Production of a Mobile T-DNA by Agrobacterium Tumefaciens

  • Walt Ream

Agrobacterium tumefaciens transfers tumor-inducing (Ti) plasmid-encoded genes and virulence (Vir) proteins into plant cells, where this DNA stably integrates into the plant nuclear genome. The transferred DNA (T-DNA) region of the Ti plasmid is stably inherited and expressed in plant cells, causing crown gall tumors. DNA transfer from A. tumefaciens into plant cells resembles plasmid conjugation; single-stranded DNA (ssDNA) is exported from the bacteria via a type IV secretion system (T4SS) comprised of VirB1- VirB11 and VirD4. The bacteria also secrete certain Vir proteins into plant cells through this system. VirD2 (together with VirD1) nicks border sequences at the T-DNA ends and attaches covalently to the 5' end of the nicked strand. The VirB/VirD4 secretion system exports the VirD2-T-DNA complex (T-complex) as well as VirE2 single-stranded DNA-binding protein and ancillary virulence proteins VirF and VirE3. VirE2 and VirF are required only in plant cells. Nuclear localization signals (NLS) in VirD2 and VirE2 target the T-complex into the nucleus where T-DNA integrates into the genome. T-DNA transfer and integration does not require tumorigenesis or T-DNA encoded proteins. This fact has allowed genetic engineers to use A. tumefaciens to transfer beneficial genes into plants in place of the T-DNA oncogenes.


Nuclear Localization Signal Agrobacterium Tumefaciens Crown Gall Crown Gall Tumor Border Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Albright LM, Yanofsky MF, Leroux B, Ma DQ, Nester EW (1987) Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. J Bacteriol 169: 1046-1055PubMedGoogle Scholar
  2. Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UCM, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mito-chondria. Nature 396: 133-140PubMedGoogle Scholar
  3. Argos P, Landy A, Abremski K, Egan JB, Haggard-Ljungquist E, Hoess RH, Kahn ML, Kalionis B, Narayana SVL, Pierson LS, Sternberg N, Leong JM (1986) The integrase family of site-specific recombinases: regional similari-ties and global diversity. EMBO J 5: 433-440PubMedGoogle Scholar
  4. Atmakuri K, Ding Z, Christie PJ (2003) VirE2, a type IV secretion substrate, in-teracts with the VirD4 transfer protein at cell poles of Agrobacterium tumefa-ciens. Mol Microbiol 49: 1699-1713PubMedGoogle Scholar
  5. Bako L, Umeda M, Tiburcio AF, Schell J, Koncz C (2003) The VirD2 pilot pro-tein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100: 10108-10113PubMedGoogle Scholar
  6. Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94: 10723-10728PubMedGoogle Scholar
  7. Baron C, Zambryski PC (1996) Plant transformation: a pilus in Agrobacterium T-DNA transfer. Curr Biol 6: 1567-1569PubMedGoogle Scholar
  8. Barton KA, Binns AN, Matzke AJ, Chilton MD (1983) Regeneration of intact to-bacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32: 1033-1043PubMedGoogle Scholar
  9. Beijersbergen A, Dulk-Ras AD, Schilperoort RA, Hooykaas PJJ (1992) Conjuga-tive transfer by the virulence system of Agrobacterium tumefaciens. Science 256: 1324-1327PubMedGoogle Scholar
  10. Binns AN (2002) T-DNA of Agrobacterium tumefaciens: 25 years and counting. Trends Plant Sci 7: 231-233PubMedGoogle Scholar
  11. Binns AN, Beaupre CE, Dale EM (1995) Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010. J Bacteriol 177: 4890-4899PubMedGoogle Scholar
  12. Braun AC (1958) A physiological basis for the autonomous growth of the crown gall tumor cell. Proc Natl Acad Sci USA 44: 344-349PubMedGoogle Scholar
  13. Buchanan-Wollaston V, Passiatore JE, Cannon F (1987) The mob and oriT mobi-lization functions of a bacterial plasmid promote its transfer to plants. Nature 328: 172-175Google Scholar
  14. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14: 3206-3214PubMedGoogle Scholar
  15. Cabezon E, Sastre JI, de la Cruz F (1997) Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol Gen Genet 254: 400-406PubMedGoogle Scholar
  16. Cascales E, Atmakuri K, Liu Z, Binns AN, Christie PJ (2005) Agrobacterium tu-mefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol Microbiol 58: 565-579PubMedGoogle Scholar
  17. Cascales E, Christie PJ (2003) The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1: 137-149PubMedGoogle Scholar
  18. Cascales E, Christie PJ (2004) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304: 1170-1173PubMedGoogle Scholar
  19. Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A (1996) cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 93: 14648-14653PubMedGoogle Scholar
  20. Chilton M-D, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263-271PubMedGoogle Scholar
  21. Chilton M-D, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77: 4060-4064PubMedGoogle Scholar
  22. Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179: 3085-3094PubMedGoogle Scholar
  23. Christie PJ (2004) Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta 1694: 219-234PubMedGoogle Scholar
  24. Christie PJ, Ward JE, Winans SC, Nester EW (1988) The Agrobacterium tumefa-ciens virE2 gene product is a single-stranded-DNA-binding protein that asso-ciates with T-DNA. J Bacteriol 170: 2659-2667PubMedGoogle Scholar
  25. Chyi YS, Jorgensen RA, Goldstein D, Tanksley SD, Loaiza-Figueroa F (1986) Locations and stability of Agrobacterium-mediated T-DNA insertions in the Lycopersicon genome. Mol Gen Genet 204: 64-69Google Scholar
  26. Citovsky V, De Vos G, Zambryski P (1988) Single-stranded DNA binding protein encoded by the virE locus of Agrobacterium tumefaciens. Science 240: 501-504PubMedGoogle Scholar
  27. Citovsky V, Guralnick B, Simon MN, Wall JS (1997) The molecular structure of Agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. J Mol Biol 271: 718-727PubMedGoogle Scholar
  28. Citovsky V, Warnick D, Zambryski P (1994) Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 91: 3210-3214PubMedGoogle Scholar
  29. Citovsky V, Wong ML, Zambryski P (1989) Cooperative interaction of Agrobac-terium VirE2 protein with single stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci USA 86: 1193-1197PubMedGoogle Scholar
  30. Citovsky V, Zupan J, Warnick D, Zambryski P (1992) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256: 1802-1805PubMedGoogle Scholar
  31. Coin F, Frit P, Viollet B, Salles B, Egly JM (1998) TATA binding protein discriminates between different lesions on DNA, resulting in a transcription decrease. Mol Cell Biol 18: 3907-3914PubMedGoogle Scholar
  32. Covacci A, Rappuoli R (1993) Pertussis toxin export requires accessory genes lo-cated downstream from the pertussis toxin operon. Mol Microbiol 8: 429-434PubMedGoogle Scholar
  33. Csonka LN, Clark AJ (1979) Deletions generated by the transposon Tn10 in the srl recA region of the Escherichia coli K-12 chromosome. Genetics 93: 321-343PubMedGoogle Scholar
  34. Das A (1988) Agrobacterium tumefaciens virE operon encodes a single-stranded DNA-binding protein. Proc Natl Acad Sci USA 85: 2909-2913PubMedGoogle Scholar
  35. De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42: 389-466Google Scholar
  36. de Groot MJ, Bundock P, Hooykaas PJJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16: 839-842PubMedGoogle Scholar
  37. Deng W, Chen L, Peng WT, Liang X, Sekiguchi S, Gordon MP, Comai L, Nester EW (1999) VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol 31: 1795-1807PubMedGoogle Scholar
  38. Deng W, Chen L, Wood DW, Metcalfe T, Liang X, Gordon MP, Comai L, Nester EW (1998) Agrobacterium VirD2 protein interacts with plant host cyclophil-ins. Proc Natl Acad Sci USA 95: 7040-7045PubMedGoogle Scholar
  39. Ding Z, Atmakuri K, Christie PJ (2003) The outs and ins of bacterial type IV se-cretion substrates. Trends Microbiol 11: 527-535PubMedGoogle Scholar
  40. Dombek P, Ream W (1997) Functional domains of Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 179: 1165-1173PubMedGoogle Scholar
  41. Dumas F, Duckely M, Pelczar P, Van Gelder P, Hohn B (2001) An Agrobacte-rium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci USA 98: 485-490PubMedGoogle Scholar
  42. Durrenberger F, Crameri A, Hohn B, Koukolikova-Nicola Z (1989) Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci USA 86: 9154-9158PubMedGoogle Scholar
  43. Ellis JG, Kerr A, Petit A, Tempe J (1982) Conjugal transfer of nopaline and ag-ropine Ti-plasmids - the role of agrocinopines. Mol Gen Genet 186: 269-274Google Scholar
  44. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811PubMedGoogle Scholar
  45. Firth N, Ippen-Ihler K, Skurray RA (1996) Structure and function of the F factor and mechanism of conjugation. In FC Neidhardt, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Rsznikoff WS, Riley M, Schaechter M, Umbarger HC, eds, Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C., pp 2377-2401Google Scholar
  46. Fullner KJ, Lara JC, Nester EW (1996) Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273: 1107-1109PubMedGoogle Scholar
  47. Fullner KJ Nester EW (1996a) Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol 178: 1498-1504Google Scholar
  48. Fullner KJ, Nester EW (1996b) Environmental and genetic factors affecting RSF1010 mobilization between strains of Agrobacterium tumefaciens. In W Ream, SB Gelvin, eds, Crown Gall: Advances in Understanding Interkingdom Gene Transfer. American Phytopathological Society, St. Paul., pp 15-29Google Scholar
  49. Furner IJ, Huffman GA, Amasino RM, Garfinkel DJ, Gordon MP, Nester EW (1986) An Agrobacterium transformation in the evolution of the genus Nico-tiana. Nature 319: 422-427Google Scholar
  50. Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144: 732-743PubMedGoogle Scholar
  51. Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW (1981) Genetic analysis of crown gall: fine structure map of the T-DNA by sitedirected mutagenesis. Cell 27: 143-153PubMedGoogle Scholar
  52. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67: 16-37PubMedGoogle Scholar
  53. Gelvin SB, Habeck LL (1990) vir genes influence conjugal transfer of the Ti plasmid of Agrobacterium tumefaciens. J Bacteriol 172: 1600-1608PubMedGoogle Scholar
  54. Gheysen G, Van Montagu M, Zambryski P (1987) Integration of Agrobacterium tumefaciens transfer DNA (T-DNA) involves rearrangements of target plant DNA. Proc Natl Acad Sci USA 84: 6169-6173PubMedGoogle Scholar
  55. Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5: 287-297PubMedGoogle Scholar
  56. Gietl C, Koukolikova-Nicola Z, Hohn B (1987) Mobilization of T-DNA from Agrobacterium to plant cells involves a protein that binds single-stranded DNA. Proc Natl Acad Sci USA 84: 9006-9010PubMedGoogle Scholar
  57. Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling H, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323-2328PubMedGoogle Scholar
  58. Guyon P, Chilton M-D, Petit A, Tempe J (1980) Agropine in “null-type” crown gall tumors: evidence for the generality of the opine concept. Proc Natl Acad Sci USA 77: 2693-2697PubMedGoogle Scholar
  59. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in post-transcriptional gene silencing in plants. Science 286: 950-952PubMedGoogle Scholar
  60. Hamilton CM, Lee H, Li PL, Cook DM, Piper KR, von Bodman SB, Lanka E, Ream W, Farrand SK (2000) TraG from RP4 and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 182: 1541-1548PubMedGoogle Scholar
  61. Hansen G, Chilton M-D (1996) “Agrolistic” transformation of plant cells: integra-tion of T-strands generated in planta. Proc Natl Acad Sci USA 93: 14978-14983PubMedGoogle Scholar
  62. Hansen G, Shillito RD, Chilton M-D (1997) T-strand integration in maize proto-plasts after codelivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci USA 94: 11726-11730PubMedGoogle Scholar
  63. Hepburn A, White J (1985) The effect of right terminal repeat deletion on the on-cogenicity of the T-region of pTiT37. Plant Mol Biol 5: 3-11Google Scholar
  64. Herrera-Estrella A, Chen Z, Van Montagu M, Wang K (1988) VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA protein complex at the 5’ terminus of T-strand molecules. EMBO J 7: 4055-4062PubMedGoogle Scholar
  65. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303: 179-180Google Scholar
  66. Howard EA, Winsor BA, De Vos G, Zambryski PC (1989) Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand protein complex: tight association of VirD2 with the 5’ ends of T-strands. Proc Natl Acad Sci USA 86: 4017-4021PubMedGoogle Scholar
  67. Howard EA, Zupan JR, Citovsky V, Zambryski PC (1992) The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: im-plications for nuclear uptake of DNA in plant cells. Cell 68: 109-118PubMedGoogle Scholar
  68. Jasper F, Koncz C, Schell J, Steinbiss H-H (1994) Agrobacterium T-strand pro-duction in vitro: sequence-specific cleavage and 5’ protection of single-stranded DNA templates by purified VirD2 protein. Proc Natl Acad Sci USA 91: 694-698PubMedGoogle Scholar
  69. Jayaswal RK, Veluthambi K, Gelvin SB, Slightom JL (1987) Double-stranded cleavage of T-DNA and generation of single-stranded T-DNA molecules in Escherichia coli by a virD-encoded border-specific endonuclease from Agro-bacterium tumefaciens. J Bacteriol 169: 5035-5045PubMedGoogle Scholar
  70. Ji JM, Martinez A, Dabrowski M, Veluthambi K, Gelvin SB, Ream W (1988) The overdrive enhancer sequence stimulates production of T-strands from the Agrobacterium tumefaciens tumor-inducing plasmid. In B Staskawicz, P Ahlquist, O Yoder, eds, Molecular Biology of Plant-Pathogen Interactions; UCLA Symposia on Molecular and Cellular Biology Alan R Liss, New York, p 229Google Scholar
  71. Joos H, Timmerman B, Van Montagu M, Schell J (1983) Genetic analysis of transfer and stabilisation of Agrobacterium DNA in plant cells. EMBO J 2: 2151-2160.PubMedGoogle Scholar
  72. Kado CI (1994) Promiscuous DNA transfer system of Agrobacterium tumefa-ciens: role of the virB operon in sex pilus assembly and synthesis. Mol Micro-biol 12: 17-22Google Scholar
  73. Kingsman A, Willetts N (1978) The requirements for conjugal DNA synthesis in the donor strain during Flac transfer. J Mol Biol 122: 287-300PubMedGoogle Scholar
  74. Kumar RB, Das A (2002) Polar location and functional domains of the Agrobacte-rium tumefaciens DNA transfer protein VirD4. Mol Microbiol 43: 1523-1532PubMedGoogle Scholar
  75. Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98: 1871-1876PubMedGoogle Scholar
  76. Lee LY, Gelvin SB, Kado CI (1999) pSa causes oncogenic suppression of Agro-bacterium by inhibiting VirE2 protein export. J Bacteriol 181: 186-196PubMedGoogle Scholar
  77. Lemmers M, De Beuckeleer M, Holsters M, Zambryski P, Depicker A, Hernal-steens JP, Van Montagu M, Schell J (1980) Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline grown gall tumours. J Mol Biol 144: 355-378Google Scholar
  78. Lessl M, Balzer D, Pansegrau W, Lanka E (1992) Sequence similarities between the RP4 Tra2 and the Ti VirB region strongly support the conjugation model for T-DNA transfer. J Biol Chem 267: 20471-20480PubMedGoogle Scholar
  79. Lessl M, Lanka E (1994) Common mechanisms in bacterial conjugation and Ti-mediated transfer to plant cells. Cell 77: 321-324PubMedGoogle Scholar
  80. Li J, Wolf SG, Elbaum M, Tzfira T (2005) Exploring cargo transport mechanics in the type IV secretion systems. Trends Microbiol 13: 295-298PubMedGoogle Scholar
  81. Matsumoto M, Ito Y, Hosoi T, Takahashi Y, Machida Y (1990) Integration of Agrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA. Mol Gen Genet 224: 309-316PubMedGoogle Scholar
  82. Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10: 697-704PubMedGoogle Scholar
  83. McBride KE, Knauf VC (1988) Genetic analysis of the virE operon of the Agro-bacterium Ti plasmid pTiA6. J Bacteriol 170: 1430-1437PubMedGoogle Scholar
  84. Miranda A, Janssen G, Hodges L, Peralta EG, Ream W (1992) Agrobacterium tu-mefaciens transfers extremely long T-DNAs by a unidirectional mechanism. J Bacteriol 174: 2288-2297PubMedGoogle Scholar
  85. Moriguchi K, Maeda Y, Satou M, Hardayani NS, Kataoka M, Tanaka N, Yoshida K (2001) The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J Mol Biol 307: 771-784PubMedGoogle Scholar
  86. Mysore KS, Bassuner B, Deng X-B, Darbinian NS, Motchoulski A, Ream W, Gelvin SB (1998) Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol Plant-Microbe Interact 11: 668-683PubMedGoogle Scholar
  87. Narasimhulu SB, Deng X-B, Sarria R, Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8: 873-886PubMedGoogle Scholar
  88. Otten L, DeGreve H, Leemans J, Hain R, Hooykass P, Schell J (1984) Restoration of virulence of vir region mutants of Agrobacterium tumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains. Mol Gen Genet 195: 159-163Google Scholar
  89. Ou JT, Reim RL (1978) F- mating materials able to generate a mating signal in mating with HfrH dnaB(Ts) cells. J Bacteriol 133: 442-445PubMedGoogle Scholar
  90. Pansegrau W, Schoumacher F, Hohn B, Lanka E (1993) Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefa-ciens Ti plasmids: analogy to bacterial conjugation. Proc Natl Acad Sci USA 90: 11538-11542PubMedGoogle Scholar
  91. Peerbolte R, te Lintel-Hekkert W, Barfield DG, Hoge JHC, Wullems GL, Schilperoort RA (1987) Structure, organization and expression of transferred DNA in Nicotiana plumbaginifolia crown gall tissues. Planta 171: 393-405Google Scholar
  92. Peralta EG, Hellmiss R, Ream W (1986) Overdrive, a T-DNA transmission en-hancer on the A. tumefaciens tumour-inducing plasmid. EMBO J 5: 1137-1142PubMedGoogle Scholar
  93. Peralta EG, Ream LW (1985) T-DNA border sequences required for crown gall tumorigenesis. Proc Natl Acad Sci USA 82: 5112-5116PubMedGoogle Scholar
  94. Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbert F, Tempe J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190: 204-414Google Scholar
  95. Petit A, Tempe J, Kerr A, Holsters M, Van Montagu M, Schell J (1978) Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids. Nature 271: 570-571Google Scholar
  96. Pohlman RF, Genetti HD, Winans SC (1994) Common ancestry between IncN conjugal transfer genes and macromolecular export systems of plant and ani-mal pathogens. Mol Microbiol 14: 655-668PubMedGoogle Scholar
  97. Ream LW, Gordon MP, Nester EW (1983) Multiple mutations in the T-region of the Agrobacterium tumefaciens tumor-inducing plasmid. Proc Natl Acad Sci USA 80: 1660-1664PubMedGoogle Scholar
  98. Regensburg-Tuink AJG, Hooykaas PJJ (1993) Transgenic N. glauca plants ex-pressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 363: 69-71PubMedGoogle Scholar
  99. Relic B, Andjelkovic M, Rossi L, Nagamine Y, Hohn B (1998) Interaction of the DNA modifying proteins VirD1 and VirD2 of Agrobacterium tumefaciens: analysis by subcellular localization in mammalian cells. Proc Natl Acad Sci USA 95: 9105-9110PubMedGoogle Scholar
  100. Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant’s own genome. Plant Physiol 135: 421-431PubMedGoogle Scholar
  101. Rossi L, Hohn B, Tinland B (1993) The VirD2 protein of Agrobacterium tumefa-ciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol Gen Genet 239: 345-353PubMedGoogle Scholar
  102. Rossi L, Hohn B, Tinland B (1996) Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefa-ciens. Proc Natl Acad Sci USA 93: 126-130PubMedGoogle Scholar
  103. Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M, Scherzinger E (1989) Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 75: 271-288PubMedGoogle Scholar
  104. Segal G, Russo JJ, Shuman HA (1999) Relationships between a new type IV se-cretion system and the icm/dot virulence system of Legionella pneumophila. Mol Microbiol 34: 799-809PubMedGoogle Scholar
  105. Segal G, Shuman HA (1998) Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol Microbiol 30: 197-208PubMedGoogle Scholar
  106. Sen P, Pazour GJ, Anderson D, Das A (1989) Cooperative binding of Agrobacte-rium tumefaciens VirE2 protein to single-stranded DNA. J Bacteriol 171: 2573-2580PubMedGoogle Scholar
  107. Shaw CH, Watson MD, Carter GH (1984) The right hand copy of the nopaline Ti-plasmid 25 bp repeat is required for tumour formation. Nucleic Acids Res 12: 6031-6041PubMedGoogle Scholar
  108. Sheng J, Citovsky V (1996) Agrobacterium-plant cell interaction: have virulence proteins - will travel. Plant Cell 8: 1699-1710PubMedGoogle Scholar
  109. Shurvinton CE, Hodges L, Ream W (1992) A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonu-clease are important for tumor formation. Proc Natl Acad Sci USA 89: 11837-11841PubMedGoogle Scholar
  110. Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5: 1445-1454PubMedGoogle Scholar
  111. Stachel SE, Timmerman B, Zambryski PC (1986) Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer for Agrobacte-rium tumefaciens to plant cells. Nature 322: 706-712Google Scholar
  112. Stachel SE, Timmerman B, Zambryski PC (1987) Activation of Agrobacterium tumefaciens vir gene expression generates multiple single-stranded T-strand molecules from the pTiA6 T-region: requirement for 5’ virD gene products. EMBO J 6: 857-863PubMedGoogle Scholar
  113. Stachel SE, Zambryski PC (1986) Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjuga-tion. Cell 47: 155-157PubMedGoogle Scholar
  114. Stahl LE, Jacobs A, Binns AN (1998) The conjugal intermediate of plasmid RSF1010 inhibits Agrobacterium tumefaciens virulence and VirB-dependent export of VirE2. J Bacteriol 180: 3933-3939PubMedGoogle Scholar
  115. Sundberg C, Meek L, Carrol K, Das A, Ream W (1996) VirE1 protein mediates export of single-stranded DNA binding protein VirE2 from Agrobacterium tumefaciens into plant cells. J Bacteriol 178: 1207-1212PubMedGoogle Scholar
  116. Sundberg CD, Ream W (1999) The Agrobacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction. J Bacteriol 181: 6850-6855PubMedGoogle Scholar
  117. Tao Y, Rao PK, Bhattacharjee S, Gelvin SB (2004) Expression of plant protein phosphatase 2C interferes with nuclear import of the Agrobacterium T-complex protein VirD2. Proc Natl Acad Sci USA 101: 5164-5169PubMedGoogle Scholar
  118. Thomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW (1980) Integra-tion and organization of Ti plasmid sequences in crown gall tumors. Cell 19: 729-739PubMedGoogle Scholar
  119. Tinland B, Hohn B, Puchta H (1994) Agrobacterium tumefaciens transfers single-stranded transferred DNA (T-DNA) into the plant cell nucleus. Proc Natl Acad Sci USA 91: 8000-8004PubMedGoogle Scholar
  120. Tinland B, Koukolikova-Nicola Z, Hall MN, Hohn B (1992) The T-DNA-linked VirD2 protein contains two distinct nuclear localization signals. Proc Natl Acad Sci USA 89: 7442-7446PubMedGoogle Scholar
  121. Tinland B, Schoumacher F, Gloeckler V, Bravo-Angel AM, Hohn B (1995) The Agrobacterium tumefaciens virulence D2 protein is responsible for precise in-tegration of T-DNA into the plant genome. EMBO J 14: 3585-3595PubMedGoogle Scholar
  122. Toro N, Datta A, Carmi OA, Young C, Prusti RK, Nester EW (1989) The Agro-bacterium tumefaciens virC1 gene product binds to Overdrive, a T-DNA transfer enhancer. J Bacteriol 171: 6845-6849PubMedGoogle Scholar
  123. Tummuru MK, Sharma SA, Blaser MJ (1995) Helicobacter pylori picB, a homo-logue of the Bordetella pertussis toxin secretion protein, is required for induc-tion of IL-8 in gastric epithelial cells. Mol Microbiol 18: 867-876PubMedGoogle Scholar
  124. Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252: 169-170PubMedGoogle Scholar
  125. Van Lijsebettens M, Inze D, Schell J, Van Montagu M (1986) Transformed cell clones as a tool to study T DNA integration mediated by Agrobacterium tume-faciens. J Mol Biol 188: 129-145PubMedGoogle Scholar
  126. Veluthambi K, Ream W, Gelvin SB (1988) Virulence genes, borders, and over-drive generate single-stranded T-DNA molecules from the A6 Ti plasmid of Agrobacterium tumefaciens. J Bacteriol 170: 1523-1532PubMedGoogle Scholar
  127. Vergunst AC, van Lier MCM, den Dulk-Ras A, Stüve TAG, Ouwehand A, Hooykaas PJJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 102: 832-837PubMedGoogle Scholar
  128. Vergunst AC, van Lier MCM, den Dulk-Ras A, Hooykaas PJJ (2003) Recognition of the Agrobacterium VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant Physiol 133: 978-988PubMedGoogle Scholar
  129. Vichi P, Coin F, Renaud J-P, Vermeulen W, Hoeijmakers JH, Moras D, Egly J-M (1997) Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J 16: 7444-7456PubMedGoogle Scholar
  130. Vogel AM, Das A (1992a) The Agrobacterium tumefaciens virD3 gene is not es-sential for tumorigenicity on plants. 174: 5161-5164PubMedGoogle Scholar
  131. Vogel AM, Das A (1992b) Mutational analysis of Agrobacterium tumefaciens virD2: tyrosine 29 is essential for endonuclease activity. J Bacteriol 174: 303-308PubMedGoogle Scholar
  132. Vogel JP, Andrews HL, Wong SK, Isberg RR (1998) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279: 873-876PubMedGoogle Scholar
  133. Wang K, Herrera-Estrella A, Van Montagu M (1990) Overexpression of virD1 and virD2 genes in Agrobacterium tumefaciens enhances T-complex forma-tion and plant transformation. J Bacteriol 172: 4432-4440PubMedGoogle Scholar
  134. Wang K, Herrera-Estrella L, Van Montagu M, Zambryski PC (1984) Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines di-rection of DNA transfer from Agrobacterium to the plant genome. Cell 38: 455-462PubMedGoogle Scholar
  135. Wang K, Stachel SE, Timmerman B, Van Montagu M, Zambryski PC (1987) Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235: 587-591PubMedGoogle Scholar
  136. Ward ER, Barnes WM (1988) VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5’ end of T-strand DNA. Science 242: 927-930Google Scholar
  137. Watson B, Currier TC, Gordon MP, Chilton M-D, Nester EW (1975) Plasmid re-quired for virulence of Agrobacterium tumefaciens. J Bacteriol 123: 255-264PubMedGoogle Scholar
  138. Weiss AA, Johnson FD, Burns DL (1993) Molecular characterization of an operon required for pertussis toxin secretion. Proc Natl Acad Sci USA 90: 2970-2974PubMedGoogle Scholar
  139. Willmitzer L, De Beuckeleer M, Lemmers M, Van Montagu M, Schell J (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plants. Nature 287: 359-361Google Scholar
  140. Willmitzer L, Simons G, Schell J (1982) The TL-DNA in octopine crown-gall tu-mours codes for seven well-defined polyadenylated transcripts. EMBO J 1: 139-146PubMedGoogle Scholar
  141. Winans SC (1992) Two-way chemical signalling in Agrobacterium-plant interac-tions. Microbiol Rev 56: 12-31PubMedGoogle Scholar
  142. Winans SC, Allenza P, Stachel SE, McBride KE, Nester EW (1987) Characteriza-tion of the virE operon of the Agrobacterium Ti plasmid pTiA6. Nucleic Acids Res 15: 825-837PubMedGoogle Scholar
  143. Winans SC, Burns DL, Christie PJ (1996) Adaptation of a conjugal transfer sys-tem for the export of pathogenic macromolecules. Trends Microbiol 4: 64-68PubMedGoogle Scholar
  144. Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida Jr. NF, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee Sr. D, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri P, Raymond C, Rouse R, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 2317-2323PubMedGoogle Scholar
  145. Yanofsky MF, Porter SG, Young C, Albright LM, Gordon MP, Nester EW (1986) The virD operon of Agrobacterium tumefaciens encodes a site-specific en-donuclease. Cell 47: 471-477PubMedGoogle Scholar
  146. Young C, Nester EW (1988) Association of the VirD2 protein with the 5’ end of T-strands in Agrobacterium tumefaciens. J Bacteriol 170: 3367-3374PubMedGoogle Scholar
  147. Yusibov VM, Steck TR, Gupta V, Gelvin SB (1994) Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Proc Natl Acad Sci USA 91: 2994-2998PubMedGoogle Scholar
  148. Zambryski P, Holsters M, Kruger K, Depicker A, Schell J, Van Montagu M, Goodman HM (1980) Tumor DNA structure in plant cells transformed by A. tumefaciens. Science 209: 1385-1391PubMedGoogle Scholar
  149. Zhou XR, Christie PJ (1999) Mutagenesis of the Agrobacterium VirE2 single-stranded DNA-binding protein identifies regions required for self-association and interaction with VirE1 and a permissive site for hybrid protein construc-tion. J Bacteriol 181: 4342-4352PubMedGoogle Scholar
  150. Zhu J, Oger PM, Schrammeijer B, Hooykaas PJJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182: 3885-3895PubMedGoogle Scholar
  151. Zhu Y, Nam J, Humara JM, Mysore KS, Lee LY, Cao H, Valentine L, Li J, Kaiser AD, Kopecky AL, Hwang HH, Bhattacharjee S, Rao PK, Tzfira T, Rajagopal J, Yi H, Veena, Yadav BS, Crane YM, Lin K, Larcher Y, Gelvin MJ, Knue M, Ramos C, Zhao X, Davis SJ, Kim SI, Ranjith-Kumar CT, Choi YJ, Hallan VK, Chattopadhyay S, Sui X, Ziemienowicz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132: 494-505PubMedGoogle Scholar
  152. Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L (2001) Import of Agrobacterium T-DNA into plant nuclei: Two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13: 369-384PubMedGoogle Scholar
  153. Ziemienowicz A, Tinland B, Bryant J, Gloeckler V, Hohn B (2000) Plant enzymes but not Agrobacterium VirD2 mediate T-DNA ligation in vitro. Mol Cell Biol 20: 6317-6322PubMedGoogle Scholar
  154. Zupan J, Citovsky V, Zambryski PC (1996) Agrobacterium VirE2 protein medi-ates nuclear uptake of single-stranded DNA in plant cells. Proc Natl Acad Sci USA 93: 2392-2397PubMedGoogle Scholar
  155. Zupan J, Zambryski PC (1997) The Agrobacterium DNA transfer complex. Crit Rev Plant Sci 16: 279-295Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Walt Ream
    • 1
  1. 1.Department of MicrobiologyOregon State UniversityCorvallisUSA

Personalised recommendations