The Cell-Cell Communication System of Agrobacterium Tumefaciens

  • Catharine E. White
  • Stephen C. Winans

The Ti plasmids of Agrobacterium tumefaciens carry almost all of the genes required for the formation of crown gall tumors and for the utilization of opines that are produced by these tumors. These plasmids also encode a cell-cell signalling (quorum sensing) system that is homologous to the LuxR-LuxI system of Vibrio fischeri. The LuxI orthologue TraI synthesizes a specific N-acylhomoserine lactone (AHL). This AHL is a diffusible signalling molecule and, when it accumulates to a sufficiently high concentration, it interacts with the LuxR-type transcription activator TraR. The traR gene is induced by particular opines, causing quorum sensing in this bacterium to occur only in the presence of these compounds. TraR activates genes required for conjugal transfer and vegetative replication of the Ti plasmid. In this chapter, we discuss the quorum sensing system of A. tumefaciens from a molecular perspective, and speculate on the possible roles this system may have in virulence and plant colonization.


Agrobacterium Tumefaciens Quorum Sensing Conjugal Transfer Crown Gall Tumor Fatty Acid Tail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Beck von Bodman S, Hayman GT, Farrand SK (1992) Opine catabolism and con-jugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. Proc Natl Acad Sci USA 89: 643-647PubMedGoogle Scholar
  2. Bouzar H, Chilton WS, Nesme X, Dessaux Y, Vaudequin V, Petit A, Jones JB, Hodge NC (1995) A new Agrobacterium strain isolated from aerial tumors on Ficus benjamina L. Appl Environ Microbiol 61: 65-73PubMedGoogle Scholar
  3. Brumbley SM, Carney BF, Denny TP (1993) Phenotype conversion in Pseudomo-nas solanacearum due to spontaneous inactivation of PhcA, a putative LysR transcriptional regulator. J Bacteriol 175: 5477-5487PubMedGoogle Scholar
  4. Busby S, Ebright RH (1999) Transcription activation by catabolite activator pro-tein (CAP). J Mol Biol 293: 199-213PubMedGoogle Scholar
  5. Carlier A, Chevrot R, Dessaux Y, Faure D (2004) The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumu-lation of the N-acyl-homoserine lactone signal. Mol Plant-Microbe Interact 17: 951-957PubMedGoogle Scholar
  6. Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D (2003) The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-Acyl homoserine lactonase activity. Appl Environ Microbiol 69: 4989-4993PubMedGoogle Scholar
  7. Chai Y, Winans SC (2004) Site-directed mutagenesis of a LuxR-type quorum-sensing transcription factor: alteration of autoinducer specificity. Mol Micro-biol 51: 765-776Google Scholar
  8. Chai Y, Winans SC (2005a) Amino-terminal protein fusions to the TraR quorum-sensing transcription factor enhance protein stability and autoinducer-independent activity. J Bacteriol 187: 1219-1226PubMedGoogle Scholar
  9. Chai Y, Winans SC (2005b) RepB protein of an Agrobacterium tumefaciens Ti plasmid binds to two adjacent sites between repA and repB for plasmid parti-tioning and autorepression. Mol Microbiol 56: 1574-1585PubMedCrossRefGoogle Scholar
  10. Chai Y, Winans SC (2005c) A small antisense RNA downregulates expression of an essential replicase protein of an Agrobacterium tumefaciens Ti plasmid. Mol Microbiol 56: 1574-1585PubMedGoogle Scholar
  11. Chai Y, Zhu J, Winans SC (2001) TrlR, a defective TraR-like protein of Agrobac-terium tumefaciens, blocks TraR function in vitro by forming inactive TrlR:TraR dimers. Mol Microbiol 40: 414-421PubMedGoogle Scholar
  12. Chater KF, Horinouchi S (2003) Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 48: 9-15PubMedGoogle Scholar
  13. Chen G, Malenkos JW, Cha MR, Fuqua C, Chen L (2004) Quorum-sensing an-tiactivator TraM forms a dimer that dissociates to inhibit TraR. Mol Microbiol 52: 1641-1651PubMedGoogle Scholar
  14. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal con-taining boron. Nature 415: 545-549PubMedGoogle Scholar
  15. Cho H, Winans SC (2005) VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical sig-nals. Proc Natl Acad Sci USA 102: 14843-14848PubMedGoogle Scholar
  16. Choi SH, Greenberg EP (1991) The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc Natl Acad Sci USA 88: 11115-11119PubMedGoogle Scholar
  17. Choi SH, Greenberg EP (1992a) Genetic dissection of DNA binding and lumines-cence gene activation by the Vibrio fischeri LuxR protein. J Bacteriol 174: 4064-4069PubMedGoogle Scholar
  18. Choi SH, Greenberg EP (1992b) Genetic evidence for multimerization of LuxR, the transcriptional activator of Vibrio fischeri luminescence. Mol Mar Biol Biotechnol 1: 408-413Google Scholar
  19. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lacto-nase. Nature 411: 813-817PubMedGoogle Scholar
  20. Ducros VM, Lewis RJ, Verma CS, Dodson EJ, Leonard G, Turkenburg JP, Mur-shudov GN, Wilkinson AJ, Brannigan JA (2001) Crystal structure of GerE, the ultimate transcriptional regulator of spore formation in Bacillus subtilis. J Mol Biol 306: 759-771PubMedGoogle Scholar
  21. Dunny GM, Leonard BA (1997) Cell-cell communication in gram-positive bacte-ria. Annu Rev Microbiol 51: 527-564PubMedGoogle Scholar
  22. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12: 54-60PubMedGoogle Scholar
  23. Eberl L, Winson MK, Sternberg C, Stewart GS, Christiansen G, Chhabra SR, By-croft B, Williams P, Molin S, Givskov M (1996) Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20: 127-136PubMedGoogle Scholar
  24. Egland KA, Greenberg EP (2001) Quorum sensing in Vibrio fischeri: analysis of the LuxR DNA binding region by alanine-scanning mutagenesis. J Bacteriol 183: 382-386PubMedGoogle Scholar
  25. Ellis JG, Kerr A, Petit A, Tempé J (1982) Conjugal transfer of nopaline and agropine Ti-plasmids - the role of agrocinopines. Mol Gen Genet 186: 269-273Google Scholar
  26. Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isola-tion and genetic analysis of functions from Vibrio fischeri. Cell 32: 773-781PubMedGoogle Scholar
  27. Engebrecht J, Silverman M (1984) Identification of genes and gene products nec-essary for bacterial bioluminescence. Proc Natl Acad Sci USA 81: 4154-4158PubMedGoogle Scholar
  28. Engebrecht J, Silverman M (1987) Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucleic Acids Res 15: 10455-10467PubMedGoogle Scholar
  29. Farrand SK (1998) Conjugal plasmids and their transfer. In HP Spaink, A Kon-dorosi, PJJ Hooykaas, eds, The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, The Neth-erlands, pp 199-233Google Scholar
  30. Farrand SK, Hwang I, Cook DM (1996) The tra region of the nopaline-type Ti plasmid is a chimera with elements related to the transfer systems of RSF1010, RP4, and F. J Bacteriol 178: 4233-4247PubMedGoogle Scholar
  31. Flavier AB, Clough SJ, Schell MA, Denny TP (1997) Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26: 251-259PubMedGoogle Scholar
  32. Fray RG, Throup JP, Daykin M, Wallace A, Williams P, Stewart GS, Grierson D (1999) Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nat Biotechnol 17: 1017-1020PubMedGoogle Scholar
  33. Fuqua C, Burbea M, Winans SC (1995) Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene. J Bacteriol 177: 1367-1373PubMedGoogle Scholar
  34. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3: 685-695PubMedGoogle Scholar
  35. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35: 439-468PubMedGoogle Scholar
  36. Fuqua C, Winans SC (1996a) Conserved cis-acting promoter elements are re-quired for density-dependent transcription of Agrobacterium tumefaciens con-jugal transfer genes. J Bacteriol 178: 435-440PubMedGoogle Scholar
  37. Fuqua C, Winans SC (1996b) Localization of OccR-activated and TraR-activated promoters that express two ABC-type permeases and the traR gene of Ti plasmid pTiR10. Mol Microbiol 20: 1199-1210PubMedGoogle Scholar
  38. Fuqua WC, Winans SC (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176: 2796-2806PubMedGoogle Scholar
  39. Genetello C, Van Larebeke N, Holsters M, De Picker A, Van Montagu M, Schell J (1977) Ti plasmids of Agrobacterium as conjugative plasmids. Nature 265: 561-563PubMedGoogle Scholar
  40. Givskov M, Ostling J, Eberl L, Lindum PW, Christensen AB, Christiansen G, Molin S, Kjelleberg S (1998) Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol 180: 742-745PubMedGoogle Scholar
  41. Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67: 574-592PubMedGoogle Scholar
  42. Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling H, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323-2328PubMedGoogle Scholar
  43. He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C (2003) Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expres-sion and influences growth rate. J Bacteriol 185: 809-822PubMedGoogle Scholar
  44. Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69: 5941-5949PubMedGoogle Scholar
  45. Hwang I, Cook DM, Farrand SK (1995) A new regulatory element modulates ho-moserine lactone-mediated autoinduction of Ti plasmid conjugal transfer. J Bacteriol 177: 449-458PubMedGoogle Scholar
  46. Hwang I, Li PL, Zhang L, Piper KR, Cook DM, Tate ME, Farrand SK (1994) TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc Natl Acad Sci USA 91: 4639-4643PubMedGoogle Scholar
  47. Hwang I, Smyth AJ, Luo ZQ, Farrand SK (1999) Modulating quorum sensing by antiactivation: TraM interacts with TraR to inhibit activation of Ti plasmid conjugal transfer genes. Mol Microbiol 34: 282-294PubMedGoogle Scholar
  48. Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regula-tion of the Vibrio fischeri luminescence system. J Bacteriol 163: 1210-1214PubMedGoogle Scholar
  49. Kerr A, Manigault P, Tempé J (1977) Transfer of virulence in vivo and in vitro in Agrobacterium. Nature 265: 560-561PubMedGoogle Scholar
  50. Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quo-rum-sensing signals by Variovorax paradoxus. J Bacteriol 182: 6921-6926PubMedGoogle Scholar
  51. Lee KG, Shibamoto T (2000) Antioxidant properties of aroma compounds isolated from soybeans and mung beans. J Agric Food Chem 48: 4290-4293PubMedGoogle Scholar
  52. Li PL, Everhart DM, Farrand SK (1998) Genetic and sequence analysis of the pTiC58 trb locus, encoding a mating-pair formation system related to mem-bers of the type IV secretion family. J Bacteriol 180: 6164-6172PubMedGoogle Scholar
  53. Li PL, Farrand SK (2000) The replicator of the nopaline-type Ti plasmid pTiC58 is a member of the repABC family and is influenced by the TraR-dependent quorum-sensing regulatory system. J Bacteriol 182: 179-188PubMedGoogle Scholar
  54. Li PL, Hwang I, Miyagi H, True H, Farrand SK (1999) Essential components of the Ti plasmid trb system, a type IV macromolecular transporter. J Bacteriol 181: 5033-5041PubMedGoogle Scholar
  55. Luo ZQ, Farrand SK (1999) Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity. Proc Natl Acad Sci USA 96: 9009-9014PubMedGoogle Scholar
  56. Luo ZQ, Qin Y, Farrand SK (2000) The antiactivator TraM interferes with the autoinducer-dependent binding of TraR to DNA by interacting with the C-terminal region of the quorum-sensing activator. J Biol Chem 275: 7713-7722PubMedGoogle Scholar
  57. Luo ZQ, Smyth AJ, Gao P, Qin Y, Farrand SK (2003) Mutational analysis of TraR. Correlating function with molecular structure of a quorum-sensing tran-scriptional activator. J Biol Chem 278: 13173-13182PubMedGoogle Scholar
  58. Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25: 1389-1403PubMedGoogle Scholar
  59. Maris AE, Sawaya MR, Kaczor-Grzeskowiak M, Jarvis MR, Bearson SM, Kopka ML, Schröder I, Gunsalus RP, Dickerson RE (2002) Dimerization allows DNA target site recognition by the NarL response regulator. Nat Struct Biol 9: 771-778PubMedGoogle Scholar
  60. Marti R, Cubero J, Daza A, Piquer J, Salcedo CI, Morente C, Lopez MM (1999) Evidence of migration and endophytic presence of Agrobacterium tumefa-ciens in rose plants. Eur J Plant Pathol 105: 39-50Google Scholar
  61. Moller-Jensen J, Jensen RB, Gerdes K (2000) Plasmid and chromosome segrega-tion in prokaryotes. Trends Microbiol 8: 313-320PubMedGoogle Scholar
  62. More MI, Finger LD, Stryker JL, Fuqua C, Eberhard A, Winans SC (1996) Enzy-matic synthesis of a quorum-sensing autoinducer through use of defined sub-strates. Science 272: 1655-1658PubMedGoogle Scholar
  63. Newton JA, Fray RG (2004) Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol 6: 213-224PubMedGoogle Scholar
  64. Oger P, Farrand SK (2001) Co-evolution of the agrocinopine opines and the agro-cinopine-mediated control of TraR, the quorum-sensing activator of the Ti plasmid conjugation system. Mol Microbiol 41: 1173-1185PubMedGoogle Scholar
  65. Oger P, Farrand SK (2002) Two opines control conjugal transfer of an Agrobacte-rium plasmid by regulating expression of separate copies of the quorum-sensing activator gene traR. J Bacteriol 184: 1121-1131PubMedGoogle Scholar
  66. Oger P, Kim KS, Sackett RL, Piper KR, Farrand SK (1998) Octopine-type Ti plasmids code for a mannopine-inducible dominant-negative allele of traR, the quorum-sensing activator that regulates Ti plasmid conjugal transfer. Mol Microbiol 27: 277-288PubMedGoogle Scholar
  67. Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15: 369-372PubMedGoogle Scholar
  68. Pappas KM, Winans SC (2003a) A LuxR-type regulator from Agrobacterium tu-mefaciens elevates Ti plasmid copy number by activating transcription of plasmid replication genes. Mol Microbiol 48: 1059-1073PubMedGoogle Scholar
  69. Pappas KM, Winans SC (2003b) The RepA and RepB autorepressors and TraR play opposing roles in the regulation of a Ti plasmid repABC operon. Mol Microbiol 49: 441-455PubMedGoogle Scholar
  70. Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13: 27-33PubMedGoogle Scholar
  71. Perombelon MCM (2002) Potato diseases caused by soft rot erwinias: an over-view of pathogenesis. Plant Pathol 51: 1-12Google Scholar
  72. Piper KR, Beck von Bodman S, Farrand SK (1993) Conjugation factor of Agro-bacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362: 448-450PubMedGoogle Scholar
  73. Piper KR, Beck Von Bodman S, Hwang I, Farrand SK (1999) Hierarchical gene regulatory systems arising from fortuitous gene associations: controlling quo-rum sensing by the opine regulon in Agrobacterium. Mol Microbiol 32: 1077-1089PubMedGoogle Scholar
  74. Qin Y, Luo ZQ, Farrand SK (2004a) Domains formed within the N-terminal re-gion of the quorum-sensing activator TraR are required for transcriptional ac-tivation and direct interaction with RpoA from Agrobacterium. J Biol Chem 279: 40844-40851PubMedGoogle Scholar
  75. Qin Y, Luo ZQ, Smyth AJ, Gao P, Beck von Bodman S, Farrand SK (2000) Quo-rum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. Embo J 19: 5212-5221PubMedGoogle Scholar
  76. Qin Y, Smyth AJ, Su S, Farrand SK (2004b) Dimerization properties of TraM, the antiactivator that modulates TraR-mediated quorum-dependent expression of the Ti plasmid tra genes. Mol Microbiol 53: 1471-1485PubMedGoogle Scholar
  77. Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10: 365-370PubMedGoogle Scholar
  78. Rosen R, Matthysse AG, Becher D, Biran D, Yura T, Hecker M, Ron EZ (2003) Proteome analysis of plant-induced proteins of Agrobacterium tumefaciens. FEMS Microbiol Ecol 44: 355-360PubMedGoogle Scholar
  79. Savka MA, Black RC, Binns AN, Farrand SK (1996) Translocation and exudation of tumor metabolites in crown galled plants. Mol Plant-Microbe Interact 9: 310-313PubMedGoogle Scholar
  80. Savka MA, Farrand SK (1997) Modification of rhizobacterial populations by en-gineering bacterium utilization of a novel plant-produced resource. Nat Bio-technol 15: 363-368Google Scholar
  81. Shoemaker BA, Portman JJ, Wolynes PG (2000) Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci USA 97: 8868-8873PubMedGoogle Scholar
  82. Smadja B, Latour X, Faure D, Chevalier S, Dessaux Y, Orange N (2004) In-volvement of N-acylhomoserine lactones throughout plant infection by Erwinia carotovora subsp. atroseptica (Pectobacterium atrosepticum). Mol Plant-Microbe Interact 17: 1269-1278PubMedGoogle Scholar
  83. Stevens AM, Dolan KM, Greenberg EP (1994) Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc Natl Acad Sci USA 91: 12619-12623PubMedGoogle Scholar
  84. Suit RF, Eardley EA (1935) Secondary tumor formation on herbaceous hosts in-duced by Pseudomonas tumefaciens. Scientific Agriculture 15: 345-357Google Scholar
  85. Swiderska A, Berndtson AK, Cha MR, Li L, Beaudoin GM, 3rd, Zhu J, Fuqua C (2001) Inhibition of the Agrobacterium tumefaciens TraR quorum-sensing regulator. Interactions with the TraM anti-activator. J Biol Chem 276: 49449-49458PubMedGoogle Scholar
  86. Tarbah FA, Goodman RN (1987) Systemic spread of Agrobacterium tumefaciens biovar 3 in the vascular system of grapes. Phytopathology 77: 915-920Google Scholar
  87. Vannini A, Volpari C, Di Marco S (2004) Crystal structure of the quorum-sensing protein TraM and its interaction with the transcriptional regulator TraR. J Biol Chem 279: 24291-24296PubMedGoogle Scholar
  88. Vannini A, Volpari C, Gargioli C, Muraglia E, Cortese R, De Francesco R, Neddermann P, Marco SD (2002) The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. Embo J 21: 4393-4401PubMedGoogle Scholar
  89. von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41: 455-482Google Scholar
  90. Wang L, Helmann JD, Winans SC (1992) The A. tumefaciens transcriptional acti-vator OccR causes a bend at a target promoter, which is partially relaxed by a plant tumor metabolite. Cell 69: 659-667PubMedGoogle Scholar
  91. White CE, Winans SC (2005) Identification of amino acid residues of the Agro-bacterium tumefaciens quorum-sensing regulator TraR that are critical for positive control of transcription. Mol Microbiol 55: 1473-1486PubMedGoogle Scholar
  92. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quo-rum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25: 365-404PubMedGoogle Scholar
  93. Williams DR, Thomas CM (1992) Active partitioning of bacterial plasmids. J Gen Microbiol 138: 1-16PubMedGoogle Scholar
  94. Wisniewski-Dye F, Downie JA (2002) Quorum-sensing in Rhizobium. Antonie Van Leeuwenhoek 81: 397-407PubMedGoogle Scholar
  95. Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida Jr. NF, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee Sr. D, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri P, Raymond C, Rouse R, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 2317-2323PubMedGoogle Scholar
  96. Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6: 191-197PubMedGoogle Scholar
  97. Zhang HB, Wang C, Zhang LH (2004) The quormone degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGpp. Mol Microbiol 52: 1389-1401PubMedGoogle Scholar
  98. Zhang HB, Wang LH, Zhang LH (2002a) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 99: 4638-4643PubMedGoogle Scholar
  99. Zhang L, Murphy PJ, Kerr A, Tate ME (1993) Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362: 446-448PubMedGoogle Scholar
  100. Zhang RG, Pappas T, Brace JL, Miller PC, Oulmassov T, Molyneaux JM, Anderson JC, Bashkin JK, Winans SC, Joachimiak A (2002b) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417: 971-974PubMedGoogle Scholar
  101. Zhu J, Beaber JW, More MI, Fuqua C, Eberhard A, Winans SC (1998) Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J Bacteriol 180: 5398-5405PubMedGoogle Scholar
  102. Zhu J, Oger PM, Schrammeijer B, Hooykaas PJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182: 3885-3895PubMedGoogle Scholar
  103. Zhu J, Winans SC (1998) Activity of the quorum-sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR-like protein. Mol Microbiol 27: 289-297PubMedGoogle Scholar
  104. Zhu J, Winans SC (1999) Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. Proc Natl Acad Sci USA 96: 4832-4837PubMedGoogle Scholar
  105. Zhu J, Winans SC (2001) The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc Natl Acad Sci USA 98: 1507-1512PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Catharine E. White
    • 1
  • Stephen C. Winans
    • 1
  1. 1.Department of MicrobiologyCornell UniversityIthacaUSA

Personalised recommendations