Agrobacterium and Plant Biotechnology

  • Lois M. Banta
  • Maywa Montenegro

Agrobacterium-mediated transformation has revolutionized agriculture as well as basic research in plant molecular biology, by enabling the genetic modification of a wide variety of plant species. Advances in binary vector design and selection strategies, coupled with improvements in regeneration technology and gene delivery mechanisms, have dramatically extended the range of organisms, including grains, that can be transformed. Recent innovations have focused on methods to stack multiple transgenes, to eliminate vector backbone sequences, and to target transgene insertion to specific sites within the host genome. Public unease with the presence of foreign DNA sequences in crop plants has driven the development of completely marker-free transformation technology and molecular strategies for transgene containment. Among the many useful compounds produced in genetically modified plants are biodegradable plastics, primary and secondary metabolites with pharmaceutical properties, and edible vaccines. Crop plant productivity may be improved by introducing genes that enhance soil nutrient utilization or resistance to viral, bacterial, or fungal diseases. Other transgenes have been shown to confer increased tolerance to many of the environmental constraints, including drought, extreme temperature, high salinity, and heavy metal soil contamination, faced by resource-poor farmers attempting to cultivate marginally arable land. Early applications of plant biotechnology focused primarily on traits that benefit farmers in industrialized regions of the world, but recent surveys document the degree to which this pattern is changing in favor of modified crops that contribute to enhanced ecological and human health. Documented decreases in the use of pesticides attributable to genetically engineered plants are harbingers of the health and environmental benefits that can be expected from transgenic crop plants designed to decrease reliance on harmful agrochemicals. As one thread in a network that also includes integrated pest and soil fertility management, a reduced emphasis on monoculture, and traditional crop breeding, plant genetic modification has the potential to help those who currently suffer from inadequate access to a full complement of nutrients. The development of “golden rice” illustrates the possibility to imbue a plant with enhanced nutritional value, but also the challenges posed by intellectual property considerations and the need to introduce novel traits into locally adapted varieties. Implementation of plant genetic modification within a framework of sustainable agricultural development will require increased attention to potential ecological impacts and technology-transcending socioeconomic ramifications. Successful technology transfer initiatives frequently involve collaborations between scientists in developing and industrialized nations; several non-profit agencies have evolved to facilitate formation of these partnerships. Capacity building is a core tenet of many such programs, and new paradigms for incorporation of indigenous knowledge at all stages of decision-making are under development. The complex (and sometimes controversial) social and scientific issues associated with the technology notwithstanding, Agrobacterium-mediated enhancement of agronomic traits provides novel approaches to address commercial, environmental, and humanitarian goals.


Transgenic Plant Genetically Modify Genetically Modify Crop Plant Biotechnology Right Border 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16: 2734-2748PubMedCrossRefGoogle Scholar
  2. Abramovitch RB, Martin GB (2004) Strategies used by bacterial pathogens to suppress plant defenses. Curr Opin Plant Biol 7: 356-364PubMedCrossRefGoogle Scholar
  3. Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10: 594-602PubMedCrossRefGoogle Scholar
  4. Al-Babili S, Beyer P (2005) Golden Rice-five years on the road-five years to go? Trends Plant Sci 10: 565-573PubMedCrossRefGoogle Scholar
  5. Albert H, Dale EC, Lee E, Ow DW (1995) Site specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7: 649-659PubMedCrossRefGoogle Scholar
  6. Alia, Hayashi H, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16: 155-161PubMedCrossRefGoogle Scholar
  7. Al-Kaff NS, Kreike MM, Covey SN, Pitcher R, Page AM, Dale PJ (2000) Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppres-sion of a 35S promoter-regulated transgene. Nat Biotechnol 18: 995-999PubMedCrossRefGoogle Scholar
  8. Altenbach SB, Kuo CC, Staraci LC, Pearson KW, Wainwright C, Georgescu A, Townsend J (1992) Accumulation of a Brazil nut albumin in seeds of trans-genic canola results in enhanced levels of seed protein methionine. Plant Mol Biol 18: 235-245PubMedCrossRefGoogle Scholar
  9. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258PubMedCrossRefGoogle Scholar
  10. Arntzen C, Plotkin S, Dodet B (2005) Plant-derived vaccines and antibodies: po-tential and limitations. Vaccine 23: 1753-1756PubMedCrossRefGoogle Scholar
  11. Atkinson HJ, Green J, Cowgill S, Levesley A (2001) The case for genetically modified crops with a poverty focus. Trends Biotechnol 19: 91-96PubMedCrossRefGoogle Scholar
  12. Baertlein DA, Lindow SE, Panopoulos NJ, Lee SP, Mindrinos MN, Chen TH (1992) Expression of a bacterial ice nucleation gene in plants. Plant Physiol 100: 1730-1736PubMedCrossRefGoogle Scholar
  13. Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276: 726-733PubMedCrossRefGoogle Scholar
  14. Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch D (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA 98: 2899-2904PubMedCrossRefGoogle Scholar
  15. Bardor M, Faye L, Lerouge P (1999) Analysis of the N-glycosylation of recombi-nant glycoproteins produced in transgenic plants. Trends Plant Sci 4: 376-380PubMedCrossRefGoogle Scholar
  16. Bartels D (2001) Targeting detoxification pathways: an efficient approach to ob-tain plants with multiple stress tolerance? Trends Plant Sci 6: 284-286PubMedCrossRefGoogle Scholar
  17. Barton KA, Binns AN, Matzke AJ, Chilton M-D (1983) Regeneration of intact to-bacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32: 1033-1043PubMedCrossRefGoogle Scholar
  18. Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23: 57-62PubMedCrossRefGoogle Scholar
  19. Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier MT, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inzé D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112: 1479-1490PubMedGoogle Scholar
  20. Baulcombe D (1994) Replicase-mediated resistance: a novel type of virus resis-tance in transgenic plants? Trends Microbiol 2: 60-63PubMedCrossRefGoogle Scholar
  21. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sciences 316: 1194-1199Google Scholar
  22. Beck DL, Van Dolleweerd CJ, Lough TJ, Balmori E, Voot DM, Andersen MT, O’Brien IE, Forster RL (1994) Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block. Proc Natl Acad Sci USA 91: 10310-10314PubMedCrossRefGoogle Scholar
  23. Bevan MW (1984) Binary Agrobacterium vectors for plant transformation. Nu-cleic Acids Res 12: 8711-8720CrossRefGoogle Scholar
  24. Bevan MW, Flavell RB, Chilton M-D (1983) A chimeric antibiotic resistance gene as a selectable marker for plant transformation. Nature 304: 184-187CrossRefGoogle Scholar
  25. Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous or-ganomercurials by genetically engineered plants. Nat Biotechnol 18: 213-217PubMedCrossRefGoogle Scholar
