Skip to main content

Production of a Mobile T-DNA by Agrobacterium Tumefaciens

  • Chapter
Agrobacterium: From Biology to Biotechnology

Agrobacterium tumefaciens transfers tumor-inducing (Ti) plasmid-encoded genes and virulence (Vir) proteins into plant cells, where this DNA stably integrates into the plant nuclear genome. The transferred DNA (T-DNA) region of the Ti plasmid is stably inherited and expressed in plant cells, causing crown gall tumors. DNA transfer from A. tumefaciens into plant cells resembles plasmid conjugation; single-stranded DNA (ssDNA) is exported from the bacteria via a type IV secretion system (T4SS) comprised of VirB1- VirB11 and VirD4. The bacteria also secrete certain Vir proteins into plant cells through this system. VirD2 (together with VirD1) nicks border sequences at the T-DNA ends and attaches covalently to the 5' end of the nicked strand. The VirB/VirD4 secretion system exports the VirD2-T-DNA complex (T-complex) as well as VirE2 single-stranded DNA-binding protein and ancillary virulence proteins VirF and VirE3. VirE2 and VirF are required only in plant cells. Nuclear localization signals (NLS) in VirD2 and VirE2 target the T-complex into the nucleus where T-DNA integrates into the genome. T-DNA transfer and integration does not require tumorigenesis or T-DNA encoded proteins. This fact has allowed genetic engineers to use A. tumefaciens to transfer beneficial genes into plants in place of the T-DNA oncogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  • Albright LM, Yanofsky MF, Leroux B, Ma DQ, Nester EW (1987) Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. J Bacteriol 169: 1046-1055

    PubMed  CAS  Google Scholar 

  • Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UCM, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mito-chondria. Nature 396: 133-140

    PubMed  CAS  Google Scholar 

  • Argos P, Landy A, Abremski K, Egan JB, Haggard-Ljungquist E, Hoess RH, Kahn ML, Kalionis B, Narayana SVL, Pierson LS, Sternberg N, Leong JM (1986) The integrase family of site-specific recombinases: regional similari-ties and global diversity. EMBO J 5: 433-440

    PubMed  CAS  Google Scholar 

  • Atmakuri K, Ding Z, Christie PJ (2003) VirE2, a type IV secretion substrate, in-teracts with the VirD4 transfer protein at cell poles of Agrobacterium tumefa-ciens. Mol Microbiol 49: 1699-1713

    PubMed  CAS  Google Scholar 

  • Bako L, Umeda M, Tiburcio AF, Schell J, Koncz C (2003) The VirD2 pilot pro-tein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100: 10108-10113

    PubMed  CAS  Google Scholar 

  • Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94: 10723-10728

    PubMed  CAS  Google Scholar 

  • Baron C, Zambryski PC (1996) Plant transformation: a pilus in Agrobacterium T-DNA transfer. Curr Biol 6: 1567-1569

    PubMed  CAS  Google Scholar 

  • Barton KA, Binns AN, Matzke AJ, Chilton MD (1983) Regeneration of intact to-bacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32: 1033-1043

    PubMed  CAS  Google Scholar 

  • Beijersbergen A, Dulk-Ras AD, Schilperoort RA, Hooykaas PJJ (1992) Conjuga-tive transfer by the virulence system of Agrobacterium tumefaciens. Science 256: 1324-1327

    PubMed  CAS  Google Scholar 

  • Binns AN (2002) T-DNA of Agrobacterium tumefaciens: 25 years and counting. Trends Plant Sci 7: 231-233

    PubMed  CAS  Google Scholar 

  • Binns AN, Beaupre CE, Dale EM (1995) Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010. J Bacteriol 177: 4890-4899

    PubMed  CAS  Google Scholar 

  • Braun AC (1958) A physiological basis for the autonomous growth of the crown gall tumor cell. Proc Natl Acad Sci USA 44: 344-349

    PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Passiatore JE, Cannon F (1987) The mob and oriT mobi-lization functions of a bacterial plasmid promote its transfer to plants. Nature 328: 172-175

    CAS  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14: 3206-3214

    PubMed  CAS  Google Scholar 

  • Cabezon E, Sastre JI, de la Cruz F (1997) Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol Gen Genet 254: 400-406

