A Brief History of Research on Agrobacterium Tumefaciens: 1900–1980s

  • Andrew N. Binns

The study of tumorigenesis on plants as a result of their infection by Agrobacterium tumefaciens has resulted in enormous advances in our understanding of interspecies genetic transfer. This chapter seeks to trace the earlier studies (from the early 1900s up to mid 1980s) that were involved in defining the biology, genetics and molecular biology of this system. The analysis of these studies will be carried out with the objective of unders-tanding how Agrobacterium has become not only a model system in bacterial pathogenesis but also a key player in both basic plant molecular genetics and agricultural biotechnology.


Agrobacterium Tumefaciens Crown Gall Agrobacterium Rhizogenes Crown Gall Tumor Crown Gall Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81: 5994-5998PubMedGoogle Scholar
  2. Alonso JM, Stepanova AN (2003) T-DNA mutagenesis in Arabidopsis. Methods Mol Biol 236: 177-188PubMedGoogle Scholar
  3. Barker R, Idler KB, Thompson DV, Kemp JD (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi 15955. Plant Mol Biol 2: 335-350Google Scholar
  4. Baron C, Zambryski PC (1995) The plant response in pathogenesis, symbiosis and wounding: variations on a common theme? Annu Rev Genet 29: 107-129PubMedGoogle Scholar
  5. Barry GF, Rogers SG, Fraley RT, Brand L (1984) Identification of cloned cyto-kinin biosynthesis gene. Proc Natl Acad Sci USA 81: 4776-4780PubMedGoogle Scholar
  6. Barton KA, Binns AN, Matzke AJM, Chilton MD (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32: 1033-1043PubMedGoogle Scholar
  7. Bevan MW, Flavell RB, Chilton M-D (1983) A chimeric antibiotic resistance gene as a selectable marker for plant transformation. Nature 304: 184-187Google Scholar
  8. Binns AN (1983) Host and T-DNA encoded determinants of cytokinin autonomy in tobacco cells transformed by Agrobacterium tumefaciens. Planta 158: 272-279Google Scholar
  9. Binns AN, Sciaky D, Wood HN (1982) Variation in hormone autonomy and regeneration potential of cells transformed by strain A66 of Agrobacterium tumefaciens. Cell 31: 605-612PubMedGoogle Scholar
  10. Binns AN, Wood HN, Braun AC (1981) Suppression of the tumourous state in tobacco crown gall teratomas: A clonal analysis. Differentiation 19: 97-102Google Scholar
  11. Bomhoff G, Klapwijk PM, Kester HCM, Schilperoort RA, Hernalsteens JP, Schell J (1976) Octopine and nopaline synthesis and breakdown genetically con-trolled by a plasmid of Agrobacterium tumefaciens. Mol Gen Genet 145: 177-181PubMedGoogle Scholar
  12. Braun AC (1943) Studies on tumor inception in the crown-gall disease. Am J Bot 30: 674-677Google Scholar
  13. Braun AC (1947) Thermal studies on tumor inception in the crown gall disease. Am J Bot 34: 234-240Google Scholar
  14. Braun AC (1948) Studies on the origin and development of plant teratomas incited by the crown-gall bacterium. Am J Bot 35: 511-519Google Scholar
  15. Braun AC (1951a) Cellular autonomy in crown gall. Phytopathology 41: 963-966 Braun AC (1951b) Recovery of crown gall tumor cells. Cancer Res 11: 839-844PubMedGoogle Scholar
  16. Braun AC (1952) Conditioning of the host cell as a factor in the transformation process in crown gall. Growth 16: 65-74PubMedGoogle Scholar
  17. Braun AC (1958) A physiological basis for the autonomous growth of the crown gall tumor cell. Proc Natl Acad Sci USA 44: 344-349PubMedGoogle Scholar
  18. Braun AC (1959) A demonstration of the recovery of the crown-gall tumor cell with the use of complex tumors of single cell origin. Proc Natl Acad Sci USA 45: 932-938PubMedGoogle Scholar
  19. Braun AC (1981) An epigenetic model for the origin of cancer. Q Rev Biol 56: 33-60PubMedGoogle Scholar
  20. Braun AC (1982) A history of the crown gall problem. In G Kahl, J Schell, eds, Molecular Biology of Plant Tumors. Academic Press, New York, pp 155-210Google Scholar
  21. Braun AC, Laskaris T (1942) Tumor formation by attenuated crown-gall bacteria in the presence of growth promoting substances. Proc Natl Acad Sci USA 28: 468-477PubMedGoogle Scholar