  26. Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of me-thylmercury pollution: merB expression in Arabidopsis thaliana confers resis-tance to organomercurials. Proc Natl Acad Sci USA 96: 6808-6813PubMedCrossRefGoogle Scholar
  27. Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey RN, Willmitzer L (2000) Transgenic Arabidopsis plants can accu-mulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta 211: 841-845PubMedCrossRefGoogle Scholar
  28. Borisjuk N, Borisjuk L, Komarnytsky S, Timeva S, Hemleben V, Gleba Y, Raskin I (2000) Tobacco ribosomal DNA spacer element stimulates amplification and expression of heterologous genes. Nat Biotechnol 18: 1303-1306PubMedCrossRefGoogle Scholar
  29. Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellu-losics: a better control of synthesis for new and improved uses. Trends Plant Sci 8: 576-581PubMedCrossRefGoogle Scholar
  30. Bouwmeester HJ (2006) Engineering the essence of plants. Nat Biotechnol 24: 1359-1361PubMedCrossRefGoogle Scholar
  31. Brinch-Pedersen H, Sørensen LD, Holm PB (2002) Engineering crop plants: get-ting a handle on phosphate. Trends Plant Sci 7: 118-125PubMedCrossRefGoogle Scholar
  32. Britt AB, May GD (2003) Re-engineering plant gene targeting. Trends Plant Sci 8: 90-95PubMedCrossRefGoogle Scholar
  33. Broerse JEW (1998) Towards a new development strategy: How to include small-scale farmers in the biotechnological innovation process. Eburon Publishers, The NetherlandsGoogle Scholar
  34. Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433: 629-633PubMedCrossRefGoogle Scholar
  35. Brown J (1998) How to feed the world, in two contradictory lessons. Trends Plant Sci 3: 409-410CrossRefGoogle Scholar
  36. Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Meta-bolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21: 1082-1087PubMedCrossRefGoogle Scholar
  37. Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95: 6531-6536PubMedCrossRefGoogle Scholar
  38. Carrière Y, Ellers-Kirk C, Sisterson M, Antilla L, Whitlow M, Dennehy TJ, Tabashnik BE (2003) Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc Natl Acad Sci USA 100: 1519-1523PubMedCrossRefGoogle Scholar
  39. Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of trans-genic potato by expressing a nonallergenic seed albumin gene from Amaran-thus hypochondriacus. Proc Natl Acad Sci USA 97: 3724-3729PubMedCrossRefGoogle Scholar
  40. Chappell J (2004) Valencene synthase-a biochemical magician and harbinger of transgenic aromas. Trends Plant Sci 9: 266-269PubMedCrossRefGoogle Scholar
  41. Chargelegue D, Obregon P, Drake PM (2001) Transgenic plants for vaccine pro-duction: expectations and limitations. Trends Plant Sci 6: 495-496PubMedCrossRefGoogle Scholar
  42. Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tume-faciens. Plant Physiol 115: 971-980PubMedGoogle Scholar
  43. Christou P (1996) Transformation technology. Trends Plant Sci 1: 423-431CrossRefGoogle Scholar
  44. Chung SM, Frankman EL, Tzfira T (2005) A versatile vector system for multiple gene expression in plants. Trends Plant Sci 10: 357-361PubMedCrossRefGoogle Scholar
  45. Chung SM, Vaidya M, Tzfira T (2006) Agrobacterium is not alone: gene transfer to plants by viruses and other bacteria. Trends Plant Sci 11: 1-4PubMedCrossRefGoogle Scholar
  46. Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7: 309-315PubMedCrossRefGoogle Scholar
  47. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743PubMedCrossRefGoogle Scholar
  48. Cohen JI (2005) Poorer nations turn to publicly developed GM crops. Nat Bio-technol 23: 27-33CrossRefGoogle Scholar
  49. Comai L, Faccioti D, Hiatt WR, Thompson G, Rose RE, Stalker DM (1985) Ex-pression in plants of a mutant aroA gene from Salmonella typhimurium con-fers tolerance to glyphosate. Nature 370: 741-744CrossRefGoogle Scholar
  50. Conrad U (2005) Polymers from plants to develop biodegradable plastics. Trends Plant Sci 10: 511-512PubMedGoogle Scholar
  51. Conway G (1997) The doubly green revolution: Food for all in the twenty-first century. Comstock Publishing Associates Cornell University Press, Ithaca, NYGoogle Scholar
  52. Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88: 10558-10562PubMedCrossRefGoogle Scholar
  53. Dale PJ, Clarke B, Fontes EM (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20: 567-574PubMedCrossRefGoogle Scholar
  54. Dale PJ, Irwin JA, Scheffler JA (1993) The experimental and commercial release of transgenic crop plants. Plant Breeding 111: 1-22CrossRefGoogle Scholar
  55. Dangl JL, Jones JD (2001) Plant pathogens and integrated defense responses to in-fection. Nature 411: 826-833PubMedCrossRefGoogle Scholar
  56. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20: 581-586PubMedCrossRefGoogle Scholar
  57. Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: produc-tion of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6: 219-226PubMedCrossRefGoogle Scholar
  58. Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HMJ, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 en-hances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23: 890-895PubMedCrossRefGoogle Scholar
  59. Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that ex-press at a predictable level, or alleles that are differentially silenced. Genes Dev 14: 2869-2880PubMedCrossRefGoogle Scholar
  60. De Block M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3: 1681-1689PubMedGoogle Scholar
  61. De Block MD, Botterman J, Vandewiele M, Dockx J, Thoen C, Gosselé V, Movva NR, Thompson C, Montagu MV, Leemans J (1987) Engineering her-bicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513-2518PubMedGoogle Scholar
  62. de Felipe P, Luke GA, Hughes LE, Gani D, Halpin C, Ryan MD (2006) E unum pluribus: multiple proteins from a self-processing polyprotein. Trends Bio-technol 24: 68-75CrossRefGoogle Scholar
  63. de Feyter R, Young M, Schroeder K, Dennis ES, Gerlach W (1996) A ribozyme gene and an antisense gene are equally effective in conferring resistance to to-bacco mosaic virus on transgenic tobacco. Mol Gen Genet 250: 329-338PubMedCrossRefGoogle Scholar
  64. de la Fuente JM, Ramìrez-Rodrìguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate syn-thesis. Science 276: 1566-1568PubMedCrossRefGoogle Scholar
  65. de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21: 439-442PubMedCrossRefGoogle Scholar
  66. Deák M, Horváth GV, Davletova S, Török K, Sass L, Vass I, Barna B, Király Z, Dudits D (1999) Plants ectopically expressing the iron-binding protein, fer-ritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17: 192-196PubMedCrossRefGoogle Scholar
  67. Delhaize E, Hebb DM, Ryan PR (2001) Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol 125: 2059-2067PubMedCrossRefGoogle Scholar
  68. D’Halluin K, Bossut M, Bonne E, Mazur B, Leemans J, Botterman J (1992) Trans-formation of sugarbeet (Beta vulgaris L.) and evaluation of herbicide resis-tance in transgenic plants. Bio/Technology 10: 309 - 314CrossRefGoogle Scholar
  69. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase ex-pression. Nat Biotechnol 20: 1140-1145PubMedCrossRefGoogle Scholar
  70. Dixon RA (2005) A two-for-one in tomato nutritional enhancement. Nat Biotech-nol 23: 825-826CrossRefGoogle Scholar
  71. Dunwell JM (2000) Transgenic approaches to crop improvement. J Exp Bot 51: 487-496PubMedCrossRefGoogle Scholar
  72. Dus Santos MJ, Carrillo C, Ardila F, Ríos RD, Franzone P, Piccone ME, Wigdorovitz A, Borca MV (2005) Development of transgenic alfalfa plants containing the foot and mouth disease virus structural polyprotein gene P1 and its utilization as an experimental immunogen. Vaccine 23: 1838-1843PubMedCrossRefGoogle Scholar
  73. Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using isopentenyl transferase gene. Proc Natal Acad USA 94: 2117-2121CrossRefGoogle Scholar
  74. Edwards G (1999) Tuning up crop photosynthesis. Nat Biotechnol 17: 22-23PubMedCrossRefGoogle Scholar
  75. Eichholtz DA, Rogers SG, Horsch RB, Klee HJ, Hayford M, Hoffmann NL, Braford SB, Fink C, Flick J, O’Connell KM, Fraley RT (1987) Expression of mouse dihydrofolate reductase gene confers methotrexate resistance in trans-genic petunia plants. Somat Cell Mol Genet 13: 67-76PubMedCrossRefGoogle Scholar
  76. Erikson O, Hertzberg M, Näsholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 22: 455-458PubMedCrossRefGoogle Scholar
  77. Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin bio-synthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18: 784-788PubMedCrossRefGoogle Scholar
  78. Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300: 758-762PubMedCrossRefGoogle Scholar
  79. Falconi CA (2002) Briefing paper 42: Agricultural biotechnology research capac-ity in for developing countries. International Service for National Agricultural Research (ISNAR).Google Scholar
  80. Farré EM, Bachmann A, Willmitzer L, Trethewey RN (2001) Acceleration of po-tato tuber sprouting by the expression of a bacterial pyrophosphatase. Nat Biotechnol 19: 268-272PubMedCrossRefGoogle Scholar
  81. Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1: 71-82CrossRefGoogle Scholar
  82. Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol 20: 291-296PubMedCrossRefGoogle Scholar
  83. Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resis-tance. Trends Genet 16: 449-455PubMedCrossRefGoogle Scholar
  84. Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL (1993) Transgenic pa-paya plants from Agrobacterium-mediated transformation of somatic em-bryos. Plant Cell Rep 12: 245-249CrossRefGoogle Scholar
  85. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80: 4803-4807PubMedCrossRefGoogle Scholar
  86. François IEJA, Van Hemelrijck W, Aerts AM, Wouters PFJ, Proost P, Broekaert WF, Cammue BPA (2004) Processing in Arabidopsis thaliana of a heterologous polyprotein resulting in differential targeting of the individual plant defensins. Plant Sci 166: 113-121CrossRefGoogle Scholar
  87. Friedrich L, Lawton K, Dietrich R, Willits M, Cade R, Ryals J (2001) NIM1 over-expression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant Microbe Interact 14: 1114-1124PubMedCrossRefGoogle Scholar
  88. Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by ex-pression of a plant defensin peptide. Nat Biotechnol 18: 1307-1310PubMedCrossRefGoogle Scholar
  89. Garcia JA, Simon-Mateo C (2006) A micropunch against plant viruses. Nat Bio-technol 24: 1358-1359CrossRefGoogle Scholar
  90. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99: 15898-15903PubMedCrossRefGoogle Scholar
  91. Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98: 11444-11449PubMedCrossRefGoogle Scholar
  92. Gelvin S (2003a) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21: 95-98PubMedCrossRefGoogle Scholar
  93. Gelvin SB (2003b) Agrobacterium-mediated plant transformation: the biology be-hind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67: 16-37PubMedCrossRefGoogle Scholar
  94. Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18: 1151-1155PubMedCrossRefGoogle Scholar
  95. Gilbertson L (2003) Cre-lox recombination: Cre-ative tools for plant biotechnol-ogy. Trends Biotechnol 21: 550-555PubMedCrossRefGoogle Scholar
  96. Giuliano G, Aquilani R, Dharmapuri S (2000) Metabolic engineering of plant ca-rotenoids. Trends Plant Sci 5: 406-409PubMedCrossRefGoogle Scholar
  97. Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection--a new platform for ex-pressing recombinant vaccines in plants. Vaccine 23: 2042-2048PubMedCrossRefGoogle Scholar
  98. Goderis IJ, De Bolle MF, François IE, Wouters PF, Broekaert WF, Cammue BP (2002) A set of modular plant transformation vectors allowing flexible inser-tion of up to six expression units. Plant Mol Biol 50: 17-27PubMedCrossRefGoogle Scholar
  99. Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36: 415-437PubMedCrossRefGoogle Scholar
  100. Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nu-trient input into the environment compatible with maintaining crop produc-tion? Trends Plant Sci 9: 597-605PubMedCrossRefGoogle Scholar
  101. Goregaoker SP, Eckhardt LG, Culver JN (2000) Tobacco mosaic virus replicase-mediated cross-protection: contributions of RNA and protein-derived mecha-nisms. Virology 273: 267-275PubMedCrossRefGoogle Scholar
  102. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17: 282-286PubMedCrossRefGoogle Scholar
  103. Gressel J, Ehrlich G (2002) Universal inheritable barcodes for identifying organ-isms. Trends Plant Sci 7: 542-544PubMedCrossRefGoogle Scholar
  104. Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9: 399-405PubMedCrossRefGoogle Scholar
  105. Grimsley N, Hohn B, Hohn T, Walden R (1986) “Agroinfection,” an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci USA 83: 3282-3286PubMedCrossRefGoogle Scholar
  106. Grimsley N, Hohn T, Davies JW, Hohn B (1987) Agrobacterium-mediated deliv-ery of infectious maize streak virus into maize plants. Nature 325: 177-179CrossRefGoogle Scholar
  107. Guerinot ML (2001) Improving rice yields-ironing out the details. Nat Biotechnol 19: 417-418PubMedCrossRefGoogle Scholar
  108. Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: what are we going to express? Trends Biotechnol 23: 275-282PubMedCrossRefGoogle Scholar
  109. Halpin C, Boerjan W (2003) Stacking transgenes in forest trees. Trends Plant Sci 8: 363-365PubMedCrossRefGoogle Scholar
  110. Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93: 9975-9979PubMedCrossRefGoogle Scholar
  111. Han KH, Ma CP, Strauss SH (1997) Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in poplar. Transgenic Res 6: 415-420CrossRefGoogle Scholar
  112. Hanley Z, Slabas T, Elborough KM (2000) The use of plant biotechnology for the production of biodegradable plastics. Trends Plant Sci 5: 45-46PubMedCrossRefGoogle Scholar
  113. Hannin M, Volrath S, Bogucki A, Briker M, Ward E, Paskowski J (2001) Gene targeting in Arabidopsis. Plant J 28: 671-677CrossRefGoogle Scholar
  114. Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19: 1168-1172PubMedCrossRefGoogle Scholar
  115. Hannon GJ (2002) RNA interference. Nature 418: 244-251PubMedCrossRefGoogle Scholar
  116. Hansen G, Chilton M-D (1996) “Agrolistic” transformation of plant cells: integra-tion of T-strands generated in planta. Proc Natl Acad Sci USA 93: 14978-14983PubMedCrossRefGoogle Scholar
  117. Hansen G, Das A, Chilton M-D (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA 91: 7603-7607PubMedCrossRefGoogle Scholar
  118. Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4: 226-231PubMedCrossRefGoogle Scholar
  119. Hanson B, Engler D, Moy Y, Newman B, Ralston E, Gutterson N (1999) A simple method to enrich an Agrobacterium-transformed population for plants con-taining only T-DNA sequences. Plant J 19: 727-734PubMedCrossRefGoogle Scholar
  120. Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268: 714-716PubMedCrossRefGoogle Scholar
  121. Hare PD, Chua NH (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20: 575-580PubMedCrossRefGoogle Scholar
  122. Heinemann JA, Traavik T (2004) Problems in monitoring horizontal gene transfer in field trials of transgenic plants. Nat Biotechnol 22: 1105-1109PubMedCrossRefGoogle Scholar
  123. Hellens R, Mullineaux P, Klee H (2000) Technical Focus:a guide to Agrobacte-rium binary Ti vectors. Trends Plant Sci 5: 446-451PubMedCrossRefGoogle Scholar
  124. Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22: 1415-1422PubMedCrossRefGoogle Scholar
  125. Heritage J (2005) Transgenes for tea? Trends Biotechnol 23: 17-21PubMedCrossRefGoogle Scholar
  126. Herrera-Estrella L, Block MD, Messens E, Hernalsteens JP, Montagu MV, Schell J (1983a) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2: 987-995PubMedGoogle Scholar
  127. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983b) Expression of chimaeric genes transferred into plant cells using a Ti plasmid derived vector. Nature 303: 209-213CrossRefGoogle Scholar
  128. Herrera-Estrella L, Simpson J, Martinez-Trujillo M (2005) Transgenic plants: an historical perspective. Methods Mol Biol 286: 3-32PubMedGoogle Scholar
  129. Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342: 76-78PubMedCrossRefGoogle Scholar
  130. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271-282PubMedCrossRefGoogle Scholar
  131. High SM, Cohen MB, Shu QY, Altosaar I (2004) Achieving successful deploy-ment of Bt rice. Trends Plant Sci 9: 286-292PubMedCrossRefGoogle Scholar
  132. Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330: 160-163CrossRefGoogle Scholar
  133. Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/ Technology 6: 915-922Google Scholar
  134. Hirsch RE, Sussman MR (1999) Improving nutrient capture from soil by the ge-netic manipulation of crop plants. Trends Biotechnol 17: 356-361PubMedCrossRefGoogle Scholar
  135. Hoekema A, de Pater BS, Fellinger AJ, Hooykaas PJ, Schilperoort RA (1984) The limited host range on an Agrobacterium tumefaciens strain extended by a cy-tokinin gene from a wide host range T-region. EMBO J 3: 3043-3047PubMedGoogle Scholar
  136. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303: 179-180CrossRefGoogle Scholar
  137. Hohn B, Levy AA, Puchta H (2001) Elimination of selection markers from trans-genic plants. Curr Opin Biotechnol 12: 139-143PubMedCrossRefGoogle Scholar
  138. Hohn B, Puchta H (2003) Some like it sticky: targeting of the rice gene Waxy. Trends Plant Sci 8: 51-53PubMedCrossRefGoogle Scholar
  139. Hood EE (2004) Where, oh where has my protein gone? Trends Biotechnol 22: 53-55PubMedCrossRefGoogle Scholar
  140. Hood EE (2003) Selecting the fruits of your labors. Trends Plant Sci 8: 357-358PubMedCrossRefGoogle Scholar
  141. Hood EE, Helmer GL, Fraley RT, Chilton M-D (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168: 1291-1301PubMedGoogle Scholar
  142. Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N (1984) In-heritance of functional foreign genes in plants. Science 223: 496-498PubMedCrossRefGoogle Scholar
  143. Huang J, Hu R, Rozelle S, Pray C (2005) Insect-resistant GM rice in farmers’ fields: assessing productivity and health effects in China. Science 308: 688-690PubMedCrossRefGoogle Scholar
  144. Huang J, Pray C, Rozelle S (2002a) Enhancing the crops to feed the poor. Nature 418: 678-684PubMedCrossRefGoogle Scholar
  145. Huang J, Rozelle S, Pray C, Wang Q (2002b) Plant biotechnology in China. Sci-ence 295: 674-676Google Scholar
  146. Huang T, Nicodemus J, Zarka DG, Thomashow MF, Wisniewski M, Duman JG (2002c) Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature. Plant Mol Biol 50: 333-344PubMedCrossRefGoogle Scholar
  147. Iglesias V, Moscone E, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke A (1997) Molecular and cytogenetic analysis of stably and unstably expressed transgene loci in tobacco. Plant Cell 9: 1251-1264PubMedCrossRefGoogle Scholar
  148. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefa-ciens. Nat Biotechnol 14: 745-750PubMedCrossRefGoogle Scholar
  149. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104-106PubMedCrossRefGoogle Scholar
  150. James C (2005) Executive summary: Brief 34, Global status of commercialized biotech/GM crops: 2005. The International Service for the Acquisition of Agri-biotech Applications (ISAAA), Ithaca NYGoogle Scholar
  151. Jarchow E, Grimsley NH, Hohn B (1991) virF, the host range-determining viru-lence gene of Agrobacterium tumefaciens, affects T-DNA transfer to Zea mays. Proc Natl Acad Sci USA 88: 10426-10430PubMedCrossRefGoogle Scholar
  152. Jin SG, Komari T, Gordon MP, Nester EW (1987) Genes responsible for the su-pervirulence phenotype of Agrobacterium tumefaciens A281. J Bacteriol 169: 4417-4425PubMedGoogle Scholar
  153. Jung C, Cai D, Kleine M (1998) Engineering nematode resistance in crop species. Trends Plant Sci 3: 266-271CrossRefGoogle Scholar
  154. Karimi M, De Meyer B, Hilson P (2005) Modular cloning in plant cells. Trends Plant Sci 10: 103-105PubMedGoogle Scholar
  155. Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7: 193-195PubMedCrossRefGoogle Scholar
  156. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improv-ing plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17: 287-291PubMedCrossRefGoogle Scholar
  157. Keller H, Pamboukdjian N, Ponchet M, Poupet A, Delon R, Verrier JL, Roby D, Ricci P (1999) Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell 11: 223-235PubMedCrossRefGoogle Scholar
  158. Kempin SA, Liljegren SJ, Block LM, Rounsley SD, Yanofsky MF, Lam E (1997) Targeted disruption in Arabidopsis. Nature 389: 802-803PubMedCrossRefGoogle Scholar
  159. Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70-73CrossRefGoogle Scholar
  160. Kleter GA, van der Krieken WM, Kok EJ, Bosch D, Jordi W, Gilissen LJ (2001) Regulation and exploitation of genetically modified crops. Nat Biotechnol 19: 1105-1110PubMedCrossRefGoogle Scholar
  161. Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S, Hanlon CA, Rup-precht C, Dietzschold B, Golovkin M, Koprowski H (2003) Function and gly-cosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci USA 100: 8013-8018PubMedCrossRefGoogle Scholar
  162. Komari T, Takakura Y, Ueki J, Kato N, Ishida Y, Hiei Y (2006) Binary vectors and super-binary vectors. Methods Mol Biol 343: 15-41PubMedGoogle Scholar
  163. Kong Q, Richter L, Yang YF, Arntzen CJ, Mason HS, Thanavala Y (2001) Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc Natl Acad Sci USA 98: 11539-11544PubMedCrossRefGoogle Scholar
  164. Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple com-plex patterns of integration. Plant J 11: 945-957PubMedCrossRefGoogle Scholar
  165. Kooter JM, Matzke AM, Meyer P (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci 4: 340-347PubMedCrossRefGoogle Scholar
  166. Kovalchuk I, Kovalchuk O, Arkhipov A, Hohn B (1998) Transgenic plants are sensitive bioindicators of nuclear pollution caused by the Chernobyl accident. Nat Biotechnol 16: 1054-1059PubMedCrossRefGoogle Scholar
  167. Kovalchuk I, Kovalchuk O, Hohn B (2001a) Biomonitoring the genotoxicity of environmental factors with transgenic plants. Trends Plant Sci 6: 306-310PubMedCrossRefGoogle Scholar
  168. Kovalchuk O, Titov V, Hohn B, Kovalchuk I (2001b) A sensitive transgenic plant system to detect toxic inorganic compounds in the environment. Nat Biotech-nol 19: 568-572CrossRefGoogle Scholar
  169. Krämer U, Chardonnens AN (2001) The use of transgenic plants in the bioreme-diation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55: 661-672PubMedCrossRefGoogle Scholar
  170. Krattiger AF (1999) Networking biotechnology solutions with developing coun-tries: the mission and strategy of the International Service for the Acquisition of Agri-biotech Applications. In T Hohn, KM Leisinger, eds, Biotechnology of food cropsi n developing countries. Springer-Verlag Wien, New York, pp 25-33Google Scholar
  171. Ku MS, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999) High-level expression of maize phosphoe-nolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17: 76-80PubMedCrossRefGoogle Scholar
  172. Ku MSB, Cho D, Li X, Jiao D, Pinto M, Miyao M, Matsuoka M (2001) Introduc-tion of genes encoding C4 photosynthesis enzymes into rice plants: physio-logical consequences. In Rice biotechnology: improving yield, stress tolerance and grain quality, Wiley, Chichester (Novartis Foundation Symposium 236), pp 100-116Google Scholar
  173. Kumar S, Fladung M (2001) Controlling transgene integration in plants. Trends Plant Sci 6: 155-159PubMedCrossRefGoogle Scholar
  174. Kunkel T, Niu QW, Chan YS, Chua N-H (1999) Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nat Biotechnol 17: 916-919PubMedCrossRefGoogle Scholar
  175. Lee D, Natesan E (2006) Evaluating genetic containment strategies for transgenic plants. Trends Biotechnol 24: 109-114PubMedCrossRefGoogle Scholar
  176. Lee KY, Lund P, Lowe K, Dunsmuir P (1990) Homologous recombination in plant cells after Agrobacterium-mediated transformation. Plant Cell 2: 415-425PubMedCrossRefGoogle Scholar
  177. Leisinger KM (1999) The contribution of genetic engineering to the fight against hunger in developing countries. In T Hohn, KM Leisinger, eds, Biotechnology of food crops in developing countries. Springer-Verlag Wien, New York, pp 1-19Google Scholar
  178. Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam KH, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S, Pichersky E (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 127: 1256-1265PubMedCrossRefGoogle Scholar
  179. Li HQ, Sautter C, Potrykus I, Puonti-Kaerlas J (1996) Genetic transformation of cassava (Manihot esculenta Crantz). Nat Biotechnol 14: 736-740PubMedCrossRefGoogle Scholar
  180. Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combina-torial modification of multiple lignin traits in trees through multigene cotrans-formation. Proc Natl Acad Sci USA 100: 4939-4944PubMedCrossRefGoogle Scholar
  181. Li ZK, Sanchez A, Angeles E, Singh S, Domingo J, Huang N, Khush GS (2001) Are the dominant and recessive plant disease resistance genes similar? A case study of rice R genes and Xanthomonas oryzae pv. oryzae races. Genetics 159: 757-765PubMedGoogle Scholar
  182. Lin L, Liu YG, Xu X, Li B (2003) Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc Natl Acad Sci USA 100: 5962-5967PubMedCrossRefGoogle Scholar
  183. Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a Highly Specific Antiviral State in Transgenic Plants: Implications for Regu-lation of Gene Expression and Virus Resistance. Plant Cell 5: 1749-1759PubMedCrossRefGoogle Scholar
  184. Liu D, Burton S, Glancy T, Li ZS, Hampton R, Meade T, Merlo DJ (2003) Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nat Biotechnol 21: 1222-1228PubMedCrossRefGoogle Scholar
  185. Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102: 2232-2237PubMedCrossRefGoogle Scholar
  186. Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33: 323-334PubMedCrossRefGoogle Scholar
  187. Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the com-plexing role of organic acids. Trends Plant Sci 6: 273-278PubMedCrossRefGoogle Scholar
  188. Ma JK (2000) Genes, greens, and vaccines. Nat Biotechnol 18: 1141-1142PubMedCrossRefGoogle Scholar
  189. Ma JK, Chikwamba R, Sparrow P, Fischer R, Mahoney R, Twyman RM (2005a) Plant-derived pharmaceuticals--the road forward. Trends Plant Sci 10: 580-585PubMedCrossRefGoogle Scholar
  190. Ma JK, Drake PM, Chargelegue D, Obregon P, Prada A (2005b) Antibody proc-essing and engineering in plants, and new strategies for vaccine production. Vaccine 23: 1814-1818PubMedCrossRefGoogle Scholar
  191. Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268: 716-719PubMedCrossRefGoogle Scholar
  192. Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reduc-toisomerase and menthofuran synthase. Proc Natl Acad Sci USA 98: 8915-8920PubMedCrossRefGoogle Scholar
  193. Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7: 366-373PubMedCrossRefGoogle Scholar
  194. Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg R (1990) Induc-tion of male sterility in plants by a chimaeric ribonuclease gene. Nature 347: 737-741CrossRefGoogle Scholar
  195. Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombina-tion of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101: 6852-6857PubMedCrossRefGoogle Scholar
  196. Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for effi-cient transient expression in plants. Nat Biotechnol 23: 718-723PubMedCrossRefGoogle Scholar
  197. Mason HS, Haq TA, Clements JD, Arntzen CJ (1998) Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes express-ing a synthetic LT-B gene. Vaccine 16: 1336-1343PubMedCrossRefGoogle Scholar
  198. Mason HS, Lam DM, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA 89: 11745-11749PubMedCrossRefGoogle Scholar
  199. Matthews P, Wang M, Waterhouse P, Thornton S, Fieg S, Gubler F, Jacobsen J (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breed 7: 195-202CrossRefGoogle Scholar
  200. Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1: 142-148PubMedCrossRefGoogle Scholar
  201. May G, Afza R, Mason H, Wiecko A, Novak F, Arntzen C (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Biotechnology 13: 486-492CrossRefGoogle Scholar
  202. McKersie BD, Bowley SR, Harjanto E, Leprince O (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismu-tase. Plant Physiol 111: 1177-1181PubMedGoogle Scholar
  203. Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice qual-ity, and vine life. Nat Biotechnol 20: 613-618PubMedCrossRefGoogle Scholar
  204. Miao ZH, Lam E (1995) Targeted disruption of the TGA3 locus in Arabidopsis thaliana. Plant J 7: 359-365PubMedCrossRefGoogle Scholar
  205. Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY (2002) High effi-ciency transgene segregation in co-transformed maize plants using an Agro-bacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11: 381-396PubMedCrossRefGoogle Scholar
  206. Mitter N, Sulistyowati E, Graham MW, Dietzgen RG (2001) Suppression of gene silencing: a threat to virus-resistant transgenic plants? Trends Plant Sci 6: 246-247PubMedCrossRefGoogle Scholar
  207. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11: 15-19PubMedCrossRefGoogle Scholar
  208. Miyagawa Y, Tamoi M, Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photo-synthesis and growth. Nat Biotechnol 19: 965-969PubMedCrossRefGoogle Scholar
  209. Moar W (2003) Breathing new life into insect-resistant plants. Nat Biotechnol 21: 1152-1154PubMedCrossRefGoogle Scholar
  210. Mol J, Holton T, Koes R (1995) Floriculture: genetic engineering of commercial traits. Trends Biotechnol 13: 350-355CrossRefGoogle Scholar
  211. Morandini P, Salamini F (2003) Plant biotechnology and breeding: allied for years to come. Trends Plant Sci 8: 70-75PubMedCrossRefGoogle Scholar
  212. Morse S, Bennett R, Ismael Y (2004) Why Bt cotton pays for small-scale produc-ers in South Africa. Nat Biotechnol 22: 379-380PubMedCrossRefGoogle Scholar
  213. Mourgues F, Brisset MN, Chevreau E (1998) Strategies to improve plant resis-tance to bacterial diseases through genetic engineering. Trends Biotechnol 16: 203-210PubMedCrossRefGoogle Scholar
  214. Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric De Vos CH, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19: 470-474PubMedCrossRefGoogle Scholar
  215. Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710-713CrossRefGoogle Scholar
  216. Mysore KS, Nam J, Gelvin SB (2000) An Arabidopsis histone H2A mutant is de-ficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97: 948-953PubMedCrossRefGoogle Scholar
  217. Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci USA 91: 12760-12764PubMedCrossRefGoogle Scholar
  218. Negretto DB, Jolley MB, Beer SB, Wenck AR, Hansen G (2000) The use of phos-phomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19: 798-803CrossRefGoogle Scholar
  219. Neumann K, Stephan DP, Ziegler K, Hühns M, Broer I, Lockau W, Pistorius EK (2005) Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnol J 3: 249-258PubMedCrossRefGoogle Scholar
  220. Newell CA (2000) Plant transformation technology. Developments and applica-tions. Mol Biotechnol 16: 53-65PubMedCrossRefGoogle Scholar
  221. Nguyen HT, Xu W, Rosenow DT, Mullett JE, McIntyre L (1996) Use of biotech-nology in sorghum breeding. In Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet,, Texas, Sept 22-27, 1997 INTSORMIL/ICRISAT, pp 412-424Google Scholar
  222. Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE, Gelvin SB (1995) Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J 7: 661-667CrossRefGoogle Scholar
  223. Nielsen KM, Townsend JP (2004) Monitoring and modeling horizontal gene transfer. Nat Biotechnol 22: 1110-1114PubMedCrossRefGoogle Scholar
  224. Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased lev-els of the antioxidant chlorogenic acid. Nat Biotechnol 22: 746-754PubMedCrossRefGoogle Scholar
  225. Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Ex-pression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24: 1420-1428PubMedCrossRefGoogle Scholar
  226. Normile D (2000) Agricultural biotechnology. Monsanto donates its share of golden rice. Science 289: 843-845PubMedCrossRefGoogle Scholar
  227. Nottingham S (1998) Eat your genes: how genetically modified food is entering our diet. Zed Books Ltd, New YorkGoogle Scholar
  228. Oberschall A, Deák M, Török K, Sass L, Vass I, Kovács I, Fehér A, Dudits D, Horvath GV (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J 24: 437-446PubMedCrossRefGoogle Scholar
  229. O’Connell K, Goodman R, Handelsmar J (1996) Engineering the rhizosphere: ex-pressing a bias. Trends Biotechnol 14: 83-88CrossRefGoogle Scholar
  230. Oeller PW, Min-Wong L, Taylor LP, Pike DA, Theologis A (1991) Reversible in-hibition of tomato fruit senescence by antisense RNA. Science 254: 437-439PubMedCrossRefGoogle Scholar
  231. Offringa R, de Groot MJA, Haagsman HJ, Does MP, van den Elzen PJM, Hooykaas PJJ (1990) Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. EMBO J 9: 3077-3084PubMedGoogle Scholar
  232. Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9: 433-440PubMedCrossRefGoogle Scholar
  233. Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18: 1162-1166PubMedCrossRefGoogle Scholar
  234. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23: 482-487PubMedCrossRefGoogle Scholar
  235. Pang SZ, Slightom JL, Gonsalves D (1993) Different mechanisms protect trans-genic tobacco against tomato spotted wilt and impatiens necrotic spot To-spoviruses. Biotechnol 11: 819-824CrossRefGoogle Scholar
  236. Peña L, Seguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19: 500-506PubMedCrossRefGoogle Scholar
  237. Penna S (2003) Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci 8: 355-357PubMedCrossRefGoogle Scholar
  238. Peralta EG, Hellmiss R, Ream W (1986) Overdrive, a T-DNA transmission en-hancer on the A. tumefaciens tumour-inducing plasmid. EMBO J 5: 1137-1142PubMedGoogle Scholar
  239. Perez-Prat E, van Lookeren Campagne MM (2002) Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci 7: 199-203PubMedCrossRefGoogle Scholar
  240. Peschen D, Li HP, Fischer R, Kreuzaler F, Liao YC (2004) Fusion proteins com-prising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen. Nat Biotechnol 22: 732-738PubMedCrossRefGoogle Scholar
  241. Peterson RK, Arntzen CJ (2004) On risk and plant-based biopharmaceuticals. Trends Biotechnol 22: 64-66PubMedCrossRefGoogle Scholar
  242. Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé JC, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20: 607-612PubMedCrossRefGoogle Scholar
  243. Pilon-Smits EA, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119: 123-132PubMedCrossRefGoogle Scholar
  244. Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, van Dunn K, Voogd E, Verwoerd TC, Krutwagen RWHH, Goddijn OJM (1998) Trehalose-producing transgenic tobacco plants show improved growth performance un-der drought stress. Plant Physiol J 152: 525-532Google Scholar
  245. Pink D, Puddephat I (1999) Deployment of disease resistance genes by plant transformation - a ‘mix and match’ approach. Trends Plant Sci 4: 71-75PubMedCrossRefGoogle Scholar
  246. Poirier Y (1999) Green chemistry yields a better plastic. Nat Biotechnol 17: 960-961PubMedCrossRefGoogle Scholar
  247. Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplasic, produced in transgenic plants. Science 256: 520-523PubMedCrossRefGoogle Scholar
  248. Potrykus I (2001) Golden rice and beyond. Plant Physiol 125: 1157-1161PubMedCrossRefGoogle Scholar
  249. Powell-Abel P, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738-743CrossRefGoogle Scholar
  250. Prins M (2003) Broad virus resistance in transgenic plants. Trends Biotechnol 21: 373-375PubMedCrossRefGoogle Scholar
  251. Prins M, de Haan P, Luyten R, van Veller M, van Grinsven MQ, Goldbach R (1995) Broad resistance to tospoviruses in transgenic tobacco plants express-ing three tospoviral nucleoprotein gene sequences. Mol Plant Microbe Interact 8: 85-91PubMedGoogle Scholar
  252. Qaim M, Zilberman D (2003) Yield effects of genetically modified crops in de-veloping countries. Science 299: 900-902PubMedCrossRefGoogle Scholar
  253. Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22: 739-745PubMedCrossRefGoogle Scholar
  254. Ralley L, Enfissi EM, Misawa N, Schuch W, Bramley PM, Fraser PD (2004) Metabolic engineering of ketocarotenoid formation in higher plants. Plant J 39: 477-486PubMedCrossRefGoogle Scholar
  255. Regensburg-Tuink AJG, Hooykaas PJJ (1993) Transgenic N. glauca plants ex-pressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 363: 69-71PubMedCrossRefGoogle Scholar
  256. Regierer B, Fernie AR, Springer F, Perez-Melis A, Leisse A, Koehl K, Willmitzer L, Geigenberger P, Kossmann J (2002) Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat Biotechnol 20: 1256-1260PubMedCrossRefGoogle Scholar
  257. Richter LJ, Thanavala Y, Arntzen CJ, Mason HS (2000) Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat Biotechnol 18: 1167-1171PubMedCrossRefGoogle Scholar
  258. Römer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18: 666-669PubMedCrossRefGoogle Scholar
  259. Romero C, Bellés JM, Vayé JL, Serrano R, Culiáñez-Marciá FA (1997) Expres-sion of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201: 293-297PubMedCrossRefGoogle Scholar
  260. Rommens C (2004) All-native DNA transformation: a new approach to plant ge-netic engineering. Trends Plant Sci 9: 457-464PubMedCrossRefGoogle Scholar
  261. Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant’s own genome. Plant Physiol 135: 421-431PubMedCrossRefGoogle Scholar
  262. Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302: 1917-1919PubMedCrossRefGoogle Scholar
  263. Rovere CV, del Vas M, Hopp HE (2002) RNA-mediated virus resistance. Curr Opin Biotechnol 13: 167-172CrossRefGoogle Scholar
  264. Roxas VP, Smith RK, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic to-bacco seedlings during stress. Nat Biotechnol 15: 988-991PubMedCrossRefGoogle Scholar
  265. Rudolph C, Schreier PH, Uhrig JF (2003) Peptide-mediated broad-spectrum plant resistance to tospoviruses. Proc Natl Acad Sci USA 100: 4429-4434PubMedCrossRefGoogle Scholar
  266. Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of trans-genic yellow poplar for mercury phytoremediation. Nat Biotechnol 16: 925-928PubMedCrossRefGoogle Scholar
  267. Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93: 3182-3187PubMedCrossRefGoogle Scholar
  268. Rushton P (2002) Exciting prospects for plants with greater disease resistance. Trends Plant Sci 7: 325PubMedCrossRefGoogle Scholar
  269. Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin me-tabolism in transgenic rice. Nat Biotechnol 21: 909-913PubMedCrossRefGoogle Scholar
  270. Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24: 105-109PubMedCrossRefGoogle Scholar
  271. Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and fu-ture challenges. Trends Plant Sci 10: 297-304PubMedCrossRefGoogle Scholar
  272. Sandermann H (2004) Molecular ecotoxicology of plants. Trends Plant Sci 9: 406-413PubMedCrossRefGoogle Scholar
  273. Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance - de-riving resistance genes from the parasite’s own genome. J Theor Biol 113: 395-405CrossRefGoogle Scholar
  274. Sarhan F, Danyluk J (1998) Engineering cold-tolerant crops - throwing the master switch. Trends Plant Sci 3: 289-290CrossRefGoogle Scholar
  275. Sattler SE, Cheng Z, DellaPenna D (2004) From Arabidopsis to agriculture: engi-neering improved Vitamin E content in soybean. Trends Plant Sci 9: 365-367PubMedCrossRefGoogle Scholar
  276. Scheid O (2004) Either/or selection markers for plant transformation. Nat Bio-technol 22: 398-399CrossRefGoogle Scholar
  277. Scheller J, Gührs KH, Grosse F, Conrad U (2001) Production of spider silk pro-teins in tobacco and potato. Nat Biotechnol 19: 573-577PubMedCrossRefGoogle Scholar
  278. Serageldin I (1999) Biotechnology and food security in the 21st century. Science 285: 387-389PubMedCrossRefGoogle Scholar
  279. Shaked H, Melamed-Bessudo C, Levy AA (2005) High frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102: 12265-12269PubMedCrossRefGoogle Scholar
  280. Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev En-tomol 47: 845-881CrossRefGoogle Scholar
  281. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other meta-bolic effects. Plant J 20: 401-412PubMedCrossRefGoogle Scholar
  282. Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21: 81-85PubMedCrossRefGoogle Scholar
  283. Shibata D, Liu YG (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci 5: 354-357PubMedCrossRefGoogle Scholar
  284. Shimamoto K (2002) Picking genes in the rice genome. Nat Biotechnol 20: 983-984PubMedCrossRefGoogle Scholar
  285. Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282: 2098-2100PubMedCrossRefGoogle Scholar
  286. Sinclair TR, Purcell LC, Sneller CH (2004) Crop transformation and the challenge to increase yield potential. Trends Plant Sci 9: 70-75PubMedCrossRefGoogle Scholar
  287. Siritunga D, Sayre RT (2003) Generation of cyanogen-free transgenic cassava. Planta 217: 367-373PubMedCrossRefGoogle Scholar
  288. Sithole-Niang I (2001) Future of plant science in Zimbabwe. Trends Plant Sci 6: 493-494PubMedCrossRefGoogle Scholar
  289. Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, Padgette SR, Kishore G, Gruys KJ (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat Biotech-nol 17: 1011-1016CrossRefGoogle Scholar
  290. Slattery CJ, Kavakli IH, Okita TW (2000) Engineering starch for increased quan-tity and quality. Trends Plant Sci 5: 291-298PubMedCrossRefGoogle Scholar
  291. Smirnoff N, Bryant JA (1999) DREB takes the stress out of growing up. Nat Bio-technol 17: 229-230CrossRefGoogle Scholar
  292. Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407: 319-320PubMedCrossRefGoogle Scholar
  293. Smyth S, Khachatourians GG, Phillips PW (2002) Liabilities and economics of transgenic crops. Nat Biotechnol 20: 537-541PubMedCrossRefGoogle Scholar
  294. Snow A (2002) Transgenic crops - why gene flow matters. Nat Biotechnol 20: 542PubMedCrossRefGoogle Scholar
  295. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003a) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to po-tato late blight. Proc Natl Acad Sci USA 100: 9128-9133PubMedCrossRefGoogle Scholar
  296. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003b) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21: 914-919PubMedCrossRefGoogle Scholar
  297. Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant re-sistance to viruses. Nat Rev Microbiol 3: 789-798PubMedCrossRefGoogle Scholar
  298. Srivastava V, Ow DW (2004) Marker-free site-specific gene integration in plants. Trends Biotechnol 22: 627-629PubMedCrossRefGoogle Scholar
  299. Stewart CN, Jr. (2005) Monitoring the presence and expression of transgenes in living plants. Trends Plant Sci 10: 390-396PubMedCrossRefGoogle Scholar
  300. Streatfield SJ, Jilka JM, Hood EE, Turner DD, Bailey MR, Mayor JM, Woodard SL, Beifuss KK, Horn ME, Delaney DE, Tizard IR, Howard JA (2001) Plant-based vaccines: unique advantages. Vaccine 19: 2742-2748PubMedCrossRefGoogle Scholar
  301. Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8: 179-187PubMedCrossRefGoogle Scholar
  302. Tabe L, Higgins TJV (1998) Engineering plant protein composition for improved nutrition. Trends Plant Sci 3: 282-286CrossRefGoogle Scholar
  303. Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ (2000) Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182: 302-305PubMedCrossRefGoogle Scholar
  304. Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci USA 96: 14153-14158PubMedCrossRefGoogle Scholar
  305. Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nico-tianamine aminotransferase genes. Nat Biotechnol 19: 466-469PubMedCrossRefGoogle Scholar
  306. Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of the transgenic tobacco by production of the osmolyte mannitol. Science 259: 508-510PubMedCrossRefGoogle Scholar
  307. Taylor CG, Fuchs B, Collier R, Lutke WK (2006) Generation of composite plants using Agrobacterium rhizogenes. Methods Mol Biol 343: 155-167PubMedGoogle Scholar
  308. Taylor N, Chavarriaga P, Raemakers K, Siritunga D, Zhang P (2004) Develop-ment and application of transgenic technologies in cassava. Plant Mol Biol 56: 671-688PubMedCrossRefGoogle Scholar
  309. Tenllado F, Llave C, Díaz-Ruíz JR (2004) RNA interference as a new biotechno-logical tool for the control of virus diseases in plants. Virus Res 102: 85-96PubMedCrossRefGoogle Scholar
  310. Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20: 1030-1034PubMedCrossRefGoogle Scholar
  311. Thro AM, Fregene M, Taylor N, Raemakers KCJJM, Puonit-Kaerlas J, Schöpke C, Visser R, Potrykus I, Fauquet C, Roca W, Hershey C (1999) Genetic bio-technologies and cassava-based development. In T Hohn, KM Leisinger, eds, Biotechnology of food crops in developing countries. Springer-Verlag Wien, New York, pp 143-185Google Scholar
  312. Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11: 1369-1376CrossRefGoogle Scholar
  313. Toenniessen G (1995) Plant biotechnology and developing countries. Trends Bio-technol 13: 404-409CrossRefGoogle Scholar
  314. Torisky RS, Kovacs L, Avdiushko S, Newman JD, Hunt AG, Collins GB (1997) Development of a binary vector system for plant transformation base on the supervirulent Agrobacterium tumefaciens strain Chry 5. Plant Cell Rep 17: 102-108CrossRefGoogle Scholar
  315. Tzfira T, Tian G-W, Lacroix B, Vyas S, Li J, Leitner-Dagan Y, Krichevsky A, Taylor T, Vainstein A, Citovsky V (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57: 503-516PubMedCrossRefGoogle Scholar
  316. Tzfira T, Vaidya M, Citovsky V (2002) Increasing plant susceptibility to Agrobac-terium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci USA 99: 10435-10440PubMedCrossRefGoogle Scholar
  317. Tzfira T, White C (2005) Towards targeted mutagenesis and gene replacement in plants. Trends Biotechnol 23: 567-569PubMedCrossRefGoogle Scholar
  318. Tzfira T, Zuker A, Altman A (1998) Forest-tree biotechnology: genetic transfor-mation and its application to future forests. Trends Biotechnol 16: 439-446CrossRefGoogle Scholar
  319. Uhrig JF (2003) Response to Prins: broad virus resistance in transgenic plants. Trends Biotechnol 21: 376-377PubMedCrossRefGoogle Scholar
  320. Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium Hirsutum L.) plants. Bio/Technology 5: 263-266CrossRefGoogle Scholar
  321. Urwin PE, Lilley CJ, McPherson MJ, Atkinson HJ (1997) Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J 12: 455-461PubMedCrossRefGoogle Scholar
  322. Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Transgenic plants protected from in-sect attack. Nature 328: 33-37CrossRefGoogle Scholar
  323. Van de Elzen PJM, Townsend J, Lee KY, Bedbrook JR (1985) A chimaeric hy-gromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5: 299-302CrossRefGoogle Scholar
  324. van der Biezen EA (2001) Quest for antimicrobial genes to engineer disease-resistant crops. Trends Plant Sci 6: 89-91PubMedCrossRefGoogle Scholar
  325. van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc re-sistance and accumulation. Plant Physiol 119: 1047-1055PubMedCrossRefGoogle Scholar
  326. Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Jiang J, Baszis SR, Levering CK, Aasen ED, Hao M, Stein JC, Norris SR, Last RL (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15: 3007-3019PubMedCrossRefGoogle Scholar
  327. Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the in-tron in transgenic plants and its use in monitoring early events in Agrobacte-rium-mediated plant transformation. Mol Gen Genet 220: 245-250PubMedCrossRefGoogle Scholar
  328. Vasil IK (2003) The science and politics of plant biotechnology--a personal per-spective. Nat Biotechnol 21: 849-851PubMedCrossRefGoogle Scholar
  329. Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, Vernhettes S (1998) Transgene-induced gene silencing in plants. Plant J 16: 651-659PubMedCrossRefGoogle Scholar
  330. Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJ (2000) Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat Biotechnol 18: 779-783PubMedCrossRefGoogle Scholar
  331. Vergunst AC, Jansen LE, Hooykaas PJ (1998) Site-specific integration of Agro-bacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nu-cleic Acids Res 26: 2729-2734CrossRefGoogle Scholar
  332. Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CMT, Regensburg-Tuink TJ, Hooykaas PJJ (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290: 979-982PubMedCrossRefGoogle Scholar
  333. Walden R, Wingender R (1995) Gene-transfer and plant-regeneration techniques. Trends Biotechnol 13: 324-331CrossRefGoogle Scholar
  334. Wang Y, Xue Y, Li J (2005) Towards molecular breeding and improvement of rice in China. Trends Plant Sci 10: 610-614PubMedCrossRefGoogle Scholar
  335. Wenck A, Czako M, Kanevski I, Marton L (1997) Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol 34: 913-922PubMedCrossRefGoogle Scholar
  336. White PJ, Broadley MR (2005) Biofortifying crops with essential mineral ele-ments. Trends Plant Sci 10: 586-593PubMedCrossRefGoogle Scholar
  337. Wilkinson MJ, Sweet J, Poppy GM (2003) Risk assessment of GM plants: avoid-ing gridlock? Trends Plant Sci 8: 208-212PubMedCrossRefGoogle Scholar
  338. Williams M (1995) Genetic engineering for pollination control. Trends Biotechnol 13: 344-349CrossRefGoogle Scholar
  339. Wilson TM (1993) Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proc Natl Acad Sci USA 90: 3134-3141PubMedCrossRefGoogle Scholar
  340. Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA (2003) Maize (Zea mays)-derived bovine trypsin: characteri-zation of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38: 123-130PubMedCrossRefGoogle Scholar
  341. Wu L, Fan Z, Guo L, Li Y, Chen Z, Qu L (2004) Over-expression of the bacterial nhaA gene in rice enhances salt and drought tolerance. Plant Sci 168: 297-302CrossRefGoogle Scholar
  342. Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain poly-unsaturated fatty acids in plants. Nat Biotechnol 23: 1013-1017PubMedCrossRefGoogle Scholar
  343. Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24: 1441-1447PubMedCrossRefGoogle Scholar
  344. Xie M, He Y, Gan S (2001) Bidirectionalization of polar promoters in plants. Nat Biotechnol 19: 677-679PubMedCrossRefGoogle Scholar
  345. Xie ZP, Auberson-Huang L, Malnoë P, Yao H, Kaeppeli O (2002) Comparison of driving forces in sustainable food production and the future of plant biotech-nology in Switzerland and China. Trends Plant Sci 7: 416-418PubMedCrossRefGoogle Scholar
  346. Xue Z, Zhi D, Xue G, Zhang H, Zhao Y, Xia G (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ anti-porter gene with improved grain yields in saline soils in the field and a re-duced level of leaf Na+. Plant Sci 167: 849-859CrossRefGoogle Scholar
  347. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: chal-lenges and opportunities. Trends Plant Sci 10: 615-620PubMedCrossRefGoogle Scholar
  348. Yang X, Yie Y, Zhu F, Liu Y, Kang L, Wang X, Tien P (1997) Ribozyme-mediated high resistance against potato spindle tuber viroid in transgenic po-tatoes. Proc Natl Acad Sci USA 94: 4861-4865PubMedCrossRefGoogle Scholar
  349. Yanofsky M, Lowe B, Montoya A, Rubin R, Krul W, Gordon M, Nester E (1985) Molecular and genetic analysis of factors controlling host range in Agrobacte-rium tumefaciens. Mol Gen Genet 201: 237-348CrossRefGoogle Scholar
  350. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engi-neering the provitamin A (ȕ-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303-305PubMedCrossRefGoogle Scholar
  351. Yimin D, Mervis J (2002) Transgenic crops. China takes a bumpy road from the lab to the field. Science 298: 2317-2319PubMedCrossRefGoogle Scholar
  352. Zambryski PC, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without altera-tion of their normal regeneration capacity. EMBO J 2: 2143-2150PubMedGoogle Scholar
  353. Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19: 765-768PubMedCrossRefGoogle Scholar
  354. Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in trans-genic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98: 12832-12836PubMedCrossRefGoogle Scholar
  355. Zhang J, Boone L, Kocz R, Zhang C, Binns AN, Lynn DG (2000) At the maize/Agrobacterium interface: natural factors limiting host transformation. Chem Biol 7: 611-621PubMedCrossRefGoogle Scholar
  356. Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21: 1493-1497PubMedCrossRefGoogle Scholar
  357. Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44: 789-798PubMedCrossRefGoogle Scholar
  358. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6: 66-71PubMedCrossRefGoogle Scholar
  359. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agro-bacterium-mediated transformation. Cell 125: 749-760PubMedCrossRefGoogle Scholar
  360. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Na-ture 428: 764-767Google Scholar
  361. Zubko E, Scutt C, Meyer P (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18: 442-445PubMedCrossRefGoogle Scholar
  362. Zuo J, Niu QW, Ikeda Y, Chua NH (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol 13: 173-180PubMedCrossRefGoogle Scholar
  363. Zuo J, Niu QW, Møller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19: 157-161PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lois M. Banta
    • 1
  • Maywa Montenegro
    • 1
  1. 1.Department of BiologyWilliams CollegeWilliamstownUSA

Personalised recommendations