    PubMed  CAS  Google Scholar 

  • Cascales E, Atmakuri K, Liu Z, Binns AN, Christie PJ (2005) Agrobacterium tu-mefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol Microbiol 58: 565-579

    PubMed  CAS  Google Scholar 

  • Cascales E, Christie PJ (2003) The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1: 137-149

    PubMed  CAS  Google Scholar 

  • Cascales E, Christie PJ (2004) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304: 1170-1173

    PubMed  CAS  Google Scholar 

  • Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A (1996) cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 93: 14648-14653

    PubMed  CAS  Google Scholar 

  • Chilton M-D, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263-271

    PubMed  CAS  Google Scholar 

  • Chilton M-D, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77: 4060-4064

    PubMed  CAS  Google Scholar 

  • Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179: 3085-3094

    PubMed  CAS  Google Scholar 

  • Christie PJ (2004) Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta 1694: 219-234

    PubMed  CAS  Google Scholar 

  • Christie PJ, Ward JE, Winans SC, Nester EW (1988) The Agrobacterium tumefa-ciens virE2 gene product is a single-stranded-DNA-binding protein that asso-ciates with T-DNA. J Bacteriol 170: 2659-2667

    PubMed  CAS  Google Scholar 

  • Chyi YS, Jorgensen RA, Goldstein D, Tanksley SD, Loaiza-Figueroa F (1986) Locations and stability of Agrobacterium-mediated T-DNA insertions in the Lycopersicon genome. Mol Gen Genet 204: 64-69

    CAS  Google Scholar 

  • Citovsky V, De Vos G, Zambryski P (1988) Single-stranded DNA binding protein encoded by the virE locus of Agrobacterium tumefaciens. Science 240: 501-504

    PubMed  CAS  Google Scholar 

  • Citovsky V, Guralnick B, Simon MN, Wall JS (1997) The molecular structure of Agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. J Mol Biol 271: 718-727

    PubMed  CAS  Google Scholar 

  • Citovsky V, Warnick D, Zambryski P (1994) Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 91: 3210-3214

    PubMed  CAS  Google Scholar 

  • Citovsky V, Wong ML, Zambryski P (1989) Cooperative interaction of Agrobac-terium VirE2 protein with single stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci USA 86: 1193-1197

    PubMed  CAS  Google Scholar 

  • Citovsky V, Zupan J, Warnick D, Zambryski P (1992) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256: 1802-1805

    PubMed  CAS  Google Scholar 

  • Coin F, Frit P, Viollet B, Salles B, Egly JM (1998) TATA binding protein discriminates between different lesions on DNA, resulting in a transcription decrease. Mol Cell Biol 18: 3907-3914

    PubMed  CAS  Google Scholar 

  • Covacci A, Rappuoli R (1993) Pertussis toxin export requires accessory genes lo-cated downstream from the pertussis toxin operon. Mol Microbiol 8: 429-434

    PubMed  CAS  Google Scholar 

  • Csonka LN, Clark AJ (1979) Deletions generated by the transposon Tn10 in the srl recA region of the Escherichia coli K-12 chromosome. Genetics 93: 321-343

    PubMed  CAS  Google Scholar 

  • Das A (1988) Agrobacterium tumefaciens virE operon encodes a single-stranded DNA-binding protein. Proc Natl Acad Sci USA 85: 2909-2913

    PubMed  CAS  Google Scholar 

  • De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42: 389-466

    Google Scholar 

  • de Groot MJ, Bundock P, Hooykaas PJJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16: 839-842

    PubMed  Google Scholar 

  • Deng W, Chen L, Peng WT, Liang X, Sekiguchi S, Gordon MP, Comai L, Nester EW (1999) VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol 31: 1795-1807

    PubMed  CAS  Google Scholar 

  • Deng W, Chen L, Wood DW, Metcalfe T, Liang X, Gordon MP, Comai L, Nester EW (1998) Agrobacterium VirD2 protein interacts with plant host cyclophil-ins. Proc Natl Acad Sci USA 95: 7040-7045

    PubMed  CAS  Google Scholar 

  • Ding Z, Atmakuri K, Christie PJ (2003) The outs and ins of bacterial type IV se-cretion substrates. Trends Microbiol 11: 527-535

    PubMed  CAS  Google Scholar 

  • Dombek P, Ream W (1997) Functional domains of Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 179: 1165-1173

    PubMed  CAS  Google Scholar 

  • Dumas F, Duckely M, Pelczar P, Van Gelder P, Hohn B (2001) An Agrobacte-rium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci USA 98: 485-490

    PubMed  CAS  Google Scholar 

  • Durrenberger F, Crameri A, Hohn B, Koukolikova-Nicola Z (1989) Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci USA 86: 9154-9158

    PubMed  CAS  Google Scholar 

  • Ellis JG, Kerr A, Petit A, Tempe J (1982) Conjugal transfer of nopaline and ag-ropine Ti-plasmids - the role of agrocinopines. Mol Gen Genet 186: 269-274

    CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811

    PubMed  CAS  Google Scholar 

  • Firth N, Ippen-Ihler K, Skurray RA (1996) Structure and function of the F factor and mechanism of conjugation. In FC Neidhardt, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Rsznikoff WS, Riley M, Schaechter M, Umbarger HC, eds, Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C., pp 2377-2401

    Google Scholar 

  • Fullner KJ, Lara JC, Nester EW (1996) Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273: 1107-1109

    PubMed  CAS  Google Scholar 

  • Fullner KJ Nester EW (1996a) Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol 178: 1498-1504

    Google Scholar 

  • Fullner KJ, Nester EW (1996b) Environmental and genetic factors affecting RSF1010 mobilization between strains of Agrobacterium tumefaciens. In W Ream, SB Gelvin, eds, Crown Gall: Advances in Understanding Interkingdom Gene Transfer. American Phytopathological Society, St. Paul., pp 15-29

    Google Scholar 

  • Furner IJ, Huffman GA, Amasino RM, Garfinkel DJ, Gordon MP, Nester EW (1986) An Agrobacterium transformation in the evolution of the genus Nico-tiana. Nature 319: 422-427

    CAS  Google Scholar 

  • Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144: 732-743

    PubMed  CAS  Google Scholar 

  • Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW (1981) Genetic analysis of crown gall: fine structure map of the T-DNA by sitedirected mutagenesis. Cell 27: 143-153

    PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67: 16-37

    PubMed  CAS  Google Scholar 

  • Gelvin SB, Habeck LL (1990) vir genes influence conjugal transfer of the Ti plasmid of Agrobacterium tumefaciens. J Bacteriol 172: 1600-1608

    PubMed  CAS  Google Scholar 

  • Gheysen G, Van Montagu M, Zambryski P (1987) Integration of Agrobacterium tumefaciens transfer DNA (T-DNA) involves rearrangements of target plant DNA. Proc Natl Acad Sci USA 84: 6169-6173

    PubMed  CAS  Google Scholar 

  • Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5: 287-297

    PubMed  CAS  Google Scholar 

  • Gietl C, Koukolikova-Nicola Z, Hohn B (1987) Mobilization of T-DNA from Agrobacterium to plant cells involves a protein that binds single-stranded DNA. Proc Natl Acad Sci USA 84: 9006-9010

    PubMed  CAS  Google Scholar 

  • Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling H, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323-2328

    PubMed  CAS  Google Scholar 

  • Guyon P, Chilton M-D, Petit A, Tempe J (1980) Agropine in “null-type” crown gall tumors: evidence for the generality of the opine concept. Proc Natl Acad Sci USA 77: 2693-2697

    PubMed  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in post-transcriptional gene silencing in plants. Science 286: 950-952

    PubMed  CAS  Google Scholar 

  • Hamilton CM, Lee H, Li PL, Cook DM, Piper KR, von Bodman SB, Lanka E, Ream W, Farrand SK (2000) TraG from RP4 and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 182: 1541-1548

    PubMed  CAS  Google Scholar 

  • Hansen G, Chilton M-D (1996) “Agrolistic” transformation of plant cells: integra-tion of T-strands generated in planta. Proc Natl Acad Sci USA 93: 14978-14983

    PubMed  CAS  Google Scholar 

  • Hansen G, Shillito RD, Chilton M-D (1997) T-strand integration in maize proto-plasts after codelivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci USA 94: 11726-11730

    PubMed  CAS  Google Scholar 

  • Hepburn A, White J (1985) The effect of right terminal repeat deletion on the on-cogenicity of the T-region of pTiT37. Plant Mol Biol 5: 3-11

    CAS  Google Scholar 

  • Herrera-Estrella A, Chen Z, Van Montagu M, Wang K (1988) VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA protein complex at the 5’ terminus of T-strand molecules. EMBO J 7: 4055-4062

    PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303: 179-180

    CAS  Google Scholar 

  • Howard EA, Winsor BA, De Vos G, Zambryski PC (1989) Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand protein complex: tight association of VirD2 with the 5’ ends of T-strands. Proc Natl Acad Sci USA 86: 4017-4021

    PubMed  CAS  Google Scholar 

  • Howard EA, Zupan JR, Citovsky V, Zambryski PC (1992) The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: im-plications for nuclear uptake of DNA in plant cells. Cell 68: 109-118

    PubMed  CAS  Google Scholar 

  • Jasper F, Koncz C, Schell J, Steinbiss H-H (1994) Agrobacterium T-strand pro-duction in vitro: sequence-specific cleavage and 5’ protection of single-stranded DNA templates by purified VirD2 protein. Proc Natl Acad Sci USA 91: 694-698

    PubMed  CAS  Google Scholar 

  • Jayaswal RK, Veluthambi K, Gelvin SB, Slightom JL (1987) Double-stranded cleavage of T-DNA and generation of single-stranded T-DNA molecules in Escherichia coli by a virD-encoded border-specific endonuclease from Agro-bacterium tumefaciens. J Bacteriol 169: 5035-5045

    PubMed  CAS  Google Scholar 

  • Ji JM, Martinez A, Dabrowski M, Veluthambi K, Gelvin SB, Ream W (1988) The overdrive enhancer sequence stimulates production of T-strands from the Agrobacterium tumefaciens tumor-inducing plasmid. In B Staskawicz, P Ahlquist, O Yoder, eds, Molecular Biology of Plant-Pathogen Interactions; UCLA Symposia on Molecular and Cellular Biology Alan R Liss, New York, p 229

    Google Scholar 

  • Joos H, Timmerman B, Van Montagu M, Schell J (1983) Genetic analysis of transfer and stabilisation of Agrobacterium DNA in plant cells. EMBO J 2: 2151-2160.

    PubMed  CAS  Google Scholar 

  • Kado CI (1994) Promiscuous DNA transfer system of Agrobacterium tumefa-ciens: role of the virB operon in sex pilus assembly and synthesis. Mol Micro-biol 12: 17-22

    CAS  Google Scholar 

  • Kingsman A, Willetts N (1978) The requirements for conjugal DNA synthesis in the donor strain during Flac transfer. J Mol Biol 122: 287-300

    PubMed  CAS  Google Scholar 

  • Kumar RB, Das A (2002) Polar location and functional domains of the Agrobacte-rium tumefaciens DNA transfer protein VirD4. Mol Microbiol 43: 1523-1532

    PubMed  CAS  Google Scholar 

  • Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98: 1871-1876

    PubMed  CAS  Google Scholar 

  • Lee LY, Gelvin SB, Kado CI (1999) pSa causes oncogenic suppression of Agro-bacterium by inhibiting VirE2 protein export. J Bacteriol 181: 186-196

    PubMed  CAS  Google Scholar 

  • Lemmers M, De Beuckeleer M, Holsters M, Zambryski P, Depicker A, Hernal-steens JP, Van Montagu M, Schell J (1980) Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline grown gall tumours. J Mol Biol 144: 355-378

    Google Scholar 

  • Lessl M, Balzer D, Pansegrau W, Lanka E (1992) Sequence similarities between the RP4 Tra2 and the Ti VirB region strongly support the conjugation model for T-DNA transfer. J Biol Chem 267: 20471-20480

    PubMed  CAS  Google Scholar 

  • Lessl M, Lanka E (1994) Common mechanisms in bacterial conjugation and Ti-mediated transfer to plant cells. Cell 77: 321-324

    PubMed  CAS  Google Scholar 

  • Li J, Wolf SG, Elbaum M, Tzfira T (2005) Exploring cargo transport mechanics in the type IV secretion systems. Trends Microbiol 13: 295-298