  22. Braun AC, Mandle RJ (1948) Studies on the inactivation of the tumor inducing principle in crown gall. Growth 12: 255-269PubMedGoogle Scholar
  23. Braun AC, White PR (1943) Bacteriological sterility of tissues derived from sec-ondary crown-gall tumors. Phytopathology 33: 85-100Google Scholar
  24. Braun AC, Wood HN (1976) Suppression of the neoplastic state with the ac-quistion of specialized functions in cells, tissues and organs of crown-gall teratomas of tobacco. Proc Natl Acad Sci USA 73: 496-500PubMedGoogle Scholar
  25. Brencic A, Angert ER, Winans SC (2005) Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumor free. Mol Microbiol 57: 1522-1531PubMedGoogle Scholar
  26. Buchmann I, Marner F-J, Schröder G, Waffenschmidt S, Schröder J (1985) Tumor genes in plants: T-DNA encoded cytokinin biosynthesis. EMBO J 4: 853-859PubMedGoogle Scholar
  27. Cavara F (1897) Intorno alla eziologia di alcune malattie di plant cultivate. Stn Sper Agrar Ital Modena 30: 483-487Google Scholar
  28. Chilton M-D, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263-271PubMedGoogle Scholar
  29. Chilton M-D, Drummond MH, Merlo DJ, Sciaky D (1978) Highly conserved DNA of Ti plasmid overlaps T-DNA maintained in plant tumors. Nature 275: 147-149Google Scholar
  30. Chilton M-D, Farrand SK, Eden FC, Currier TC, Bendich AJ, Gordon MP, Nester EW (1974) Is there foreign DNA in crown gall tumor DNA? In R Markham, DR Davies, D Hopwood, RW Horne, eds, Modification of the Information Content of Plant Cells. Elsevier, New York, p 297Google Scholar
  31. Chilton M-D, Saiki RK, Yadav N, Gordon MP, Quétier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77: 2693-2697PubMedGoogle Scholar
  32. De Greve H, Leemans J, Hernalsteens JP, Thia-Toong L, De Beukeleer M, Willmitzer L, Otten L, Van Montagu M, Schell J (1982) Regeneration of normal and fertile plants that express octopine synthase from tobacco galls af-ter deletion of tumor-controlling functions. Nature 300: 752-757Google Scholar
  33. Depicker A, Van Montagu M, Schell J (1978) Homologous DNA sequences in different Ti-plasmids are essential for oncogenicity. Nature 275: 150-153Google Scholar
  34. Dons JJM (1975) Crown gall - a plant tumor. Investigation on the nuclear content and on the presnce of Agrobacterium tumefaciens DNA and phage PS8 DNA in crown gall tumor cells. Ph. D. dissertation. Leiden, The NetherlandsGoogle Scholar
  35. Douglas CJ, Halperin W, Nester EW (1982) Agrobacterium tumefaciens mutants affected in attachment to plant cell. J Bacteriol 152: 1265-1275PubMedGoogle Scholar
  36. Drlica KA, Kado CI (1975) Crown gall tumors: are bacterial nucleic acids in-volved? Bacteriol Rev 39: 186-196PubMedGoogle Scholar
  37. Farrand SK, Van Berkum PB, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53: 1681-1687PubMedGoogle Scholar
  38. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80: 4803-4807PubMedGoogle Scholar
  39. Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144: 732-743PubMedGoogle Scholar
  40. Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW (1981) Genetic analysis of crown gall: fine structure map of the T-DNA by sitedirected mutagenesis. Cell 27: 143-153PubMedGoogle Scholar
  41. Goldmann A, Tempé J, Morel G (1968) Quelques particularités de diverses sou-ches d’Agrobacterium tumefaciens. CR Seances Soc Biol Ses Fil 162: 630-631Google Scholar
  42. Hamilton RC, Fall MZ (1971) The loss of tumor initiating ability in Agrobacte-rium tumefaciens by incubation at high temperature. Experientia 27: 229-230PubMedGoogle Scholar
  43. Hendrickson AA, Baldwin IL, Riker AJ (1934) Studies on certain physiological characters of Phytomonas tumefaciens, Phytomonas rhizogenes and Phytomonas radiobacter. J Bacteriol 28: 597-618PubMedGoogle Scholar
  44. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti plasmid derived vector. Nature 303: 209-213Google Scholar
  45. Hille J, Wullems GJ, Schilperoort RA (1983) Non-oncogenic T-region mutants of Agrobacterium tumefaciens do transfer T-DNA into plant cells. Plant Mol Biol 2: 155-164Google Scholar
  46. Hoekma A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary vector strategy based on separation of the vir and T-region of the Agroabcterium tumefaciens Ti plasmid. Nature 303: 179-180Google Scholar
  47. Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N (1984) In-heritance of functional foreign genes in plants. Science 223: 496-497PubMedGoogle Scholar
  48. Inzé D, Follin A, Van Lijsebettens M, Simoens C, Genetello C, et al. (1984) Ge-netic analysis of the individual T-DNA genes of Agrobacterium tumefaciens: further evidence that two genes are involved in indole-3-acetic acid sysnthe-sis. Mol Gen Genet 194: 265-274Google Scholar
  49. Kahl G, Schell J (1982) Molecular Biology of Plant Tumors. Academic Press, New YorkGoogle Scholar
  50. Kerr A (1969) Transfer of virulence between isolates of Agrobacterium. Nature 223: 1175-1176Google Scholar
  51. Klee HJ, White FF, Iyer VN, Gordon MP, Nester EW (1983) Mutational analysis of the virulence region of an Agrobacterium tumefaciens Ti plasmid. J Bacte-riol 153: 878-883Google Scholar
  52. Kunkel LO (1941) Heat cure of aster yellows in periwinkle. Am J Bot 28: 761-769Google Scholar
  53. Leemans J, Deblaere R, Willmitzer L, De Greeve H, Hernalsteens JP, Van Montagu M, Schell J (1982) Genetic identification of functions of TL-DNA transcripts in octopine crown galls. EMBO J 1: 147-152PubMedGoogle Scholar
  54. Lejeune B, Jubier MF (1967) Etude de la dégradation de la lysopine par Agrobacterium tumefaciens. C R Hebd Seances Acad Sci Ser D 264: 1803-1805Google Scholar
  55. Lemmers M, De Beuckeleer M, Holsters M, Zambryski P, Depicker A, Hernals-teens JP, Van Montagu M, Schell J (1980) Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline crown gall tumours. J Mol Biol 144: 353-376PubMedGoogle Scholar
  56. Levin I, Levine M (1918) Malignancy of the crown gall and its analogy to animal cancer. Proc Soc Exp Biol and Med 16: 21-22Google Scholar
  57. Levine M (1919) Studies on plant cancers - I. The mechanism of the formation of the leafy crown gall. Bull Torr Bot Soc 46: 447-452Google Scholar
  58. Lioret C (1957) Les acides aminés libres des tissus de crown-gall. Mise en évi-dence d’un acide aminé particulier à ces tissus. CR Hebd Seances Acad Sci 244: 2171-2174Google Scholar
  59. Lippincott BB, Lippincott JA (1969) Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterium tumefaciens. J Bac-teriol 97: 620-628Google Scholar
  60. Lippincott BB, Whatley MH, Lippincott JA (1977) Tumor induction by Agrbabcterium tumefaciens involves attachment of the bacterium to a site on the host plant cell wall. Plant Physiol 59: 388-390PubMedGoogle Scholar
  61. Lippincott JA, Lippincott BB (1978) Cell walls of crown-gall tumors and embry-onic tissues lack Agrobacterium adherence sites. Science 109: 1075-1078Google Scholar
  62. Locke SB, Riker AJ, Duggar BM (1938) Growth substance and the development of crown gall. J Agr Res 57: 21-39Google Scholar
  63. McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell inter-actions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22: 101-127PubMedGoogle Scholar
  64. Meins FJ, Binns AN (1978) Epigenetic clonal variation in the requirement of plant cells for cytokinins. In S Subtelny, IM Sussex, eds, The Clonal Basis of De-velopment. Academic Press, New York, pp 185-201Google Scholar
  65. Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2: 617-626PubMedGoogle Scholar
  66. Neff NT, Binns AN (1985) Agrobacterium tumefaciens interaction with suspen-sion-cultured tomato cells. Plant Physiol 77: 35-42PubMedGoogle Scholar
  67. Ooms G, Hooykaas PJJ, Noleman G, Schilperoort RA (1981) Crown gall tumors of abnormal morphology induced by Agrobacterium tumefaciens carrying mu-tated octopine Ti plasmids: analysis of T-DNA functions. Gene 14: 33-50PubMedGoogle Scholar
  68. Ooms G, Klapwijk PM, Poulis JA, Schilperoort RA (1980) Characterization of Tn904 insertions in octopine Ti plasmid mutants of Agrobacterium tumefa-ciens. J Bacteriol 144: 82-91PubMedGoogle Scholar
  69. Petit A, Delhaye S, Tempé J, Morel G (1970) Recherches sur les guanidines des tissus de crown-gall. Mise en evidence d’une relation biochimique spécifique entre les souches d’Agrobacterium tumefaciens et les tumeurs qu’elles indui-sent. Physiol Veg 8: 205-213Google Scholar
  70. Petit A, Tourneur J (1972) Perte de virulence associée à la perte d’une activité en-zymatique chez Agrobacterium tumefaciens. C R Acad Sci Paris Life Sciences 275: 137-139Google Scholar
  71. Ream LW, Gordon MP, Nester EW (1983) Multiple mutations in the T region of the Agrobacterium tumefaciens tumor-inducing plasmid. Proc Natl Acad Sci USA 80: 1660-1664PubMedGoogle Scholar
  72. Riker AJ (1923a) Some morphological resoponses of the host tissue to the crown gall organism. J Agric Res 26: 425-435Google Scholar
  73. Riker AJ (1923b) Some relations of the crown gall organism to its host tissue. J Agric Res 25: 119-132Google Scholar
  74. Riker AJ (1926) Studies on the influence of some environmental factors on the development of crown gall. J Agric Res 32: 83-96Google Scholar
  75. Schröder G, Waffenschmidt S, Weiler EW, Schröder J (1984) The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Bio-chem 138: 387-391Google Scholar
  76. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11: 118-131Google Scholar
  77. Smith EF (1916) Crown gall studies showing changes in plant structures due to a changed stimula. Jour Agric Res 6: 179-182 (plus plates)Google Scholar
  78. Smith EF, Brown NA, Townsend CO (1912) The structure and development of crown gall: A plant cancer. US Dept Agric Bur Plant Ind Bull 255: 1-61Google Scholar
  79. Smith EF, Townsend CO (1907) A plant tumor of bacterial origin. Science 25: 671-673PubMedGoogle Scholar
  80. Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cell that activate T-DNA trans-fer in Agrobacterium tumefaciens. Nature 318: 624-629Google Scholar
  81. Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5: 1445-1454PubMedGoogle Scholar
  82. Stachel SE, Timmerman B, Zambryski P (1986) Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer for Agrobacte-rium tumefaciens to plant cells. Nature 322: 706-712Google Scholar
  83. Stachel SE, Timmerman B, Zambryski P (1987) Activation of Agrobacterium tu-mefaciens vir gene expression generates multiple single-stranded T-strand molecules from the pTiA6 T-region: requirement for 5’ virD gene products. EMBO J 6: 857-863PubMedGoogle Scholar
  84. Stachel SE, Zambryski PC (1986) virA and virG control the plant-induced activa-tion of the T-DNA transfer process of A. tumefaciens. Cell 46: 325-333PubMedGoogle Scholar
  85. Tempé J, Goldmann A (1982) Occurence and biosynthesis of opines. In G Kahl, JS Schell, eds, Molecular Biology of Plant Tumors. Academic Press, New York, pp 427-449Google Scholar
  86. Thomashow LS, Reeves S, Thomashow MF (1984) Crown gall oncogenesis: evi-dence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indole-3-acetic acid. Proc Natl Acad Sci USA 81: 5071-5075PubMedGoogle Scholar
  87. Thomashow MF, Hughly S, Buchholz WG, Thomashow LS (1986) Molecular ba-sis for the auxin-independent phenotype of crown gall tumor tissue. Science 231: 616-618PubMedGoogle Scholar
  88. Thomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW (1980a) Inte-gration and organization of Ti plasmid sequences in crown gall tumors. Cell 19: 729-739PubMedGoogle Scholar
  89. Thomashow MF, Nutter R, Postle K, Chilton M-D, Blattner FR, Powell A, Gordon MP, Nester EW (1980b) Recombination between higher plant DNA and the Ti plasmid of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 77: 6448-6452PubMedGoogle Scholar
  90. Turgeon R, Wood HN, Braun AC (1976) Studies on the recovery of crown gall tumor cells. Proc Natl Acad Sci USA 73: 3562-3564PubMedGoogle Scholar
  91. Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilpero-ort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252: 169-170PubMedGoogle Scholar
  92. Van Larebeke N, Genetello C, Schell J, Schilperoort RA, Hermans AK, Van Mon-tagu M, Hernalsteens JP (1975) Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature 255: 742-743PubMedGoogle Scholar
  93. Van Onckelen H, Prinsen E, Inzé D, Rudelsheim P, Van Lijsebettens M, Follin A, Schell J, Van Montagu M, De Greef J (1986) Agrobacterium T-DNA gene 1 codes for tryptophan 2-monooxygenase activity in tobacco crown gall cells. FEBS Lett 198: 357-360Google Scholar
  94. Van Onckelen H, Rudelsheim P, Hermans R, Horemans S, Messens E, Hernalsteens J-P, Van Montagu M, De Greef J (1984) Kinetics of endogenous cytokinin, IAA and ABA levels in relation to the growth and morphology of tobacco crown gall tissue. Plant Cell Physiol 25: 1017-1025Google Scholar
  95. Wang K, Herrera-Estrella L, Van Montagu M, Zambryski P (1984) Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines di-rection of DNA transfer from Agrobacterium to the plant genome. Cell 38: 455-462PubMedGoogle Scholar
  96. Watson B, Currier TC, Gordon MP, Chilton M-D, Nester EW (1975) Plasmid re-quired for virulence of Agrobacterium tumefaciens. J Bacteriol 123: 255-264PubMedGoogle Scholar
  97. White FF, Nester EW (1980) Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141: 1134-1141PubMedGoogle Scholar
  98. White PR, Braun AC (1941) Crown gall production by bacteria free tumor tissues. Science 94: 239-241PubMedGoogle Scholar
  99. Willmitzer L, De Beuckeleer M, Lemmers M, Van Montagu M, Schell J (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature 287: 359-361Google Scholar
  100. Willmitzer L, Dhaese P, Schreier PH, Schmalenbach W, Van Montagu M, Schell J (1983) Size, location and polarity of T-DNA-encoded transcripts in nopaline crown gall tumos-common transcripts in octopine and nopaline tumors. Cell 32: 1045-1056PubMedGoogle Scholar
  101. Willmitzer L, Simons G, Schell J (1982) The TL-DNA in octopine crown-gall tu-mors codes for seven well-defined polyadenylated transcripts. EMBO J 1: 139-146PubMedGoogle Scholar
  102. Wood HN, Binns AN, Braun AC (1978) Differential expression of oncogenicity and nopaline synthesis in intact leaves derived from crown gall teratomas of tobacco. Differentiation 11: 175-180Google Scholar
  103. Yadav NS, Postle K, Saiki RK, Thomashow MF, Chilton M-D (1980) T-DNA of a crown gall teratoma is covalently joined to host plant DNA. Nature 287: 458-461Google Scholar
  104. Yadav NS, Vanderleyden J, Bennet DR, Barnes WM, Chilton M-D (1982) Short direct repeats flank th T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79: 6322-6326PubMedGoogle Scholar
  105. Yang F, Montoya AL, Merlo DJ, Drummond MH, Chilton M-D, Nester EW, Gordon MP (1980) Foreign DNA sequences in crown gall teratomas and their fate during the loss of the tumorous traits. Mol Gen Genet 177: 707-714PubMedGoogle Scholar
  106. Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the ge-nus, and the inclusion of all species of Agrobacterium Conn 1942 and Al-lorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51: 89-103PubMedGoogle Scholar
  107. Zaenen I, Van Larebeke N, Tenchy H, Van Montagu M, Schell J (1974) Super-coiled circular DNA in crown gall inducing Agrobacterium strains. J Mol Biol 86: 109-127PubMedGoogle Scholar
  108. Zambryski P, Holsters M, Kruger K, Depicker A, Schell J, Van Montagu M, Goodman HM (1980) Tumor DNA structure in plant cells transformed by A. tumefaciens. Science 209: 1385-1391PubMedGoogle Scholar
  109. Zambryski PC, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without altera-tion of their normal regeneration capacity. EMBO J 2: 2143-2150PubMedGoogle Scholar
  110. Zhu Y, Nam J, Humara JM, Mysore KS, Lee LY, Cao H, Valentine L, Li J, Kaiser AD, Kopecky AL, Hwang HH, Bhattacharjee S, Rao PK, Tzfira T, Rajagopal J, Yi H, Veena, Yadav BS, Crane YM, Lin K, Larcher Y, Gelvin MJ, Knue M, Ramos C, Zhao X, Davis SJ, Kim SI, Ranjith-Kumar CT, Choi YJ, Hallan VK, Chattopadhyay S, Sui X, Ziemienowicz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132: 494-505PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Andrew N. Binns
    • 1
  1. 1.Department of Biology and Plant Sciences InstituteUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations