The Agrobacterium Tumefaciens C58 Genome

  • Steven C. Slater
  • Brad W. Goodner
  • João C. Setubal
  • Barry S. Goldman
  • Derek W. Wood
  • Eugene W. Nester

Agrobacterium is a bacterial plant pathogen capable of transferring a specific fragment of DNA, called the T-DNA, into plants and other organisms. Once in a eukaryotic cell, the T-DNA moves to the nucleus and integrates into the genome at an essentially random location. T-DNA integration generally leads to tumor formation in the plant host, and Agrobacterium’s ability to transfer DNA has been adapted as an important tool for mutagenesis and genetic engineering of plants and fungi. Agrobacterium tumefaciens C58 was the first species of Agrobacterium to have a fully-sequenced genome, and the sequence data are catalyzing expansion of A. tumefaciens research beyond its traditional focus on plant pathogenesis and T-DNA transfer. This chapter reviews many of the findings of the original genome publications and discusses many new insights derived from the availability of the genome sequence.


Agrobacterium Tumefaciens Insertion Sequence Hairpin Loop Circular Chromosome Linear Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

14 References

  1. Abella M, Erill I, Jara M, Mazon G, Campoy S, Barbe J (2004) Widespread distri-bution of a lexA-regulated DNA damage-inducible multiple gene cassette in the Proteobacteria phylum. Mol Microbiol 54: 212-222PubMedCrossRefGoogle Scholar
  2. Allardet-Servent A, Michaux-Charachon S, Jumas-Bilak E, Karayan L, Ramuz M (1993) Presence of one linear and one circular chromosome in the Agrobacte-rium tumefaciens C58 genome. J Bacteriol 175: 7869-7874PubMedGoogle Scholar
  3. Almiron M, Link AJ, Furlong D, Kolter R (1992) A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6: 2646-2654PubMedCrossRefGoogle Scholar
  4. Ashby AM, Watson MD, Loake GJ, Shaw CH (1988) Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing pheno-lic compounds and soluble factors from monocotyledonous and dicotyledo-nous plants. J Bacteriol 170: 4181-4187PubMedGoogle Scholar
  5. Baek CH, Farrand SK, Park DK, Lee KE, Hwang W, Kim KS (2005) Genes for utilization of deoxyfructosyl glutamine (DFG), an amadori compound, are widely dispersed in the family Rhizobiaceae. FEMS Microbiol Ecol 53: 221-233PubMedCrossRefGoogle Scholar
  6. Baek SH, Shapleigh JP (2005) Expression of nitrite and nitric oxide reductases in free-living and plant-associated Agrobacterium tumefaciens C58 cells. Appl Environ Microbiol 71: 4427-4436PubMedCrossRefGoogle Scholar
  7. Balsiger S, Ragaz C, Baron C, Narberhaus F (2004) Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens. J Bacteriol 186: 6824-6829PubMedCrossRefGoogle Scholar
  8. Bao K, Cohen SN (2003) Recruitment of terminal protein to the ends of Strepto-myces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes Dev 17: 774-785PubMedCrossRefGoogle Scholar
  9. Baron C, Domke N, Beinhofer M, Hapfelmeier S (2001) Elevated temperature dif-ferentially affects virulence, VirB protein accumulation, and T-pilus forma-tion in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol 183: 6852-6861PubMedCrossRefGoogle Scholar
  10. Bartosik D, Baj J, Piechucka E, Waker E, Wlodarczyk M (2002) Comparative characterization of repABC-type replicons of Paracoccus pantotrophus com-posite plasmids. Plasmid 48: 130-141PubMedCrossRefGoogle Scholar
  11. Bevan MW, Chilton M-D (1982) T-DNA of the Agrobacterium Ti and Ri plas-mids. Annu Rev Genet 16: 357-384PubMedCrossRefGoogle Scholar
  12. Binns AN, Thomashow MF (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42: 575-606CrossRefGoogle Scholar
  13. Borucki B, von Stetten D, Seibeck S, Lamparter T, Michael N, Mroginski MA, Otto H, Murgida DH, Heyn MP, Hildebrandt P (2005) Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore. J Biol Chem 280: 34358-34364PubMedCrossRefGoogle Scholar
  14. Boussau B, Karlberg EO, Frank AC, Legault B-A, Andersson SG (2004) Compu-tational inference of scenarios for alpha-proteobacterial genome evolution. Proc Natl Acad Sci USA 101: 9722-9727PubMedCrossRefGoogle Scholar
  15. Brassinga AKC, Siam R, McSween W, Winkler H, Wood D, Marczynski GT (2002) Conserved response regulator CtrA and IHF binding sites in the alpha-proteobacteria Caulobacter crescentus and Rickettsia prowazekii chromoso-mal replication origins. J Bacteriol 184: 5789-5799PubMedCrossRefGoogle Scholar
  16. Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F (2001) Analysis of the chromosome sequence of the legume symbiont Si-norhizobium meliloti strain 1021. Proc Natl Acad Sci USA 98: 9877-9882PubMedCrossRefGoogle Scholar
  17. Casjens S, Murphy M, DeLange M, Sampson L, van Vugt R, Huang WM (1997) Telomeres of the linear chromosomes of Lyme disease spirochaetes: nucleo-tide sequence and possible exchange with linear plasmid telomeres. Mol Microbiol 26: 581-596PubMedCrossRefGoogle Scholar
  18. Ceci P, Ilari A, Falvo E, Chiancone E (2003) The Dps protein of Agrobacterium tumefaciens does not bind to DNA but protects it toward oxidative cleavage: x-ray crystal structure, iron binding, and hydroxyl-radical scavenging proper-ties. J Biol Chem 278: 20319-20326PubMedCrossRefGoogle Scholar
  19. Cevallos MA, Porta H, Izquierdo J, Tun-Garrido C, Garcia-de-los-Santos A, Davila G, Brom S (2002) Rhizobium etli CFN42 contains at least three plas-mids of the repABC family: a structural and evolutionary analysis. Plasmid 48: 104-116PubMedCrossRefGoogle Scholar
  20. Chaconas G (2005) Hairpin telomeres and genome plasticity in Borrelia: all mixed up in the end. Mol Microbiol 58: 625-635PubMedCrossRefGoogle Scholar
  21. Chen LS, Chen YC, Wood DW, Nester EW (2002) A new type IV secretion sys-tem promotes conjugal transfer in Agrobacterium tumefaciens. J Bacteriol 184: 4838-4845PubMedCrossRefGoogle Scholar
  22. Cheneby D, Perrez S, Devroe C, Hallet S, Couton Y, Bizouard F, Iuretig G, Germon JC, Philippot L (2004) Denitrifying bacteria in bulk and maize-rhizospheric soil: diversity and N2O-reducing abilities. Can J Microbiol 50: 469-474PubMedCrossRefGoogle Scholar
  23. Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefa-ciens. Proc Natl Acad Sci USA 103: 7460-7464PubMedCrossRefGoogle Scholar
  24. Cho H, Winans SC (2005) VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical sig-nals. Proc Natl Acad Sci USA 102: 14843-14848PubMedCrossRefGoogle Scholar
  25. Chuchue T, Tanboon W, Prapagdee B, Dubbs JM, Vattanaviboon P, Mongkolsuk S (2006) ohrR and ohr are the primary sensor/regulator and protective genes against organic hydroperoxide stress in Agrobacterium tumefaciens. J Bacte-riol 188: 842-851CrossRefGoogle Scholar
  26. Cooley MB, Kado CI (1991) Mapping of the ros virulence regulatory gene of A. tumefaciens. Mol Gen Genet 230: 24-27PubMedCrossRefGoogle Scholar
  27. Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, Glavina T, Hammon N, Israni S, Pitluck S, Richardson P, Mackenzie C, Choudhary M, Larimer F, Hauser LJ, Land M, Donohue TJ, Kaplan S (2005) Complete Sequence of Chromosome 1 of Rhodobacter sphaeroides 2.4.1. Unpublished, but available via GenBank at
  28. Csonka LN, O’Connor K, Larimer F, Richardson P, Lapidus A, Ewing AD, Goodner BW, and Oren A (2005) What we can deduce about metabolism in the moderate halophile Chromohalobacter salexigens from its genomic se-quence? In NA Oren, A Plemenita, eds, Adaptation To Life At High Salt Concentrations In Archaea, Bacteria, and Eukarya. Springer, DordrechtGoogle Scholar
  29. Das S, Choudhuri K (2003) Identification of a unique IAHP (IcmF-associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol 3: 287-300PubMedGoogle Scholar
  30. De Costa DM, Suzuki K, Yoshida K (2003) Structural and functional analysis of a putative gene cluster for palatinose transport on the linear chromosome of Agrobacterium tumefaciens MAFF301001. J Bacteriol 185: 2369-2373PubMedCrossRefGoogle Scholar
  31. Ding Z, Christie PJ (2003) Agrobacterium tumefaciens twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion. J Bacteriol 185: 760-771PubMedCrossRefGoogle Scholar
  32. Egan ES, Fogel MA, Waldor MK (2005) Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol Microbiol 56: 1129-1138PubMedCrossRefGoogle Scholar
  33. Egan ES, Lobner-Olesen A, Waldor MK (2004) Synchronous replication initiation of the two Vibrio cholerae chromosomes. Curr Biol 14: R501-502PubMedCrossRefGoogle Scholar
  34. Eiamphungporn W, Nakjarung K, Prapagdee B, Vattanaviboon P, Mongkolsuk S (2003) Oxidant-inducible resistance to hydrogen peroxide killing in Agrobac-terium tumefaciens requires the global peroxide sensor-regulator OxyR and KatA. FEMS Microbiol Lett 225: 167-172PubMedCrossRefGoogle Scholar
  35. Fernandez RF, Kunz DA (2005) Bacterial cyanide oxygenase is a suite of en-zymes catalyzing the scavenging and adventitious utilization of cyanide as a nitrogenous growth substrate. J Bacteriol 187: 6396-6402PubMedCrossRefGoogle Scholar
  36. Fu QS, Li F, Chen LL (2005) Gene expression analysis of six GC-rich Gram-negative phytopathogens. Biochem Biophys Res Commun 332: 380-387PubMedCrossRefGoogle Scholar
  37. Fuhrer T, Fischer E, Sauer U (2005) Experimental identification and quantifica-tion of glucose metabolism in seven bacterial species. J Bacteriol 187: 1581-1590PubMedCrossRefGoogle Scholar
  38. Galhardo RS, Rocha RP, Marques MV, Menck CF (2005) An SOS-regulated op-eron involved in damage-inducible mutagenesis in Caulobacter crescentus. Nucleic Acids Res 33: 2603-2614PubMedCrossRefGoogle Scholar
  39. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzy-cki R, Thebault P, Vandenbol M, Vorholter F-J, Weidner S, Wells DH, Wong K, Yeh K-C, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293: 668-672PubMedCrossRefGoogle Scholar
  40. Gonzalez V, Bustos P, Ramirez-Romero MA, Medrano-Soto A, Salgado H, Hernandez-Gonzalez I, Hernandez-Celis JC, Quintero V, Moreno-Hagelsieb G, Girard L, Rodriguez O, Flores M, Cevallos MA, Collado-Vides J, Romero D, Davila G (2003) The mosaic structure of the symbiotic plasmid of Rhizo-bium etli CFN42 and its relation to other symbiotic genome compartments. Genome Biol 4: R36PubMedCrossRefGoogle Scholar
  41. Gonzalez V, Santamaria RI, Bustos P, Hernandez-Gonzalez I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramirez MA, Jimenez-Jacinto V, Collado-Vides J, Davila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 103: 3834-3839PubMedCrossRefGoogle Scholar
  42. Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao YW, Askenazi M, Halling C, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323-2328PubMedCrossRefGoogle Scholar
  43. Goodner BW, Markelz BP, Flanagan MC, Crowell CB, Jr., Racette JL, Schilling BA, Halfon LM, Mellors JS, Grabowski G (1999) Combined genetic and physical map of the complex genome of Agrobacterium tumefaciens. J Bacte-riol 181: 5160-5166Google Scholar
  44. Goshi K, Uchida T, Lezhava A, Yamasaki M, Hiratsu K, Shinkawa H, Kinashi H (2002) Cloning and analysis of the telomere and terminal inverted repeat of the linear chromosome of Streptomyces griseus. J Bacteriol 184: 3411-3415PubMedCrossRefGoogle Scholar
  45. Hamilton RC, Fall MZ (1971) The loss of tumor initiating ability in Agrobacte-rium tumefaciens by incubation at high temperature. Experientia 27: 229-230PubMedCrossRefGoogle Scholar
  46. Harvey M, McMeekin A (2004) Public-private collaborations and the race to sequence Agrobacterium tumefaciens. Nat Biotechnol 22: 807-810PubMedCrossRefGoogle Scholar
  47. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM (2000) DNA sequence of both chromosomes of the cholera patho-gen Vibrio cholerae. Nature 406: 477-483PubMedCrossRefGoogle Scholar
  48. Holden MTG, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, Sebaihia M, Thomson NR, Bason N, Beacham IR, Brooks K, Brown KA, Brown NF, Challis GL, Cherevach I, Chillingworth T, Cronin A, Crossett B, Davis P, DeShazer D, Feltwell T, Fraser A, Hance Z, Hauser H, Holroyd S, Jagels K, Keith KE, Maddison M, Moule S, Price C, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Simmonds M, Songsivilai S, Stevens K, Tumapa S, Vesaratchavest M, Whitehead S, Yeats C, Barrell BG, Oyston PCF, Parkhill J (2004) Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA 101: 14240-14245PubMedCrossRefGoogle Scholar
  49. Hooykaas PJJ, Peerbolte R, Regensburg-Tuink AJ, de Vries P, Schilperoort RA (1982) A chromosomal linkage map of Agrobacterium tumefaciens and a comparison with the maps of Rhizobium spp. Mol Gen Genet 188: 12-17CrossRefGoogle Scholar
  50. Huang WM, Davis J, Ruan Q, Aron J, Goodner B, Pride N, Henry E, Sabo A, Telepak E, Joss L and Casjens S (2006) Linear chromosome end generating system of Agrobacterium tumefaciens C58. SubmittedGoogle Scholar
  51. Inomata K, Hammam MAS, Kinoshita H, Murata Y, Khawn H, Noack S, Michael N, Lamparter T (2005) Sterically locked synthetic bilin derivatives and phyto-chrome Agp1 from Agrobacterium tumefaciens form photoinsensitive Pr- and Pfr-like adducts. J Biol Chem 280: 24491-24497PubMedCrossRefGoogle Scholar
  52. Jahns T, Schepp R, Siersdorfer C, Kaltwasser H (1998) Microbial urea-formaldehyde degradation involves a new enzyme, methylenediurease. Acta Biol Hung 49: 449-454PubMedGoogle Scholar
  53. Jumas-Bilak E, Michaux-Charachon S, Bourg G, Ramuz M, Allardet-Servent A (1998) Unconventional genomic organization in the alpha subgroup of the Proteobacteria. J Bacteriol 180: 2749-2755PubMedGoogle Scholar
  54. Kahng LS, Shapiro L (2001) The CcrM DNA methyltransferase of Agrobacterium tumefaciens is essential, and its activity is cell cycle regulated. J Bacteriol 183: 3065-3075PubMedCrossRefGoogle Scholar
  55. Kahng LS, Shapiro L (2003) Polar localization of replicon origins in the multipar-tite genomes of Agrobacterium tumefaciens and Sinorhizobium meliloti. J Bacteriol 185: 3384-3391PubMedCrossRefGoogle Scholar
  56. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic se-quence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9: 189-197PubMedCrossRefGoogle Scholar
  57. Kanvinde L, Sastry GR (1990) Agrobacterium tumefaciens is a diazotrophic bac-terium. Appl Environ Microbiol 56: 2087-2092PubMedGoogle Scholar
  58. Karlin S (2001) Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol 9: 335-343PubMedCrossRefGoogle Scholar
  59. Karlin S, Barnett MJ, Campbell AM, Fisher RF, Mrazek J (2003) Predicting gene expression levels from codon biases in alpha-proteobacterial genomes. Proc Natl Acad Sci USA 100: 7313-7318PubMedCrossRefGoogle Scholar
  60. Karniol B, Vierstra RD (2003) The pair of bacteriophytochromes from Agrobacte-rium tumefaciens are histidine kinases with opposing photobiological proper-ties. Proc Natl Acad Sci USA 100: 2807-2812PubMedCrossRefGoogle Scholar
  61. Karniol B, Vierstra RD (2004) The HWE histidine kinases, a new family of bacte-rial two-component sensor kinases with potentially diverse roles in environ-mental signaling. J Bacteriol 186: 445-453PubMedCrossRefGoogle Scholar
  62. Kim JG, Park BK, Kim SU, Choi D, Nahm BH, Moon JS, Reader JS, Farrand SK, Hwang I (2006) Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan horse antibiotic that controls crown gall. Proc Natl Acad Sci USA 103: 8846-8851PubMedCrossRefGoogle Scholar
  63. Lamparter T (2004) Evolution of cyanobacterial and plant phytochromes. FEBS Lett 573: 1-5PubMedCrossRefGoogle Scholar
  64. Lamparter T (2006) A computational approach to discovering the functions of bacterial phytochromes by analysis of homolog distributions. BMC Bioinfor-matics 7: 141CrossRefGoogle Scholar
  65. Lamparter T, Michael N (2005) Agrobacterium phytochrome as an enzyme for the production of ZZE bilins. Biochemistry 44: 8461-8469PubMedCrossRefGoogle Scholar
  66. Lamparter T, Michael N, Caspani O, Miyata T, Shirai K, Inomata K (2003) Biliverdin binds covalently to Agrobacterium phytochrome Agp1 via its ring A vinyl side chain. J Biol Chem 278: 33786-33792PubMedCrossRefGoogle Scholar
  67. Lamparter T, Michael N, Mittmann F, Esteban B (2002) Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site. Proc Natl Acad Sci USA 99: 11628-11633PubMedCrossRefGoogle Scholar
  68. LaPointe G, Nautiyal CS, Chilton WS, Farrand SK, Dion P (1992) Spontaneous mutation conferring the ability to catabolize mannopine in Agrobacterium tu-mefaciens. J Bacteriol 174: 2631-2639PubMedGoogle Scholar
  69. Lee DY, Ramos A, Macomber L, Shapleigh JP (2002) Taxis response of various denitrifying bacteria to nitrate and nitrite. Appl Environ Microbiol 68: 2140-2147PubMedCrossRefGoogle Scholar
  70. Lee MH, Bostock RM (2006) Agrobacterium T-DNA-mediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Curr Genet 49: 309-322PubMedCrossRefGoogle Scholar
  71. Lherbet C, Pojer F, Richard SB, Noel JP, Poulter CD (2006) Absence of substrate channeling between active sites in the Agrobacterium tumefaciens IspDF and IspE enzymes of the methyl erythritol phosphate pathway. Biochemistry 45: 3548-3553PubMedCrossRefGoogle Scholar
  72. Li PL, Farrand SK (2000) The replicator of the nopaline-type Ti plasmid pTiC58 is a member of the repABC family and is influenced by the TraR-dependent quorum-sensing regulatory system. J Bacteriol 182: 179-188PubMedCrossRefGoogle Scholar
  73. Liu P, Nester EW (2006) Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proc Natl Acad Sci USA 103: 4658-4662PubMedCrossRefGoogle Scholar
  74. Lopez O, Morera C, Miranda-Rios J, Girard L, Romero D, Soberon M (2001) Regulation of gene expression in response to oxygen in Rhizobium etli: role of FnrN in fixNOQP expression and in symbiotic nitrogen fixation. J Bacte-riol 183: 6999-7006CrossRefGoogle Scholar
  75. Lyi SM, Jafri S, Winans SC (1999) Mannopinic acid and agropinic acid catabo-lism region of the octopine-type Ti plasmid pTi15955. Mol Microbiol 31: 339-347PubMedCrossRefGoogle Scholar
  76. MacLellan SR, Smallbone LA, Sibley CD, Finan TM (2005) The expression of a novel antisense gene mediates incompatibility within the large repABC family of alpha-proteobacterial plasmids. Mol Microbiol 55: 611-623PubMedCrossRefGoogle Scholar
  77. MacLellan SR, Zaheer R, Sartor AL, MacLean AM, Finan TM (2006) Identifica-tion of a megaplasmid centromere reveals genetic structural diversity within the repABC family of basic replicons. Mol Microbiol 59: 1559-1575PubMedCrossRefGoogle Scholar
  78. Marczynski GT, Shapiro L (2002) Control of chromosome replication in Caulo-bacter crescentus. Annu Rev Microbiol 56: 625-656PubMedCrossRefGoogle Scholar
  79. Martinez-Rodriguez S, Las Heras-Vazquez FJ, Clemente-Jimenez JM, Rodriguez-Vico F (2004) Biochemical characterization of a novel hydantoin racemase from Agrobacterium tumefaciens C58. Biochimie 86: 77-81PubMedCrossRefGoogle Scholar
  80. Matthysse AG, Kijne JW (1998) Attachment of Rhizobiaceae to plant cells. In HP Spaink, A Kondorosi, PJJ Hooykaas, eds, The Rhizobiaceae: Molecular Biol-ogy of Model Plant-Associated Bacteria. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 235-249Google Scholar
  81. Matthysse AG, White S, Lightfoot R (1995) Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177: 1069-1075PubMedGoogle Scholar
  82. Meletzus D, Rudnick P, Doetsch N, Green A, Kennedy C (1998) Characterization of the glnK-amtB operon of Azotobacter vinelandii. J Bacteriol 180: 3260-3264PubMedGoogle Scholar
  83. Meloni S, Rey L, Sidler S, Imperial J, Ruiz-Argueso T, Palacios JM (2003) The twin-arginine translocation (Tat) system is essential for Rhizobium-legume symbiosis. Mol Microbiol 48: 1195-1207PubMedCrossRefGoogle Scholar
  84. Miller IS, Fox D, Saeed N, Borland PA, Miles CA, Sastry GR (1986) Enlarged map of Agrobacterium tumefaciens C58 and the location of the chromosomal regions which affect tumorigenicity. Mol Gen Genet 205: 153-159CrossRefGoogle Scholar
  85. Mongkolsuk S, Praituan W, Loprasert S, Fuangthong M, Chamnongpol S (1998) Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomo-nas campestris pv. phaseoli. J Bacteriol 180: 2636-2643PubMedGoogle Scholar
  86. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordonez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secre-tion apparatus. Science 312: 1526-1530PubMedCrossRefGoogle Scholar
  87. Moreno E (1998) Genome evolution within the alpha Proteobacteria: why do some bacteria not possess plasmids and others exhibit more than one different chromosome? FEMS Microbiol Rev 22: 255-275PubMedCrossRefGoogle Scholar
  88. Nair GR, Liu ZU, Binns AN (2003) Re-examining the role of the cryptic plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58. Plant Physiol 133: 989-999PubMedCrossRefGoogle Scholar
  89. Nakjarung K, Mongkolsuk S, Vattanaviboon P (2003) The oxyR from Agrobacte-rium tumefaciens: evaluation of its role in the regulation of catalase and per-oxide responses. Biochem Biophys Res Commun 304: 41-47PubMedCrossRefGoogle Scholar
  90. Natera SH, Guerreiro N, Djordjevic MA (2000) Proteome analysis of differen-tially displayed proteins as a tool for the investigation of symbiosis. Mol Plant Microbe Interact 13: 995-1009PubMedCrossRefGoogle Scholar
  91. Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus F (2001a) A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 29: 4800-4807PubMedCrossRefGoogle Scholar
  92. Nocker A, Krstulovic NP, Perret X, Narberhaus F (2001b) ROSE elements occur in disparate rhizobia and are functionally interchangeable between species. Arch Microbiol 176: 44-51PubMedCrossRefGoogle Scholar
  93. Oberpichler I, Molina I, Neubauer O, Lamparter T (2006) Phytochromes from Agrobacterium tumefaciens: difference spectroscopy with extracts of wild type and knockout mutants. FEBS Lett 580: 437-442PubMedCrossRefGoogle Scholar
  94. Ochiai A, Hashimoto W, Murata K (2006a) A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: Molecular identification of Atu3025 as an exotype family PL-15 alginate lyase. Res Microbiol 157: 642-649PubMedCrossRefGoogle Scholar
  95. Ochiai A, Yamasaki M, Mikami B, Hashimoto W, Murata K (2006b) Crystalliza-tion and preliminary X-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15. Acta Crystallograph Sect F Struct Biol Cryst Commun 62: 486-488CrossRefGoogle Scholar
  96. Page WJ, Dale PL (1986) Stimulation of Agrobacterium tumefaciens growth by Azotobacter vinelandii Ferrisiderophores. Appl Environ Microbiol 51: 451-454PubMedGoogle Scholar
  97. Pappas KM, Winans SC (2003) The RepA and RepB autorepressors and TraR play opposing roles in the regulation of a Ti plasmid repABC operon. Mol Microbiol 49: 441-455PubMedCrossRefGoogle Scholar
  98. Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Read TD, Dodson RJ, Umayam L, Brinkac LM, Beanan MJ, Daugherty SC, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Nelson WC, Ayodeji B, Kraul M, Shetty J, Malek J, Van Aken SE, Riedmuller S, Tettelin H, Gill SR, White O, Salzberg SL, Hoover DL, Lindler LE, Halling SM, Boyle SM, Fraser CM (2002) The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci USA 99: 13148-13153PubMedCrossRefGoogle Scholar
  99. Penyalver R, Oger P, Lopez MM, Farrand SK (2001) Iron-binding compounds from Agrobacterium spp.: biological control strain Agrobacterium rhizogenes K84 produces a hydroxamate siderophore. Appl Environ Microbiol 67: 654-664PubMedCrossRefGoogle Scholar
  100. Perez-Mendoza D, Sepulveda E, Pando V, Munoz S, Nogales J, Olivares J, Soto MJ, Herrera-Cervera JA, Romero D, Brom S, Sanjuan J (2005) Identification of the rctA gene, which is required for repression of conjugative transfer of rhizobial symbiotic megaplasmids. J Bacteriol 187: 7341-7350PubMedCrossRefGoogle Scholar
  101. Pischl DL, Farrand SK (1984) Characterization of transposon Tn5-facilitated do-nor strains and development of a chromosomal linkage map for Agrobacte-rium tumefaciens. J Bacteriol 159: 1-8PubMedGoogle Scholar
  102. Prapagdee B, Eiamphungporn W, Saenkham P, Mongkolsuk S, Vattanaviboon P (2004a) Analysis of growth phase regulated KatA and CatE and their physio-logical roles in determining hydrogen peroxide resistance in Agrobacterium tumefaciens. FEMS Microbiol Lett 237: 219-226PubMedGoogle Scholar
  103. Prapagdee B, Vattanaviboon P, Mongkolsuk S (2004b) The role of a bifunctional catalase-peroxidase KatA in protection of Agrobacterium tumefaciens from menadione toxicity. FEMS Microbiol Lett 232: 217-223PubMedCrossRefGoogle Scholar
  104. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secre-tion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103: 1528-1533PubMedCrossRefGoogle Scholar
  105. Ravin NV, Kuprianov VV, Gilcrease EB, Casjens SR (2003) Bidirectional replica-tion from an internal ori site of the linear N15 plasmid prophage. Nucleic Acids Res 31: 6552-6560PubMedCrossRefGoogle Scholar
  106. Richardson DJ, Berks BC, Russell DA, Spiro S, Taylor CJ (2001) Functional, bio-chemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58: 165-178PubMedCrossRefGoogle Scholar
  107. Richardson JS, Hynes MF, Oresnik IJ (2004) A genetic locus necessary for rham-nose uptake and catabolism in Rhizobium leguminosarum bv. trifolii. J Bacte-riol 186: 8433-8442CrossRefGoogle Scholar
  108. Robertson JL, Holliday T, Matthysse AG (1988) Mapping of Agrobacterium tumefaciens chromosomal genes affecting cellulose synthesis and bacterial attachment to host cells. J Bacteriol 170: 1408-1411PubMedGoogle Scholar
  109. Rondon MR, Ballering KS, Thomas MG (2004) Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology 150: 3857-3866PubMedCrossRefGoogle Scholar
  110. Rosen R, Buttner K, Becher D, Nakahigashi K, Yura T, Hecker M, Ron EZ (2002) Heat shock proteome of Agrobacterium tumefaciens: evidence for new control systems. J Bacteriol 184: 1772-1778PubMedCrossRefGoogle Scholar
  111. Rosen R, Matthysse AG, Becher D, Biran D, Yura T, Hecker M, Ron EZ (2003) Proteome analysis of plant-induced proteins of Agrobacterium tumefaciens. FEMS Microbiol Ecol 44: 355-360PubMedCrossRefGoogle Scholar
  112. Rosen R, Sacher A, Shechter N, Becher D, Buttner K, Biran D, Hecker M, Ron EZ (2004) Two-dimensional reference map of Agrobacterium tumefaciens proteins. Proteomics 4: 1061-1073PubMedCrossRefGoogle Scholar
  113. Rosenberg C, Huguet T (1984) The pAtC58 plasmid of Agrobacterium tumefa-ciens is not essential for tumour induction. Mol Gen Genet 196: 533-536CrossRefGoogle Scholar
  114. Roy AB, Hewlins MJ, Ellis AJ, Harwood JL, White GF (2003) Glycolytic break-down of sulfoquinovose in bacteria: a missing link in the sulfur cycle. Appl Environ Microbiol 69: 6434-6441PubMedCrossRefGoogle Scholar
  115. Sardesai N, Babu CR (2000) Cold stress induces switchover of respiratory path-way to lactate glycolysis in psychrotrophic Rhizobium strains. Folia Micro-biol (Praha) 45: 177-182CrossRefGoogle Scholar
  116. Schuerman PL, Liu JS, Mou H, Dandekar AM (1997) 3-Ketoglycoside-mediated metabolism of sucrose in E. coli as conferred by genes from Agrobacterium tumefaciens. Appl Microbiol Biotechnol 47: 560-565PubMedCrossRefGoogle Scholar
  117. Smith LT, Smith GM, Madkour MA (1990) Osmoregulation in Agrobacterium tumefaciens: accumulation of a novel disaccharide is controlled by osmotic strength and glycine betaine. J Bacteriol 172: 6849-6855PubMedGoogle Scholar
  118. Soberon N, Venkova-Canova T, Ramirez-Romero MA, Tellez-Sosa J, Cevallos MA (2004) Incompatibility and the partitioning site of the repABC basic rep-licon of the symbiotic plasmid from Rhizobium etli. Plasmid 51: 203-216PubMedCrossRefGoogle Scholar
  119. Sonoda H, Suzuki K, Yoshida K (2002) Gene cluster for ferric iron uptake in Agrobacterium tumefaciens MAFF301001. Genes Genet Syst 77: 137-146PubMedCrossRefGoogle Scholar
  120. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GKS, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportun-istic pathogen. Nature 406: 959-964PubMedCrossRefGoogle Scholar
  121. Suksomtip M, Liu P, Anderson T, Tungpradabkul S, Wood DW, Nester EW (2005) Citrate synthase mutants of Agrobacterium are attenuated in virulence and display reduced vir gene induction. J Bacteriol 187: 4844-4852PubMedCrossRefGoogle Scholar
  122. Suzuki K, Hattori Y, Uraji M, Ohta N, Iwata K, Murata K, Kato A, Yoshida K (2000) Complete nucleotide sequence of a plant tumor-inducing Ti plasmid. Gene 242: 331-336PubMedCrossRefGoogle Scholar
  123. Tellez-Sosa J, Soberon N, Vega-Segura A, Torres-Marquez ME, Cevallos MA (2002) The Rhizobium etli cyaC product: characterization of a novel ade-nylate cyclase class. J Bacteriol 184: 3560-3568PubMedCrossRefGoogle Scholar
  124. Trust W (1997) Summary of the Report of the Second International Strategy Meeting on Human Genome Sequencing.Google Scholar
  125. Ugalde JE, Parodi AJ, Ugalde RA (2003) De novo synthesis of bacterial glycogen: Agrobacterium tumefaciens glycogen synthase is involved in glucan initiation and elongation. Proc Natl Acad Sci USA 100: 10659-10663PubMedCrossRefGoogle Scholar
  126. Valladares A, Montesinos ML, Herrero A, Flores E (2002) An ABC-type, high-affinity urea permease identified in cyanobacteria. Mol Microbiol 43: 703-715PubMedCrossRefGoogle Scholar
  127. Venkova-Canova T, Soberon NE, Ramirez-Romero MA, Cevallos MA (2004) Two discrete elements are required for the replication of a repABC plasmid: an antisense RNA and a stem-loop structure. Mol Microbiol 54: 1431-1444PubMedCrossRefGoogle Scholar
  128. Willis LB, Walker GC (1999) A novel Sinorhizobium meliloti operon encodes an alpha-glucosidase and a periplasmic-binding-protein-dependent transport sys-tem for alpha-glucosides. J Bacteriol 181: 4176-4184PubMedGoogle Scholar
  129. Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida Jr. NF, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee Sr. D, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri P, Raymond C, Rouse R, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 2317-2323PubMedCrossRefGoogle Scholar
  130. Wood TK (2002) Active expression of soluble methane monooxygenase from Methylosinus trichosporium OB3b in heterologous hosts. Microbiology 148: 3328-3329PubMedGoogle Scholar
  131. Xu XQ, Li LP, Pan SQ (2001) Feedback regulation of an Agrobacterium catalase gene katA involved in Agrobacterium-plant interaction. Mol Microbiol 42: 645-657PubMedCrossRefGoogle Scholar
  132. Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7: R34PubMedCrossRefGoogle Scholar
  133. Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND (2002) Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem 277: 27689-27696PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Steven C. Slater
    • 1
  • Brad W. Goodner
    • 2
  • João C. Setubal
    • 3
  • Barry S. Goldman
    • 4
  • Derek W. Wood
    • 5
    • 6
  • Eugene W. Nester
    • 5
  1. 1.The Biodesign Institute and Department of Applied Biological SciencesArizona State UniversityMesaUSA
  2. 2.Department of BiologyHiram CollegeHiramUSA
  3. 3.Virginia Bioinformatics Institute and Department of Computer ScienceVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  4. 4.Monsanto CompanySt. LouisUSA
  5. 5.Department of BiologySeattle Pacific UniversitySeattleUSA
  6. 6.Department of MicrobiologyUniversity of WashingtonSeattleUSA

Personalised recommendations