Agrobacterium-Mediated Transformation of Non-Plant Organisms

  • Jalal Soltani
  • G. Paul H. van Heusden
  • Paul J. J. Hooykaas

During the last decade it became clear that the ability of Agrobacterium to transform host organisms is not restricted to plants, but that numerous other organisms are transformable by Agrobacterium under laboratory conditions. It has been shown that Agrobacterium-mediated transformation is possible for at least 80 different non-plant species. Most of these organisms are fungi including yeasts, but also mammalian cells and algae can be transformed. Agrobacterium-mediated transformation is not restricted to eukaryotes as Agrobacterium is also able to act on the gram positive bacterium Streptomyces lividans. In general, the procedures for the transformation of different organisms are similar, but each organism has its own conditions for optimal transformation efficiency. Nowadays Agrobacterium-mediated transformation is the method of choice for the transformation of various fungi as transformation efficiencies are much higher than with other methods and the transformation protocols are relatively facile. Agrobacterium can transfer not only DNA but also proteins to the host organisms through its type four secretion system. This protein transfer has been shown for both plants and the yeast Saccharomyces cerevisiae. A major issue in the transformation of eukaryotic cells is the integration of the foreign DNA at random positions in the genome rather than at specific locations. The ability of Agrobacterium to transform the yeast S. cerevisae offers the possibility to use the many experimental tools available for this organism to fully unravel the mechanisms involved in the Agrobacterium-mediated transformation process. This is especially relevant as in contrast to most other organisms S. cerevisiae has a very efficient system for targeted integration of DNA fragments via homologous recombination. Knowledge of this system has already led to an increased frequency of targeted integration in the yeast Kluyveromyes lactis, in the filamentous fungus Neurospora crassa and the plant Arabidopsis thaliana. The ability of Agrobacterium to transfer T-DNA to a wide variety of eukaryotic and some prokaryotic organisms may have important implications for evolution. Future research has to show whether Agrobacterium-mediated transformation contributed to horizontal gene transfer between microorganisms in the rhizosphere.


Homologous Recombination Agrobacterium Tumefaciens Autonomously Replicate Sequence Mucor Circinelloides Cryphonectria Parasitica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. Abuodeh RO, Orbach MJ, Mandel MA, Das A, Galgiani JN (2000) Genetic trans-formation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J Infect Dis 181: 2106-2110PubMedGoogle Scholar
  2. Amey RC, Athey-Pollard A, Burns C, Mills PR, Bailey A, Foster GD (2002) PEG-mediated and Agrobacterium-mediated transformation in the mycopa-thogen Verticillium fungicola. Mycol Res 106: 4-11Google Scholar
  3. Amey RC, Mills PR, Bailey A, Foster GD (2003) Investigating the role of a Verti-cillium fungicola beta-1,6-glucanase during infection of Agaricus bisporus us-ing targeted gene disruption. Fungal Genet Biol 39: 264-275PubMedGoogle Scholar
  4. Brandhorst TT, Rooney PJ, Sullivan TD, Klein B (2002) Molecular genetic analy-sis of Blastomyces dermatitidis reveals new insights about pathogenic mecha-nisms. Int J Med Microbiol 292: 363-371PubMedGoogle Scholar
  5. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14: 3206-3214PubMedGoogle Scholar
  6. Bundock P, Hooykaas PJJ (1996) Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc Natl Acad Sci USA 93: 15272-15275PubMedGoogle Scholar
  7. Bundock P, Mroczek K, Winkler AA, Steensma HY, Hooykaas PJ (1999) T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol Gen Genet 261: 115-121PubMedGoogle Scholar
  8. Bundock P, van Attikum H, den Dulk-Ras A, Hooykaas PJ (2002) Insertional mutagenesis in yeasts using T-DNA from Agrobacterium tumefaciens. Yeast 19: 529-536PubMedGoogle Scholar
  9. Campoy S, Perez F, Martin JF, Gutierrez S, Liras P (2003) Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by proto-plast transformation and Agrobacterium-mediated DNA transfer. Curr Genet 43: 447-452PubMedGoogle Scholar
  10. Chen X, Stone M, Schlagnhaufer C, Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bis-porus. Appl Environ Microbiol 66: 4510-4513PubMedGoogle Scholar
  11. Cheney D, Metz B, Stiller J (2001) Agrobacterium-mediated genetic transforma-tion in the macroscopic marine red alga Porphyra yezoensis. J Phycol Suppl 37: 11Google Scholar
  12. Combier JP, Melayah D, Raffier C, Gay G, Marmeisse R (2003) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Mi-crobiol Lett 220: 141-148Google Scholar
  13. Covert SF, Kapoor P, Lee M, Briley A, Nairn CJ (2001) Agrobacterium-mediated transformation of Fusarium circinatum. Mycol Res 105: 259-264Google Scholar
  14. Dai Q, Sun Z, Schnabel G (2003) Development of spontaneous hygromycin B re-sistance in Monilinia fructicola and Its impact on growth rate, morphology, susceptibility to demethylation inhibitor fungicides, and sporulation. Phytopa-thol 93: 1354-1359Google Scholar
  15. Daley JM, Palmbos PL, Wu D, Wilson TE (2005) Nonhomologous end joining in yeast. Annu Rev Genet 39: 431-451PubMedGoogle Scholar
  16. Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23: 238-245PubMedGoogle Scholar
  17. De Block M, Schell J, Van Montagu M (1985) Chloroplast transformation by Agrobacterium tumefaciens. EMBO J 4: 1367-1372Google Scholar
  18. De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42: 389-466Google Scholar
  19. de Groot MJ, Bundock P, Hooykaas PJJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16: 839-842PubMedGoogle Scholar
  20. Degefu Y, Hanif M (2003) Agrobacterium tumefaciens-mediated transformation of Helminthosporium turcicum, the maize leaf-blight fungus. Arch Microbiol 180: 279-284PubMedGoogle Scholar
  21. Dobinson KF, Grant SJ, Kang S (2004) Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae. Curr Genet 45: 104-110PubMedGoogle Scholar
  22. dos Reis MC, Pelegrinelli Fungaro MH, Delgado Duarte RT, Furlaneto L, Furlaneto MC (2004) Agrobacterium tumefaciens-mediated genetic transfor-mation of the entomopathogenic fungus Beauveria bassiana. J Microbiol Methods 58: 197-202PubMedGoogle Scholar
  23. Dudasova Z, Dudas A, Chovanec M (2004) Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev 28: 581-601PubMedGoogle Scholar
  24. Eckert M, Maguire K, Urban M, Foster S, Fitt B, Lucas J, Hammond-Kosack K (2005) Agrobacterium tumefaciens-mediated transformation of Leptosphaeria spp. and Oculimacula spp. with the reef coral gene DsRed and the jellyfish gene gfp. FEMS Microbiol Lett 253: 67-74PubMedGoogle Scholar
  25. Fang W, Zhang Y, Yang X, Zheng X, Duan H, Li Y, Pei Y (2004) Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbi-cide resistance gene as a selection marker. J Invertebr Pathol 85: 18-24PubMedGoogle Scholar
  26. Fitzgerald A, Van Kan JA, Plummer KM (2004) Simultaneous silencing of multi-ple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fungal Genet Biol 41: 963-971PubMedGoogle Scholar
  27. Fitzgerald AM, Mudge AM, Gleave AP, Plummer KM (2003) Agrobacterium and PEG-mediated transformation of the phytopathogen Venturia inaequalis. My-col Res 107: 803-810Google Scholar
  28. Flowers JL, Vaillancourt LJ (2005) Parameters affecting the efficiency of Agro-bacterium tumefaciens-mediated transformation of Colletotrichum gramini-cola. Curr Genet 48: 380-388PubMedGoogle Scholar
  29. Gao XX, Yang Q (2005) Agrobacterium tumefaciens-mediated transformation of Chaetomium globosum and its T-DNA insertional mutagenesis. Wei Sheng Wu Xue Bao 45: 129-131PubMedGoogle Scholar
  30. Gardiner DM, Cozijnsen AJ, Wilson LM, Pedras MS, Howlett BJ (2004) The si-rodesmin biosynthetic gene cluster of the plant pathogenic fungus Lep-tosphaeria maculans. Mol Microbiol 53: 1307-1318PubMedGoogle Scholar
  31. Gardiner DM, Howlett BJ (2004) Negative selection using thymidine kinase in-creases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans. Curr Genet 45: 249-255PubMedGoogle Scholar
  32. Godio RP, Fouces R, Gudina EJ, Martin JF (2004) Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomy-cete Hypholoma sublateritium. Curr Genet 46: 287-294PubMedGoogle Scholar
  33. Gouka RJ, Gerk C, Hooykaas PJ, Bundock P, Musters W, Verrips CT, de Groot MJ (1999) Transformation of Aspergillus awamori by Agrobacterium tumefa-ciens-mediated homologous recombination. Nat Biotechnol 17: 598-601PubMedGoogle Scholar
  34. Grimaldi B, de Raaf MA, Filetici P, Ottonello S, Ballario P (2005) Agrobacte-rium-mediated gene transfer and enhanced green fluorescent protein visualiza-tion in the mycorrhizal ascomycete Tuber borchii: a first step towards truffle genetics. Curr Genet 48: 69-74PubMedGoogle Scholar
  35. Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93: 9975-9979PubMedGoogle Scholar
  36. Hanif M, Pardo AG, Gorfer M, Raudaskoski M (2002) T-DNA transfer and inte-gration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet 41: 183-188PubMedGoogle Scholar
  37. Hoffman B, Breuil C (2004) Disruption of the subtilase gene, albin1, in Ophio-stoma piliferum. Appl Environ Microbiol 70: 3898-3903PubMedGoogle Scholar
  38. Hooykaas PJ (2005) Transformation mediated by Agrobacterium tumefaciens. In JS Tkacz, L Lange, eds, Advances in Fungal Biotechnology for Industry, Ag-riculture and Medicine. Kluwer Acad./Plenum Publ., New York, pp 41-65Google Scholar
  39. Hooykaas PJ, Dulk-Ras A, Bundock P, Soltani J, van Attikum H, van Heusden GPH (2006) Agrobacterium-mediated transformation of the yeast. In K Wang, ed, Agrobacterium Protocols. Humana Press, pp 465-473Google Scholar
  40. Hooykaas-Van Slogteren GMS, Hooykaas PJJ, Schilperoort RA (1984) Expres-sion of Ti plasmid genes in monocotyledonous plants infected with Agrobac-terium tumefaciens. Nature 311: 763-764Google Scholar
  41. Idnurm A, Reedy JL, Nussbaum JC, Heitman J (2004) Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryot Cell 3: 420-429PubMedGoogle Scholar
  42. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefa-ciens. Nat Biotechnol 14: 745-750PubMedGoogle Scholar
  43. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcino-genesis 23: 687-696Google Scholar
  44. Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22: 561-570PubMedGoogle Scholar
  45. Kellner EM, Orsborn KI, Siegel EM, Mandel MA, Orbach MJ, Galgiani JN (2005) Coccidioides posadasii contains a single 1,3-{beta}-glucan synthase gene that appears to be essential for growth. Eukaryot Cell 4: 111-120PubMedGoogle Scholar
  46. Kelly BA, Kado CI (2002) Agrobacterium-mediated T-DNA transfer and integra-tion into the chromosome of Streptomyces lividans. Mol Plant Pathol 3: 125-134Google Scholar
  47. Kemppainen M, Circosta A, Tagu D, Martin F, Pardo AG (2006) Agrobacterium-mediated transformation of the ectomycorrhizal symbiont Laccaria bicolor S238N. Mycorrhiza 16: 19-22Google Scholar
  48. Khang CH, Park SY, Lee YH, Kang S (2005) A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genet Biol 42: 483-492PubMedGoogle Scholar
  49. Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Korber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86: 8467-8471PubMedGoogle Scholar
  50. Koncz C, Nemeth K, Redei GP, Schell J (1992) T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Biol 20: 963-976PubMedGoogle Scholar
  51. Kooistra R, Hooykaas PJ, Steensma HY (2004) Efficient gene targeting in Kluy-veromyces lactis. Yeast 21: 781-792PubMedGoogle Scholar
  52. Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38: 233-271PubMedGoogle Scholar
  53. Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11: 2283-2290PubMedGoogle Scholar
  54. Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic trans-formation of the green alga Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166: 731-738Google Scholar
  55. Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98: 1871-1876PubMedGoogle Scholar
  56. Lacroix B, Tzfira T, Vainstein A, Citovsky V (2006) A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22: 29-37PubMedGoogle Scholar
  57. Leal CV, Montes BA, Mesa AC, Rua AL, Corredor M, Restrepo A, McEwen JG (2004) Agrobacterium tumefaciens-mediated transformation of Paracoccidi-oides brasiliensis. Med Mycol 42: 391-395PubMedGoogle Scholar
  58. Leclerque A, Wan H, Abschutz A, Chen S, Mitina GV, Zimmermann G, Schairer HU (2004) Agrobacterium-mediated insertional mutagenesis (AIM) of the en-tomopathogenic fungus Beauveria bassiana. Curr Genet 45: 111-119.PubMedGoogle Scholar
  59. Li HY, Pan CY, Chen H, Zhao CJ, Lu GD, Wang ZH (2003) Optimization of T-DNA insertional mutagenesis and analysis of mutants of Magnaporthe grisea. Sheng Wu Gong Cheng Xue Bao 19: 419-423PubMedGoogle Scholar
  60. Li M, Gong X, Zheng J, Jiang D, Fu Y, Hou M (2005) Transformation of Conio-thyrium minitans, a parasite of Sclerotinia sclerotiorum, with Agrobacterium tumefaciens. FEMS Microbiol Lett 243: 323-329PubMedGoogle Scholar
  61. Loppnau P, Tanguay P, Breuil C (2004) Isolation and disruption of the melanin pathway polyketide synthase gene of the softwood deep stain fungus Cerato-cystis resinifera. Fungal Genet Biol 41: 33-41PubMedGoogle Scholar
  62. Loyter A, Rosenbluh J, Zakai N, Li J, Kozlovsky SV, Tzfira T, Citovsky V (2005) The plant VirE2 interacting protein 1. A molecular link between the Agrobac-terium T-Complex and the host cell chromatin? Plant Physiol 138: 1318-1321PubMedGoogle Scholar
  63. Malonek S, Meinhardt F (2001) Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Curr Genet 40: 152-155PubMedGoogle Scholar
  64. McClelland CM, Chang YC, Kwon-Chung KJ (2005) High frequency transforma-tion of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens. Fungal Genet Biol 42: 904-913PubMedGoogle Scholar
  65. Meyer V, Mueller D, Strowig T, Stahl U (2003) Comparison of different trans-formation methods for Aspergillus giganteus. Curr Genet 43: 371-377PubMedGoogle Scholar
  66. Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48: 1-17PubMedGoogle Scholar
  67. Michielse CB, Ram AF, Hooykaas PJ, Hondel CA (2004a) Role of bacterial viru-lence proteins in Agrobacterium-mediated transformation of Aspergillus awamori. Fungal Genet Biol 41: 571-578PubMedGoogle Scholar
  68. Michielse CB, Ram AF, Hooykaas PJ, van den Hondel CA (2004b) Agrobacte-rium-mediated transformation of Aspergillus awamori in the absence of full-length VirD2, VirC2, or VirE2 leads to insertion of aberrant T-DNA struc-tures. J Bacteriol 186: 2038-2045PubMedGoogle Scholar
  69. Michielse CB, Salim K, Ragas P, Ram AF, Kudla B, Jarry B, Punt PJ, van den Hondel CA (2004c) Development of a system for integrative and stable trans-formation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer. Mol Genet Genomics 271: 499-510PubMedGoogle Scholar
  70. Mikosch TS, Lavrijssen B, Sonnenberg AS, van Griensven LJ (2001) Transforma-tion of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr Genet 39: 35-39PubMedGoogle Scholar
  71. Mogensen EG, Challen MP, Strange RN (2006) Reduction in solanapyrone phyto-toxin production by Ascochyta rabiei transformed with Agrobacterium tume-faciens. FEMS Microbiol Lett 255: 255-61PubMedGoogle Scholar
  72. Monfort A, Cordero L, Maicas S, Polaina J (2003) Transformation of Mucor mie-hei results in plasmid deletion and phenotypic instability. FEMS Microbiol Lett 224: 101-106PubMedGoogle Scholar
  73. Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacte-rium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathol 91: 173-180Google Scholar
  74. Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replace-ments in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101: 12248-12253PubMedGoogle Scholar
  75. Nyilasi I, Acs K, Lukacs G, Papp T, Kasza Z, Vagvolgyi C (2003) Agrobacterium tumefaciens-mediated transformation of Mucor circinelloides. In First FEMS Congress Eur Microbiol, Ljubljana, pp 13-16.Google Scholar
  76. O’Connell R, Herbert C, Sreenivasaprasad S, Khatib M, Esquerre-Tugaye MT, Dumas B (2004) A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. Mol Plant-Microbe Interact 17: 272-282PubMedGoogle Scholar
  77. Pâques F, Haber JE (1999) Multiple pathways of recombination induced by dou-ble-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63: 349-404PubMedGoogle Scholar
  78. Pardo AG, Hanif M, Raudaskoski M, Gorfer M (2002) Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens. Mycol Res 106: 132-137Google Scholar
  79. Pardo AG, Kemppainen M, Valdemoros D, Duplessis S, Martin F, Tagu D (2005) T-DNA transfer from Agrobacterium tumefaciens to the ectomycorrhizal fun-gus Pisolithus microcarpus. Rev Argent Microbiol 37: 69-72PubMedGoogle Scholar
  80. Park SM, Kim DK (2004) Transformation of a filamentous fungus Cryphonectria parasitica using Agrobacterium tumefaciens. Biotechnol Bioprocess Eng 9: 217-222Google Scholar
  81. Peterson CL, Côté J (2004) Cellular machineries for chromosomal DNA repair. Genes Dev 18: 602-616PubMedGoogle Scholar
  82. Piers KL, Heath JD, Liang X, Stephens KM, Nester EW (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci USA 93: 1613-1618PubMedGoogle Scholar
  83. Rho HS, Kang S, Lee YH (2001) Agrobacterium tumefaciens-mediated transfor-mation of plant pathogenic fungus, Magnaporthe grisea. Mol Cells 12: 407-411PubMedGoogle Scholar
  84. Risseeuw E, Franke-van Dijk ME, Hooykaas PJ (1996) Integration of an insertion-type transferred DNA vector from Agrobacterium tumefaciens into the Sac-charomyces cerevisiae genome by gap repair. Mol Cell Biol 16: 5924-5932PubMedGoogle Scholar
  85. Rodriguez-Tovar AV, Ruiz-Medrano R, Herrera-Martinez A, Barrera-Figueroa BE, Hidalgo-Lara ME, Reyes-Marquez BE, Cabrera-Ponce JL, Valdes M, Xoconostle-Cazares B (2005) Stable genetic transformation of the ectomy-corrhizal fungus Pisolithus tinctorius. J Microbiol Methods 63: 45-54PubMedGoogle Scholar
  86. Rogers CW, Challen MP, Green JR, Whipps JM (2004) Use of REMI and Agro-bacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans. FEMS Microbiol Lett 241: 207-214PubMedGoogle Scholar
  87. Rolland S, Jobic C, Fevre M, Bruel C (2003) Agrobacterium-mediated transfor-mation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Curr Genet 44: 164-171PubMedGoogle Scholar
  88. Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J. 17: 6086-6095PubMedGoogle Scholar
  89. Samils N, Elfstrand M, Lindner Czederpiltz DL, Fahleson J, Olson A, Dixelius C, Stenlid J (2006) Development of a rapid and simple Agrobacterium tumefa-ciens-mediated transformation system for the fungal pathogen Heterobasid-ion annosum. FEMS Microbiol Lett 255: 82-88PubMedGoogle Scholar
  90. Schrammeijer B, Dulk-Ras Ad A, Vergunst AC, Jurado Jacome E, Hooykaas PJ (2003) Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res 31: 860-868PubMedGoogle Scholar
  91. Shaked H, Melamed-Bessudo C, Levy AA (2005) High frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102: 12265-12269PubMedGoogle Scholar
  92. Sharma KK, Gupta S, Kuhad RC (2006) Agrobacterium mediated delivery of marker genes to Phanerochaete chrysosporium mycelial pellets: a model transformation system for white-rot fungi. Biotechnol Appl Biochem (in press)Google Scholar
  93. Sugui JA, Chang YC, Kwon-Chung KJ (2005) Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for inser-tional mutagenesis and targeted gene disruption. Appl Environ Microbiol 71: 1798-1802PubMedGoogle Scholar
  94. Sullivan TD, Rooney PJ, Klein BS (2002) Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryot Cell 1: 895-905PubMedGoogle Scholar
  95. Sun CB, Kong QL, Xu WS (2002) Efficient transformation of Penicillium chry-sogenum mediated by Agrobacterium tumefaciens LBA4404 for cloning of Vitreoscilla hemoglobin gene. Electronic J Biotech 5: 21-28Google Scholar
  96. Symington LS (2002) Role of RAD52 epistasis group genes in homologous re-combination and double-strand break repair. Microbiol Mol Biol Rev 66: 630-670PubMedGoogle Scholar
  97. Takahara H, Tsuji G, Kubo Y, Yamamoto M, Toyoda K, Inagaki Y, Ichinose Y, Shiraishi T (2004) Agrobacterium tumefaciens-mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii. J Gen Plant Pathol 70: 93-96Google Scholar
  98. Takken FL, Van Wijk R, Michielse CB, Houterman PM, Ram AF, Cornelissen BJ (2004) A one-step method to convert vectors into binary vectors suited for Agrobacterium-mediated transformation. Curr Genet 45: 242-248PubMedGoogle Scholar
  99. Tanguay P, Breuil C (2003) Transforming the sapstaining fungus Ophiostoma piceae with Agrobacterium tumefaciens. Can J Microbiol 49: 301-304PubMedGoogle Scholar
  100. Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1: 178-184Google Scholar
  101. Tsuji G, Fujii S, Fujihara N, Hirose C, Tsuge S, Shiraishi T, Kubo Y (2003) Agro-bacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. J Gen Plant Pathol 69: 230-239Google Scholar
  102. Turk SC, Melchers LS, den Dulk-Ras H, Regensburg-Tuink AJ, Hooykaas PJ (1991) Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the VirA sensor protein. Plant Mol Biol 16: 1051-1059PubMedGoogle Scholar
  103. Tzfira T, Li J, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20: 375-383PubMedGoogle Scholar
  104. van Attikum H (2003) Genetic requirements for the integration of Agrobacterium T-DNA in the eukaryotic genome. PhD. Leiden University, Leiden, The NethrlandsGoogle Scholar
  105. van Attikum H, Bundock P, Hooykaas PJJ (2001) Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20: 6550-6558PubMedGoogle Scholar
  106. van Attikum H, Gasser SM (2005) The histone code at DNA breaks: a guide to re-pair? Nat Rev Mol Cell Biol 6: 757-765PubMedGoogle Scholar
  107. van Attikum H, Hooykaas PJJ (2003) Genetic requirements for the targeted inte-gration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Ac-ids Res 31: 826-832Google Scholar
  108. van den Eede G, Aarts H, Buhk HJ, Corthier G, Flint HJ, Hammes W, Jacobsen B, Midtvedt T, van der Vossen J, von Wright A, Wackernagel W, Wilcks A (2004) The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem Toxicol 42: 1127-1156PubMedGoogle Scholar
  109. Veena, Jiang H, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir pro-teins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35: 219-236PubMedGoogle Scholar
  110. Venkateswarlu K, Nazar RN (1991) Evidence for T-DNA mediated gene targeting to tobacco chloroplasts. Biotechnology (NY) 9: 1103-1105Google Scholar
  111. Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CMT, Regensburg-Tuink TJ, Hooykaas PJJ (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290: 979-982PubMedGoogle Scholar
  112. Vergunst AC, van Lier MC, den Dulk-Ras A, Grosse Stüve TA, Ouwehand A, Hooykaas PJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 102: 832-837PubMedGoogle Scholar
  113. Vijn I, Govers F (2003) Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol Plant Pathol 4: 459-467Google Scholar
  114. West SC (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4: 435-445PubMedGoogle Scholar
  115. White D, Chen W (2005) Genetic transformation of Ascochyta rabiei using Agro-bacterium-mediated transformation. Curr Genet 21: 1-9Google Scholar
  116. Wurtele H, Little KC, Chartrand P (2003) Illegitimate DNA integration in mam-malian cells. Gene Ther 10: 1791-1799PubMedGoogle Scholar
  117. Zeilinger S (2004) Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Curr. Genet. 45: 45: 54-60PubMedGoogle Scholar
  118. Zhang A, Lu P, Dahl-Roshak AM, Paress PS, Kennedy S, Tkacz JS, An Z (2003) Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyen-sis. Mol Genet Genomics 268: 645-655PubMedGoogle Scholar
  119. Zhu Y, Nam J, Humara JM, Mysore K, Lee LY, Cao H, Valentine L, Li J, Kaiser A, Kopecky A, Hwang HH, Bhattacharjee S, Rao P, Tzfira T, Rajagopal J, Yi HC, Yadav VBS, Crane Y, Lin K, Larcher Y, Gelvin M, Knue M, Zhao X, Davis S, Kim SI, Kumar CTR, Choi YJ, Hallan V, Chattopadhyay S, Sui X, Ziemienowitz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132: 494-505PubMedGoogle Scholar
  120. Zwiers LH, de Waard MA (2001) Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet 39: 388-393PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jalal Soltani
    • 1
  • G. Paul H. van Heusden
    • 1
  • Paul J. J. Hooykaas
    • 1
  1. 1.Department of Molecular and Developmental Genetics, Institute of BiologyLeiden UniversityLeidenThe Netherlands

Personalised recommendations