The Initial Steps in Agrobacterium Tumefaciens Pathogenesis: Chemical Biology of Host Recognition

  • Yi-Han Lin
  • Andrew N. Binns
  • David G. Lynn

The biology of host recognition in Agrobacterium tumefaciens has set the tone for host interactions and xenognosis for several decades, and the twists and turns of the discoveries provide many valuable lessons and insights. From transposon mutagenesis enabling discovery of the initial chemical exchanges to two-component signal transduction and receptor identification, this organism continues to enrich our understanding of chemical ecology and pathogenic strategies. The complexity of the host commitment and the intricate nature of the evolved machinery remains awe inspiring. This system is now poised with the necessary chemical and biological resources, for both host and parasite, to reveal the detailed chemical biology that occurs within the host tissues. Here we review our current understanding of the signal exchanges, and highlight the many questions that remain to be addressed. We use this perspective to set the stage for the rich chemical biology this organism continues to offer.


Agrobacterium Tumefaciens Histidine Kinase Receiver Domain Linker Domain Periplasmic Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Aravind L, Ponting CP (1997) The GAF domain: an evolutionary link between di-verse phototransducing proteins. Trends Biochem Sci 22: 458-459CrossRefPubMedGoogle Scholar
  2. Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokary-otic signalling proteins. FEMS Microbiol Lett 176: 111-116CrossRefPubMedGoogle Scholar
  3. Braun AC (1952) Conditioning of the host cell as a factor in the transformation process in crown gall. Growth 16: 65-74PubMedGoogle Scholar
  4. Brencic A, Angert ER, Winans SC (2005) Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumor free. Mol Microbiol 57: 1522-1531CrossRefPubMedGoogle Scholar
  5. Brencic A, Xia Q, Winans SC (2004) VirA of Agrobacterium tumefaciens is an in-tradimer transphosphorylase and can actively block vir gene expression in the absence of phenolic signals. Mol Microbiol 52: 1349-1362CrossRefPubMedGoogle Scholar
  6. Campbell AM, Tok JB, Zhang J, Wang Y, Stein M, Lynn DG, Binns AN (2000) Xenognosin sensing in virulence: is there a phenol receptor in Agrobacterium tumefaciens? Chemistry & Biology 7: 65-76CrossRefGoogle Scholar
  7. Cangelosi GA, Ankenbauer RG, Nester EW (1990) Sugars induce the Agrobacte-rium virulence genes through a periplasmic binding protein and a transmem-brane signal protein. Proc Natl Acad Sci USA 87: 6708-6712CrossRefPubMedGoogle Scholar
  8. Chang CH, Winans SC (1992) Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bac-teriol 174: 7033-7039Google Scholar
  9. Chang CH, Winans SC (1996) Resection and mutagenesis of the acid pH-inducible P2 promoter of the Agrobacterium tumefaciens virG gene. J Bacte-riol 178: 4717-4720Google Scholar
  10. Chang CH, Zhu J, Winans SC (1996) Pleiotropic phenotypes caused by genetic ablation of the receiver module of the Agrobacterium tumefaciens VirA pro-tein. J Bacteriol 178: 4710-4716PubMedGoogle Scholar
  11. Charles TC, Jin S, Nester EW (1992) Two-component sensory transduction sys-tems in Phytobacteria. Ann Rev Phyto 30: 463-484CrossRefGoogle Scholar
  12. De Greve H, Dhaese P, Seurinck J, Lemmers M, Van Montagu M, Schell J (1982) Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene. J Mol Appl Genet 1: 499-511PubMedGoogle Scholar
  13. Dixon RA, Chen F, Guo D, Parvath K (2001) The biosynthesis of monolignols: a metabolic grid or independent pathways to guaiacyl and syringal units. Phyto-chemistry 57: 1069Google Scholar
  14. Duban ME, Lee KH, Lynn DG (1993) Strategies in pathogenesis: mechanistic specificity in the detection of generic signals. Mol Microbiol 7: 637-645CrossRefPubMedGoogle Scholar
  15. Dye F, Delmotte FM (1997) Purification of a protein from Agrobacterium tumefa-ciens strain A348 that binds phenolic compounds. Biochem J 321: 319-324PubMedGoogle Scholar
