle Scholar
  102. Pantoja M, Chen L, Chen Y, Nester EW (2002) Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasm. Mol Microbiol 45: 1325-1335PubMedCrossRefGoogle Scholar
  103. Paschos A, Patey G, Sivanesan D, Gao C, Bayliss R, Waksman G, O’Callaghan D, Baron C (2006) Dimerization and interactions of Brucella suis VirB8 with VirB4 and VirB10 are required for its biological activity. Proc Natl Acad Sci USA 103: 7252-7257PubMedCrossRefGoogle Scholar
  104. Planet PJ, Kachlany SC, DeSalle R, Figurski DH (2001) Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and de-velopment of a diagnostic key for gene classification. Proc Natl Acad Sci USA 98: 2503-2508PubMedCrossRefGoogle Scholar
  105. Rabel C, Grahn AM, Lurz R, Lanka E (2003) The VirB4 family of proposed traf-fic nucleoside triphosphatases: common motifs in plasmid RP4 TrbE are es-sential for conjugation and phage adsorption. J Bacteriol 185: 1045-1058PubMedCrossRefGoogle Scholar
  106. Rashkova S, Spudich GM, Christie PJ (1997) Characterization of membrane and protein interaction determinants of the Agrobacterium tumefaciens VirB11 ATPase. J Bacteriol 179: 583-591PubMedGoogle Scholar
  107. Rashkova S, Zhou XR, Chen J, Christie PJ (2000) Self-assembly of the Agrobac-terium tumefaciens VirB11 traffic ATPase. J Bacteriol 182: 4137-4145PubMedCrossRefGoogle Scholar
  108. Reisner A, Krogfelt KA, Klein BM, Zechner EL, Molin S (2006) In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. J Bacteriol 188: 3572-3581PubMedCrossRefGoogle Scholar
  109. Sagulenko E, Sagulenko V, Chen J, Christie PJ (2001a) Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol 183: 5813-5825PubMedCrossRefGoogle Scholar
  110. Sagulenko V, Sagulenko E, Jakubowski S, Spudich E, Christie PJ (2001b) VirB7 lipoprotein is exocellular and associates with the Agrobacterium tumefaciens T pilus. J Bacteriol 183: 3642-3651PubMedCrossRefGoogle Scholar
  111. Saleh OA, Perals C, Barre FX, Allemand JF (2004) Fast, DNA-sequence inde-pendent translocation by FtsK in a single-molecule experiment. EMBO J 23: 2430-2439PubMedCrossRefGoogle Scholar
  112. Samuels AL, Lanka E, Davies JE (2000) Conjugative junctions in RP4-mediated mating of Escherichia coli. J Bacteriol 182: 2709-2715PubMedCrossRefGoogle Scholar
  113. Savvides SN, Yeo HJ, Beck MR, Blaesing F, Lurz R, Lanka E, Buhrdorf R, Fischer W, Haas R, Waksman G (2003) VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J 22: 1969-1980PubMedCrossRefGoogle Scholar
  114. Scheiffele P, Pansegrau W, Lanka E (1995) Initiation of Agrobacterium tumefa-ciens T-DNA processing. Purified proteins VirD1 and VirD2 catalyze site-and strand-specific cleavage of superhelical T-border DNA in vitro. J Biol Chem 270: 1269-1276PubMedCrossRefGoogle Scholar
  115. Schmid MC, Schulein R, Dehio M, Denecker G, Carena I, Dehio C (2004) The VirB type IV secretion system of Bartonella henselae mediates invasion, pro-inflammatory activation and antiapoptotic protection of endothelial cells. Mol Microbiol 52: 81-92PubMedCrossRefGoogle Scholar
  116. Schmidt-Eisenlohr H, Domke N, Angerer C, Wanner G, Zambryski PC, Baron C (1999) Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J Bacteriol 181: 7485-7492PubMedGoogle Scholar
  117. Schroder G, Krause S, Zechner EL, Traxler B, Yeo HJ, Lurz R, Waksman G, Lanka E (2002) TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for ex-ported substrates? J Bacteriol 184: 2767-2779PubMedCrossRefGoogle Scholar
  118. Schroder G, Lanka E (2003) TraG-like proteins of type IV secretion systems: functional dissection of the multiple activities of TraG (RP4) and TrwB (R388). J Bacteriol 185: 4371-4381PubMedCrossRefGoogle Scholar
  119. Schroder G, Lanka E (2005) The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid 54: 1-25PubMedCrossRefGoogle Scholar
  120. Selbach M, Moese S, Meyer TF, Backert S (2002) Functional analysis of the Helicobacter pylori cag pathogenicity island reveals both VirD4-CagA-dependent and VirD4-CagA-independent mechanisms. Infect Immun 70: 665-671PubMedCrossRefGoogle Scholar
  121. Shirasu K, Kado CI (1993) The virB operon of the Agrobacterium tumefaciens virulence regulon has sequence similarities to B, C and D open reading frames downstream of the pertussis toxin-operon and to the DNA transfer-operons of broad-host-range conjugative plasmids. Nucl Acids Res 21: 353-354PubMedCrossRefGoogle Scholar
  122. Shirasu K, Morel P, Kado CI (1990) Characterization of the virB operon of an Agrobacterium tumefaciens Ti plasmid: nucleotide sequence and protein analysis. Mol Microbiol 4: 1153-1163PubMedCrossRefGoogle Scholar
  123. Simone M, McCullen CA, Stahl LE, Binns AN (2001) The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol 41: 1283-1293PubMedCrossRefGoogle Scholar
  124. Spudich GM, Fernandez D, Zhou XR, Christie PJ (1996) Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc Natl Acad Sci USA 93: 7512-7517PubMedCrossRefGoogle Scholar
  125. Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5: 1445-1454PubMedGoogle Scholar
  126. Stachel SE, Zambryski PC (1986) Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjuga-tion. Cell 47: 155-157PubMedCrossRefGoogle Scholar
  127. Stahl LE, Jacobs A, Binns AN (1998) The conjugal intermediate of plasmid RSF1010 inhibits Agrobacterium tumefaciens virulence and VirB-dependent export of VirE2. J Bacteriol 180: 3933-3939PubMedGoogle Scholar
  128. Su S, Stephens BB, Alexandre G, Farrand SK (2006) Lon protease of the alpha-proteobacterium Agrobacterium tumefaciens is required for normal growth, cellular morphology and full virulence. Microbiology 152: 1197-1207PubMedCrossRefGoogle Scholar
  129. Sundberg CD, Ream W (1999) The Agrobacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction. J Bacteriol 181: 6850-6855PubMedGoogle Scholar
  130. Tato I, Zunzunegui S, de la Cruz F, Cabezon E (2005) TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc Natl Acad Sci USA 102: 8156-8161PubMedCrossRefGoogle Scholar
  131. Terradot L, Bayliss R, Oomen C, Leonard GA, Baron C, Waksman G (2005) Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc Natl Acad Sci USA 102: 4596-4601PubMedCrossRefGoogle Scholar
  132. Thanassi DG (2002) Ushers and secretins: channels for the secretion of folded proteins across the bacterial outer membrane. J Mol Microbiol Biotechnol 4: 11-20PubMedGoogle Scholar
  133. Thompson DV, Melchers LS, Idler KB, Schilperoort RA, Hooykaas PJ (1988) Analysis of the complete nucleotide sequence of the Agrobacterium tumefa-ciens virB operon. Nucleic Acids Res 16: 4621-4636PubMedCrossRefGoogle Scholar
  134. Toro N, Datta A, Carmi OA, Young C, Prusti RK, Nester EW (1989) The Agro-bacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA trans-fer enhancer. J Bacteriol 171: 6845-6849PubMedGoogle Scholar
  135. Toro N, Datta A, Yanofsky M, Nester EW (1988) Role of the overdrive sequence in T-DNA border cleavage in Agrobacterium. Proc Natl Acad Sci USA 85: 8558-8562PubMedCrossRefGoogle Scholar
  136. Veluthambi K, Ream W, Gelvin SB (1988) Virulence genes, borders, and over-drive generate single-stranded T-DNA molecules from the A6 Ti plasmid of Agrobacterium tumefaciens. J Bacteriol 170: 1523-1532PubMedGoogle Scholar
  137. Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CMT, Regensburg-Tuink TJ, Hooykaas PJJ (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290: 979-982PubMedCrossRefGoogle Scholar
  138. Vergunst AC, van Lier MCM, den Dulk-Ras A, Hooykaas PJJ (2003) Recognition of the Agrobacterium VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant Physiol 133: 978-988PubMedCrossRefGoogle Scholar
  139. Vergunst AC, van Lier MCM, den Dulk-Ras A, Stuve TAG, Ouwehand A, Hooykaas PJJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 102: 832-837PubMedCrossRefGoogle Scholar
  140. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, Athman R, Memet S, Huerre MR, Coyle AJ, DiStefano PS, Sansonetti PJ, Labigne A, Bertin J, Philpott DJ, Ferrero RL (2004) Nod1 responds to peptidoglycan de-livered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5: 1166-1174PubMedCrossRefGoogle Scholar
  141. Vogel JP, Andrews HL, Wong SK, Isberg RR (1998) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279: 873-876PubMedCrossRefGoogle Scholar
  142. Ward DV, Draper O, Zupan JR, Zambryski PC (2002) Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci USA 99: 11493-11500PubMedCrossRefGoogle Scholar
  143. Ward JE, Akiyoshi DE, Regier D, Datta A, Gordon MP, Nester EW (1988) Char-acterization of the virB operon from an Agrobacterium tumefaciens Ti plas-mid. J Biol Chem 263: 5804-5814PubMedGoogle Scholar
  144. Ward JE, Akiyoshi DE, Regier D, Datta A, Gordon MP, Nester EW (1990) Cor-rection: characterization of the virB operon from Agrobacterium tumefaciens Ti plasmid. J Biol Chem 265: 4786Google Scholar
  145. Ward JE, Jr., Dale EM, Binns AN (1991) Activity of the Agrobacterium T-DNA transfer machinery is affected by virB gene products. Proc Natl Acad Sci USA 88: 9350-9354PubMedCrossRefGoogle Scholar
  146. Waters VL (2001) Conjugation between bacterial and mammalian cells. Nat Genet 29: 375-376PubMedCrossRefGoogle Scholar
  147. Waters VL, Guiney DG (1993) Processes at the nick region link conjugation, T-DNA transfer and rolling circle replication. Mol Microbiol 9: 1123-1130PubMedCrossRefGoogle Scholar
  148. Weiss AA, Johnson FD, Burns DL (1993) Molecular characterization of an operon required for pertussis toxin secretion. Proc Natl Acad Sci USA 90: 2970-2974PubMedCrossRefGoogle Scholar
  149. Wessel M, Klusener S, Godeke J, Fritz C, Hacker S, Narberhaus F (2006) Viru-lence of Agrobacterium tumefaciens requires phosphatidylcholine in the bac-terial membrane. Mol Microbiol 62: 906-915PubMedCrossRefGoogle Scholar
  150. Yeo HJ, Savvides SN, Herr AB, Lanka E, Waksman G (2000) Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion sys-tem. Mol Cell 6: 1461-1472PubMedCrossRefGoogle Scholar
  151. Yeo HJ, Yuan Q, Beck MR, Baron C, Waksman G (2003) Structural and func-tional characterization of the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101. Proc Natl Acad Sci USA 100: 15947-15952PubMedCrossRefGoogle Scholar
  152. Yuan Q, Carle A, Gao C, Sivanesan D, Aly KA, Hoppner C, Krall L, Domke N, Baron C (2005) Identification of the VirB4-VirB8-VirB5-VirB2 pilus assem-bly sequence of type IV secretion systems. J Biol Chem 280: 26349-26359PubMedCrossRefGoogle Scholar
  153. Zahrl D, Wagner M, Bischof K, Koraimann G (2006) Expression and assembly of a functional type IV secretion system elicit extracytoplasmic and cytoplasmic stress responses in Escherichia coli. J Bacteriol 188: 6611-6621PubMedCrossRefGoogle Scholar
  154. Zhao Z, Sagulenko E, Ding Z, Christie PJ (2001) Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium Type IV secretion pathway. J Bacteriol 183: 3855-3865PubMedCrossRefGoogle Scholar
  155. Zhou XR, Christie PJ (1997) Suppression of mutant phenotypes of the Agrobacte-rium tumefaciens VirB11 ATPase by overproduction of VirB proteins. J Bac-teriol 179: 5835-5842Google Scholar
  156. Zhu J, Oger PM, Schrammeijer B, Hooykaas PJJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182: 3885-3895PubMedCrossRefGoogle Scholar
  157. Zhu Y, Nam J, Humara JM, Mysore KS, Lee LY, Cao H, Valentine L, Li J, Kaiser AD, Kopecky AL, Hwang HH, Bhattacharjee S, Rao PK, Tzfira T, Rajagopal J, Yi H, Veena, Yadav BS, Crane YM, Lin K, Larcher Y, Gelvin MJ, Knue M, Ramos C, Zhao X, Davis SJ, Kim SI, Ranjith-Kumar CT, Choi YJ, Hallan VK, Chattopadhyay S, Sui X, Ziemienowicz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132: 494-505PubMedCrossRefGoogle Scholar
  158. Zorreguieta A, Geremia RA, Cavaignac S, Cangelosi GA, Nester EW, Ugalde RA (1988) Identification of the product of an Agrobacterium tumefaciens chromo-somal virulence gene. Mol Plant Microbe Interact 1: 121-127PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Krishnamohan Atmakuri
    • 1
  • Peter J. Christie
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsUniversity of Texas Medical School at HoustonHoustonUSA

Personalised recommendations