    PubMed  Google Scholar 

  • Matsumoto M, Ito Y, Hosoi T, Takahashi Y, Machida Y (1990) Integration of Agrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA. Mol Gen Genet 224: 309-316

    PubMed  CAS  Google Scholar 

  • Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10: 697-704

    PubMed  CAS  Google Scholar 

  • McBride KE, Knauf VC (1988) Genetic analysis of the virE operon of the Agro-bacterium Ti plasmid pTiA6. J Bacteriol 170: 1430-1437

    PubMed  CAS  Google Scholar 

  • Miranda A, Janssen G, Hodges L, Peralta EG, Ream W (1992) Agrobacterium tu-mefaciens transfers extremely long T-DNAs by a unidirectional mechanism. J Bacteriol 174: 2288-2297

    PubMed  CAS  Google Scholar 

  • Moriguchi K, Maeda Y, Satou M, Hardayani NS, Kataoka M, Tanaka N, Yoshida K (2001) The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J Mol Biol 307: 771-784

    PubMed  CAS  Google Scholar 

  • Mysore KS, Bassuner B, Deng X-B, Darbinian NS, Motchoulski A, Ream W, Gelvin SB (1998) Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol Plant-Microbe Interact 11: 668-683

    PubMed  CAS  Google Scholar 

  • Narasimhulu SB, Deng X-B, Sarria R, Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8: 873-886

    PubMed  CAS  Google Scholar 

  • Otten L, DeGreve H, Leemans J, Hain R, Hooykass P, Schell J (1984) Restoration of virulence of vir region mutants of Agrobacterium tumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains. Mol Gen Genet 195: 159-163

    CAS  Google Scholar 

  • Ou JT, Reim RL (1978) F- mating materials able to generate a mating signal in mating with HfrH dnaB(Ts) cells. J Bacteriol 133: 442-445

    PubMed  CAS  Google Scholar 

  • Pansegrau W, Schoumacher F, Hohn B, Lanka E (1993) Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefa-ciens Ti plasmids: analogy to bacterial conjugation. Proc Natl Acad Sci USA 90: 11538-11542

    PubMed  CAS  Google Scholar 

  • Peerbolte R, te Lintel-Hekkert W, Barfield DG, Hoge JHC, Wullems GL, Schilperoort RA (1987) Structure, organization and expression of transferred DNA in Nicotiana plumbaginifolia crown gall tissues. Planta 171: 393-405

    CAS  Google Scholar 

  • Peralta EG, Hellmiss R, Ream W (1986) Overdrive, a T-DNA transmission en-hancer on the A. tumefaciens tumour-inducing plasmid. EMBO J 5: 1137-1142

    PubMed  CAS  Google Scholar 

  • Peralta EG, Ream LW (1985) T-DNA border sequences required for crown gall tumorigenesis. Proc Natl Acad Sci USA 82: 5112-5116

    PubMed  CAS  Google Scholar 

  • Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbert F, Tempe J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190: 204-414

    CAS  Google Scholar 

  • Petit A, Tempe J, Kerr A, Holsters M, Van Montagu M, Schell J (1978) Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids. Nature 271: 570-571

    CAS  Google Scholar 

  • Pohlman RF, Genetti HD, Winans SC (1994) Common ancestry between IncN conjugal transfer genes and macromolecular export systems of plant and ani-mal pathogens. Mol Microbiol 14: 655-668

    PubMed  CAS  Google Scholar 

  • Ream LW, Gordon MP, Nester EW (1983) Multiple mutations in the T-region of the Agrobacterium tumefaciens tumor-inducing plasmid. Proc Natl Acad Sci USA 80: 1660-1664

    PubMed  CAS  Google Scholar 

  • Regensburg-Tuink AJG, Hooykaas PJJ (1993) Transgenic N. glauca plants ex-pressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 363: 69-71

    PubMed  CAS  Google Scholar 

  • Relic B, Andjelkovic M, Rossi L, Nagamine Y, Hohn B (1998) Interaction of the DNA modifying proteins VirD1 and VirD2 of Agrobacterium tumefaciens: analysis by subcellular localization in mammalian cells. Proc Natl Acad Sci USA 95: 9105-9110

    PubMed  CAS  Google Scholar 

  • Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant’s own genome. Plant Physiol 135: 421-431

    PubMed  CAS  Google Scholar 

  • Rossi L, Hohn B, Tinland B (1993) The VirD2 protein of Agrobacterium tumefa-ciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol Gen Genet 239: 345-353

    PubMed  CAS  Google Scholar 

  • Rossi L, Hohn B, Tinland B (1996) Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefa-ciens. Proc Natl Acad Sci USA 93: 126-130

    PubMed  CAS  Google Scholar 

  • Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M, Scherzinger E (1989) Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 75: 271-288

    PubMed  CAS  Google Scholar 

  • Segal G, Russo JJ, Shuman HA (1999) Relationships between a new type IV se-cretion system and the icm/dot virulence system of Legionella pneumophila. Mol Microbiol 34: 799-809

    PubMed  CAS  Google Scholar 

  • Segal G, Shuman HA (1998) Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol Microbiol 30: 197-208

    PubMed  CAS  Google Scholar 

  • Sen P, Pazour GJ, Anderson D, Das A (1989) Cooperative binding of Agrobacte-rium tumefaciens VirE2 protein to single-stranded DNA. J Bacteriol 171: 2573-2580

    PubMed  CAS  Google Scholar 

  • Shaw CH, Watson MD, Carter GH (1984) The right hand copy of the nopaline Ti-plasmid 25 bp repeat is required for tumour formation. Nucleic Acids Res 12: 6031-6041

    PubMed  CAS  Google Scholar 

  • Sheng J, Citovsky V (1996) Agrobacterium-plant cell interaction: have virulence proteins - will travel. Plant Cell 8: 1699-1710

    PubMed  CAS  Google Scholar 

  • Shurvinton CE, Hodges L, Ream W (1992) A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonu-clease are important for tumor formation. Proc Natl Acad Sci USA 89: 11837-11841

    PubMed  CAS  Google Scholar 

  • Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5: 1445-1454

    PubMed  CAS  Google Scholar 

  • Stachel SE, Timmerman B, Zambryski PC (1986) Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer for Agrobacte-rium tumefaciens to plant cells. Nature 322: 706-712

    CAS  Google Scholar 

  • Stachel SE, Timmerman B, Zambryski PC (1987) Activation of Agrobacterium tumefaciens vir gene expression generates multiple single-stranded T-strand molecules from the pTiA6 T-region: requirement for 5’ virD gene products. EMBO J 6: 857-863

    PubMed  CAS  Google Scholar 

  • Stachel SE, Zambryski PC (1986) Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjuga-tion. Cell 47: 155-157

    PubMed  CAS  Google Scholar 

  • Stahl LE, Jacobs A, Binns AN (1998) The conjugal intermediate of plasmid RSF1010 inhibits Agrobacterium tumefaciens virulence and VirB-dependent export of VirE2. J Bacteriol 180: 3933-3939

    PubMed  CAS  Google Scholar 

  • Sundberg C, Meek L, Carrol K, Das A, Ream W (1996) VirE1 protein mediates export of single-stranded DNA binding protein VirE2 from Agrobacterium tumefaciens into plant cells. J Bacteriol 178: 1207-1212

    PubMed  CAS  Google Scholar 

  • Sundberg CD, Ream W (1999) The Agrobacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction. J Bacteriol 181: 6850-6855

    PubMed  CAS  Google Scholar 

  • Tao Y, Rao PK, Bhattacharjee S, Gelvin SB (2004) Expression of plant protein phosphatase 2C interferes with nuclear import of the Agrobacterium T-complex protein VirD2. Proc Natl Acad Sci USA 101: 5164-5169

    PubMed  CAS  Google Scholar 

  • Thomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW (1980) Integra-tion and organization of Ti plasmid sequences in crown gall tumors. Cell 19: 729-739

    PubMed  CAS  Google Scholar 

  • Tinland B, Hohn B, Puchta H (1994) Agrobacterium tumefaciens transfers single-stranded transferred DNA (T-DNA) into the plant cell nucleus. Proc Natl Acad Sci USA 91: 8000-8004

    PubMed  CAS  Google Scholar 

  • Tinland B, Koukolikova-Nicola Z, Hall MN, Hohn B (1992) The T-DNA-linked VirD2 protein contains two distinct nuclear localization signals. Proc Natl Acad Sci USA 89: 7442-7446

    PubMed  CAS  Google Scholar 

  • Tinland B, Schoumacher F, Gloeckler V, Bravo-Angel AM, Hohn B (1995) The Agrobacterium tumefaciens virulence D2 protein is responsible for precise in-tegration of T-DNA into the plant genome. EMBO J 14: 3585-3595

    PubMed  CAS  Google Scholar 

  • Toro N, Datta A, Carmi OA, Young C, Prusti RK, Nester EW (1989) The Agro-bacterium tumefaciens virC1 gene product binds to Overdrive, a T-DNA transfer enhancer. J Bacteriol 171: 6845-6849

    PubMed  CAS  Google Scholar 

  • Tummuru MK, Sharma SA, Blaser MJ (1995) Helicobacter pylori picB, a homo-logue of the Bordetella pertussis toxin secretion protein, is required for induc-tion of IL-8 in gastric epithelial cells. Mol Microbiol 18: 867-876

    PubMed  CAS  Google Scholar 

  • Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252: 169-170

    PubMed  Google Scholar 

  • Van Lijsebettens M, Inze D, Schell J, Van Montagu M (1986) Transformed cell clones as a tool to study T DNA integration mediated by Agrobacterium tume-faciens. J Mol Biol 188: 129-145

    PubMed  Google Scholar 

  • Veluthambi K, Ream W, Gelvin SB (1988) Virulence genes, borders, and over-drive generate single-stranded T-DNA molecules from the A6 Ti plasmid of Agrobacterium tumefaciens. J Bacteriol 170: 1523-1532

    PubMed  CAS  Google Scholar 

  • Vergunst AC, van Lier MCM, den Dulk-Ras A, Stüve TAG, Ouwehand A, Hooykaas PJJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 102: 832-837

    PubMed  CAS  Google Scholar 

  • Vergunst AC, van Lier MCM, den Dulk-Ras A, Hooykaas PJJ (2003) Recognition of the Agrobacterium VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant Physiol 133: 978-988

    PubMed  CAS  Google Scholar 

  • Vichi P, Coin F, Renaud J-P, Vermeulen W, Hoeijmakers JH, Moras D, Egly J-M (1997) Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J 16: 7444-7456

    PubMed  CAS  Google Scholar 

  • Vogel AM, Das A (1992a) The Agrobacterium tumefaciens virD3 gene is not es-sential for tumorigenicity on plants. 174: 5161-5164

    PubMed  CAS  Google Scholar 

  • Vogel AM, Das A (1992b) Mutational analysis of Agrobacterium tumefaciens virD2: tyrosine 29 is essential for endonuclease activity. J Bacteriol 174: 303-308

    PubMed  CAS  Google Scholar 

  • Vogel JP, Andrews HL, Wong SK, Isberg RR (1998) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279: 873-876

    PubMed  CAS  Google Scholar 

  • Wang K, Herrera-Estrella A, Van Montagu M (1990) Overexpression of virD1 and virD2 genes in Agrobacterium tumefaciens enhances T-complex forma-tion and plant transformation. J Bacteriol 172: 4432-4440

    PubMed  CAS  Google Scholar 

  • Wang K, Herrera-Estrella L, Van Montagu M, Zambryski PC (1984) Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines di-rection of DNA transfer from Agrobacterium to the plant genome. Cell 38: 455-462

    PubMed  CAS  Google Scholar 

  • Wang K, Stachel SE, Timmerman B, Van Montagu M, Zambryski PC (1987) Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235: 587-591

    PubMed  CAS  Google Scholar 

  • Ward ER, Barnes WM (1988) VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5’ end of T-strand DNA. Science 242: 927-930

    CAS  Google Scholar 

  • Watson B, Currier TC, Gordon MP, Chilton M-D, Nester EW (1975) Plasmid re-quired for virulence of Agrobacterium tumefaciens. J Bacteriol 123: 255-264

    PubMed  CAS  Google Scholar 

  • Weiss AA, Johnson FD, Burns DL (1993) Molecular characterization of an operon required for pertussis toxin secretion. Proc Natl Acad Sci USA 90: 2970-2974

    PubMed  CAS  Google Scholar 

  • Willmitzer L, De Beuckeleer M, Lemmers M, Van Montagu M, Schell J (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plants. Nature 287: 359-361

    CAS  Google Scholar 

  • Willmitzer L, Simons G, Schell J (1982) The TL-DNA in octopine crown-gall tu-mours codes for seven well-defined polyadenylated transcripts. EMBO J 1: 139-146

    PubMed  CAS  Google Scholar 

  • Winans SC (1992) Two-way chemical signalling in Agrobacterium-plant interac-tions. Microbiol Rev 56: 12-31

    PubMed  CAS  Google Scholar 

  • Winans SC, Allenza P, Stachel SE, McBride KE, Nester EW (1987) Characteriza-tion of the virE operon of the Agrobacterium Ti plasmid pTiA6. Nucleic Acids Res 15: 825-837

    PubMed  CAS  Google Scholar 

  • Winans SC, Burns DL, Christie PJ (1996) Adaptation of a conjugal transfer sys-tem for the export of pathogenic macromolecules. Trends Microbiol 4: 64-68

    PubMed  CAS  Google Scholar 

  • Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida Jr. NF, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee Sr. D, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri P, Raymond C, Rouse R, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 2317-2323

    PubMed  CAS  Google Scholar 

  • Yanofsky MF, Porter SG, Young C, Albright LM, Gordon MP, Nester EW (1986) The virD operon of Agrobacterium tumefaciens encodes a site-specific en-donuclease. Cell 47: 471-477

    PubMed  CAS  Google Scholar 

  • Young C, Nester EW (1988) Association of the VirD2 protein with the 5’ end of T-strands in Agrobacterium tumefaciens. J Bacteriol 170: 3367-3374

    PubMed  CAS  Google Scholar 

  • Yusibov VM, Steck TR, Gupta V, Gelvin SB (1994) Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Proc Natl Acad Sci USA 91: 2994-2998

    PubMed  CAS  Google Scholar 

  • Zambryski P, Holsters M, Kruger K, Depicker A, Schell J, Van Montagu M, Goodman HM (1980) Tumor DNA structure in plant cells transformed by A. tumefaciens. Science 209: 1385-1391

    PubMed  CAS  Google Scholar 

  • Zhou XR, Christie PJ (1999) Mutagenesis of the Agrobacterium VirE2 single-stranded DNA-binding protein identifies regions required for self-association and interaction with VirE1 and a permissive site for hybrid protein construc-tion. J Bacteriol 181: 4342-4352

    PubMed  CAS  Google Scholar 

  • Zhu J, Oger PM, Schrammeijer B, Hooykaas PJJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182: 3885-3895

    PubMed  CAS  Google Scholar 

  • Zhu Y, Nam J, Humara JM, Mysore KS, Lee LY, Cao H, Valentine L, Li J, Kaiser AD, Kopecky AL, Hwang HH, Bhattacharjee S, Rao PK, Tzfira T, Rajagopal J, Yi H, Veena, Yadav BS, Crane YM, Lin K, Larcher Y, Gelvin MJ, Knue M, Ramos C, Zhao X, Davis SJ, Kim SI, Ranjith-Kumar CT, Choi YJ, Hallan VK, Chattopadhyay S, Sui X, Ziemienowicz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132: 494-505

    PubMed  CAS  Google Scholar 

  • Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L (2001) Import of Agrobacterium T-DNA into plant nuclei: Two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13: 369-384

    PubMed  CAS  Google Scholar 

  • Ziemienowicz A, Tinland B, Bryant J, Gloeckler V, Hohn B (2000) Plant enzymes but not Agrobacterium VirD2 mediate T-DNA ligation in vitro. Mol Cell Biol 20: 6317-6322

    PubMed  CAS  Google Scholar 

  • Zupan J, Citovsky V, Zambryski PC (1996) Agrobacterium VirE2 protein medi-ates nuclear uptake of single-stranded DNA in plant cells. Proc Natl Acad Sci USA 93: 2392-2397

    PubMed  CAS  Google Scholar 

  • Zupan J, Zambryski PC (1997) The Agrobacterium DNA transfer complex. Crit Rev Plant Sci 16: 279-295

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ream, W. (2008). Production of a Mobile T-DNA by Agrobacterium Tumefaciens. In: Tzfira, T., Citovsky, V. (eds) Agrobacterium: From Biology to Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72290-0_8

Download citation

Publish with us

Policies and ethics