  16. Engstrom P, Zambryski P, Van Montagu M, Stachel SE (1987) Characterization of Agrobacterium tumefaciens virulence proteins induced by the plant factor acetosyringone. J Mol Biol 197: 635-645CrossRefPubMedGoogle Scholar
  17. Escudero J, Hohn B (1997) Transfer and integration of T-DNA without cell injury in the host plant. Plant Cell 9: 2135-2142CrossRefPubMedGoogle Scholar
  18. Falke JJ, Hazelbauer GL (2001) Transmembrane signaling in bacterial chemore-ceptors. Trends Biochem Sci 26: 257-265CrossRefPubMedGoogle Scholar
  19. Gao R, Lynn DG (2005) Environmental pH sensing: resolving the VirA/VirG two-component system inputs for Agrobacterium pathogenesis. J Bacteriol 187: 2182-2189CrossRefPubMedGoogle Scholar
  20. Gao R, Lynn DG (2007) Integration of rotation and piston motions in coiled-coil signal transduction. J Bacteriol 189: 6048-6056CrossRefPubMedGoogle Scholar
  21. Gao R, Mukhopadhyay A, Fang F, Lynn DG (2006) Constitutive activation of two-component response regulators: characterization of VirG activation in Agrobacterium tumefaciens. J Bacteriol 188: 5204-5211CrossRefPubMedGoogle Scholar
  22. Gong W, Hao B, Mansy SS, Gonzalez G, Gilles-Gonzalez MA, Chan MK (1998) Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc Natl Acad Sci USA 95: 15177-15182CrossRefPubMedGoogle Scholar
  23. Gubba S, Xie Y, Das A (2005) Regulation of Agrobacterium tumefaciens viru-lence gene expression: isolation of a mutation that restores virGD52E func-tion. Mol Plant Microbe Interact 8: 788-791Google Scholar
  24. Ho Y-S, Burden LM, Hurley JH (2000) Structure of the GAF domain, a ubiqui-tous signaling motif and a new class of cyclic GMP receptor. EMBO J 19: 5288-5299CrossRefPubMedGoogle Scholar
  25. Hulko M, Berndt F, Gruber M, Linder JU, Truffault V, Schultz A, Martin J, Schultz JE, Lupas AN, Coles M (2006) The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 126: 929-940CrossRefPubMedGoogle Scholar
  26. Jin SG, Roitsch T, Christie PJ, Nester EW (1990) The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcrip-tional activation of Agrobacterium tumefaciens virulence genes. J Bacteriol 172: 531-537PubMedGoogle Scholar
  27. Joubert P, Beaupere D, Lelievre P, Wadouachi A, Sangwan RS, Sangwan-Norreel BS (2002) Effects of phenolic compounds on Agrobacterium vir genes and gene transfer induction - a plausible molecular mechanism of phenol binding protein activation. Plant Sci 162: 733-743CrossRefGoogle Scholar
  28. Kenney LJ, Bauer MD, Silhavy TJ (1995) Phosphorylation-dependent conforma-tional changes in OmpR, an osmoregulatory DNA-binding protein of Es-cherichia coli. Proc Natl Acad Sci USA 92: 8866-8870CrossRefPubMedGoogle Scholar
  29. Klee HJ, White FF, Iyer VN, Gordon MP, Nester EW (1983) Mutational analysis of the virulence region of an Agrobacterium tumefaciens Ti plasmid. J Bacte-riol 153: 878-883Google Scholar
  30. Kwon O, Georgellis D, Lin ECC (2003) Rotational on-off switching of a hybrid membrane sensor kinase Tar-ArcB in Escherichia coli. J Biol Chem 278: 13192-13195CrossRefPubMedGoogle Scholar
  31. Lee K (1997) A structure-based activation model of phenol-receptor protein inter-actions. Bull Korean Chem Soc 18: 18-23Google Scholar
  32. Lee K, Dudley MW, Hess KM, Lynn DG, Joerger RD, Binns AN (1992) Mecha-nism of activation of Agrobacterium virulence genes: Identification of phenol-binding proteins. Proc Natl Acad Sci USA 89: 8666-8670CrossRefPubMedGoogle Scholar
  33. Lee Y-W, Jin S, Sim W-S, Nester EW (1995) Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 92: 12245-12249CrossRefPubMedGoogle Scholar
  34. Lee Y-W, Jin S, Sim WS, Nester EW (1996) The sensing of plant signal mole-cules by Agrobacterium: genetic evidence for direct recognition of phenolic inducers by the VirA protein. Gene 179: 83-88CrossRefPubMedGoogle Scholar
  35. Li L, Jia Y, Hou Q, Charles TC, Nester EW, Pan SQ (2002) A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci USA 99: 12369-12374CrossRefPubMedGoogle Scholar
  36. Lohrke SM, Nechaev S, Yang H, Severinov K, Jin SJ (1999) Transcriptional acti-vation of Agrobacterium tumefaciens virulence gene promoters in Escherichia coli requires the A. tumefaciens RpoA gene, encoding the alpha subunit of RNA polymerase. J Bacteriol 181: 4533-4539PubMedGoogle Scholar
  37. Lohrke SM, Yang H, Jin S (2001) Reconstitution of acetosyringone-mediated Agrobacterium tumefaciens virulence gene expression in the heterologous host Escherichia coli. J Bacteriol 183: 3704-3711CrossRefPubMedGoogle Scholar
  38. Makino K, Amemura M, Kim SK, Nakata A, Shinagawa H (1993) Role of the sigma 70 subunit of RNA polymerase in transcriptional activation by activator protein PhoB in Escherichia coli. Genes Dev 7: 149-160CrossRefPubMedGoogle Scholar
  39. Mantis NJ, Winans SC (1992) The Agrobacterium tumefaciens vir gene transcrip-tional activator virG is transcriptionally induced by acid pH and other stress stimuli. J Bacteriol 174: 1189-1196PubMedGoogle Scholar
  40. Marina A, Waldburger CD, Hendrickson WA (2005) Structure of the entire cyto-plasmic portion of a sensor histidine-kinase protein. EMBO J 24: 4247-4259CrossRefPubMedGoogle Scholar
  41. Matsuda F, Morino K, Miyashita M, Miyagawa H (2003) Metabolic flux analysis of the phenylpropanoid pathway in wound-healing potato tuber tissue using stable isotope-labeled tracer and LC-MS spectroscopy. Plant Cell Physiol 44: 510-517CrossRefPubMedGoogle Scholar
  42. Melchers LS, Regensburg-Tuink AJG, Schilperoort RA, Hooykaas PJJ (1989a) Specify of signal molecules in the activation of Agrobacterium virulence gene-expression. Molecular Microbiology 3: 969-977CrossRefPubMedGoogle Scholar
  43. Melchers LS, Regensburg-Tuink TJ, Bourret RB, Sedee NJ, Schilperoort RA, Hooykaas PJ (1989b) Membrane topology and functional analysis of the sen-sory protein VirA of Agrobacterium tumefaciens. EMBO J 8: 1919-1925PubMedGoogle Scholar
  44. Mukhopadhyay A, Gao R, Lynn DG (2004) Integrating input from multiple sig-nals: the VirA/VirG two-component system of Agrobacterium tumefaciens. Chembiochem 5: 1535-1542CrossRefPubMedGoogle Scholar
  45. Ottemann KM, Xiao W, Shin YK, Koshland DE, Jr. (1999) A piston model for transmembrane signaling of the aspartate receptor. Science 285: 1751-1754CrossRefPubMedGoogle Scholar
  46. Palmer AG, Gao R, Maresh J, Erbil WK, Lynn DG (2004) Chemical biology of multi-host/pathogen interactions: chemical perception and metabolic complementation. Annu Rev Phytopathol 42: 439-464CrossRefPubMedGoogle Scholar
  47. Pan SQ, Charles T, Jin S, Wu ZL, Nester EW (1993) Preformed dimeric state of the sensor protein VirA is involved in plant-Agrobacterium signal transduc-tion. Proc Natl Acad Sci USA 90: 9939-9943CrossRefPubMedGoogle Scholar
  48. Peng WT, Lee YW, Nester EW (1998) The phenolic recognition profiles of the Agrobacterium tumefaciens VirA protein are broadened by a high level of the sugar binding protein ChvE. J Bacteriol 180: 5632-5638PubMedGoogle Scholar
  49. Perego M, Hoch JA (1996) Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genet 12: 97-101CrossRefPubMedGoogle Scholar
  50. Ponting CP, Aravind L (1997) PAS: a multifunctional domain family comes to light. Curr Biol 7: R674-677CrossRefPubMedGoogle Scholar
  51. Ricagno S, Campanacci V, Blangy S, Spinelli S, Tremblay D, Moineau S, Tegoni M, Cambillau C (2006) Crystal structure of the receptor-binding protein head domain from Lactococcus lactis phage bIL170. J Virol 80: 9331-9335CrossRefPubMedGoogle Scholar
  52. Robinson VL, Buckler DR, Stock AM (2000) A tale of two components: a novel kinase and a regulatory switch. Nat Struct Biol 7: 626-633CrossRefPubMedGoogle Scholar
  53. Robinson VL, Wu T, Stock AM (2003) Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. J Bacteriol 185: 4186-4194CrossRefPubMedGoogle Scholar
  54. Scheeren-Groot EP, Rodenburg KW, den Dulk-Ras A, Turk SC, Hooykaas PJ (1994) Mutational analysis of the transcriptional activator VirG of Agrobacte-rium tumefaciens. J Bacteriol 176: 6418-6426PubMedGoogle Scholar
  55. Shimoda N, Toyoda-Yamamoto A, Aoki S, Machida Y (1993) Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J Biol Chem 268: 26552-26558PubMedGoogle Scholar
  56. Shimoda N, Toyoda-Yamamoto A, Nagamine J, Usami S, Katayama M, Sakagami Y, Machida Y (1990) Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci USA 87: 6684-6688CrossRefPubMedGoogle Scholar
  57. Stachel SE, An G, Flores C, Nester EW (1985a) A Tn3 lacZ transposon for the random generation of beta-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. EMBO J 4: 891-898PubMedGoogle Scholar
  58. Stachel SE, Messens E, Van Montagu M, Zambryski PC (1985b) Identification of the signal molecules produced by wounded plant cell that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624-629CrossRefGoogle Scholar
  59. Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5: 1445-1454PubMedGoogle Scholar
  60. Stachel SE, Nester EW, Zambryski PC (1986) A plant cell factor induces Agro-bacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 83: 379-383CrossRefPubMedGoogle Scholar
  61. Stachel SE, Zambryski PC (1986) virA and virG control the plant-induced activa-tion of the T-DNA transfer process of A. tumefaciens. Cell 46: 325-333CrossRefPubMedGoogle Scholar
  62. Stephenson K, Lewis RJ (2005) Molecular insights into the initiation of sporula-tion in Gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiol Rev 29: 281-301CrossRefPubMedGoogle Scholar
  63. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduc-tion. Annu Rev Biochem 69: 183-215CrossRefPubMedGoogle Scholar
  64. Toyoda-Yamamoto A, Shimoda N, Machida Y (2000) Genetic analysis of the signal-sensing region of the histidine protein kinase VirA of Agrobacterium tumefaciens. Mol Gen Genet 263: 939-947CrossRefPubMedGoogle Scholar
  65. Tremblay DM, Tegoni M, Spinelli S, Campanacci V, Blangy S, Huyghe C, Desmyter A, Labrie S, Moineau S, Cambillau C (2006) Receptor-binding pro-tein of Lactococcus lactis phages: identification and characterization of the saccharide receptor-binding site. J Bacteriol 188: 2400-2410CrossRefPubMedGoogle Scholar
  66. Varughese KI (2002) Molecular recognition of bacterial phosphorelay proteins. Curr Opin Microbiol 5: 142-148CrossRefPubMedGoogle Scholar
  67. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Cell Biol 5: 1024-1037CrossRefGoogle Scholar
  68. Wang Y, Gao R, Lynn DG (2002) Ratcheting up vir gene expression in Agrobac-terium tumefaciens: coiled coils in histidine kinase signal transduction. Chembiochem 3: 311-317CrossRefPubMedGoogle Scholar
  69. West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26: 369-376CrossRefPubMedGoogle Scholar
  70. Williams SB, Stewart V (1999) Functional similarities among two-component sensors and methyl-accepting chemotaxis proteins suggest a role for linker re-gion amphipathic helices in transmembrane signal transduction. Molecular Microbiology 33: 1093-1102CrossRefPubMedGoogle Scholar
  71. Winans SC (1991) An Agrobacterium two-component regulatory system for the detection of chemicals released from plant wounds. Mol Microbiol 5: 2345-2350CrossRefPubMedGoogle Scholar
  72. Winans SC, Kerstetter RA, Nester EW (1988) Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bacteriol 170: 4047-4054PubMedGoogle Scholar
  73. Wise AA, Voinov L, Binns AN (2005) Intersubunit complementation of sugar signal transduction in VirA heterodimers and posttranslational regulation of VirA activity in Agrobacterium tumefaciens. J Bacteriol 187: 213-223CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yi-Han Lin
    • 1
  • Andrew N. Binns
    • 2
  • David G. Lynn
    • 1
  1. 1.Center for Fundamental and Applied Molecular Evolution, Departments of Chemistry and BiologyEmory UniversityAtlantaUSA
  2. 2.Department of Biology, Plant Sciences InstituteUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations