Advertisement

Biology of Crown Gall Tumors

  • Roni Aloni
  • Cornelia I. Ullrich

Specific adaptive mechanisms for water and nutrient acquisition and the suppression of shoot and root differentiation characterize crown gall tumor development. Strong vascularization like in animal and human tumors is the most prominent and important feature of tumor proliferation. Vascular bundles consisting of phloem and xylem are from the onset of tumor initiation functionally connected to the host bundle. At the host/tumor interface the vessel number is considerably increased and interrupted by multiseriate rays. These altered structures enhance water flow into the tumor parenchyma and, together with the disruption of epidermis and cuticle, substantially support tumor transpiration. Expression of the T-DNA-encoded genes for abundant auxin and cytokinin biosynthesis trigger a cascade of further phytohormones, which are essential for tumor development as well. Auxin accumulation is particularly enhanced by the expression of the T-DNA-located gene 6b for phenylpropanoids, hence for flavonoid biosynthesis. Spatio-temporal distribution patterns of the bioactive free and conjugated auxin and cytokinins, ethylene and abscisic acid match well the sites of highest chalcone synthase (CHS) expression and hence flavonoid concentration. Flavonoids accumulate at the sites of strongest free auxin accumulation and prevent basipetal auxin efflux, thus maintaining high auxin and cytokinin concentrations for induction and development of the vascular system. The considerable auxin- and cytokininenhanced ethylene emission is causally related with the development of the enlarged xylem in the tumor/host interface and the aerenchyma, which is important for aerobic energy metabolism; ethylene finally induces the accumulation of abscisic acid (ABA) in the tumor and host leaves. ABA in turn leads to diminished shoot water loss by enhancing closure of host leaf stomata, so that a stronger water supply to the tumor is guaranteed. In addition, ABA accumulation in the tumor periphery enhances accumulation of osmoprotectants such as sucrose and proline, to prevent tumor desiccation. Tumors accumulate high solute concentrations. The expression of root-specific K+-influx channels (AKT1 and AtKC1) is upregulated while genes of anion transporters at the plasma membrane are down-regulated; therefore, an important role is attributed to phloem transport for xylem-derived nutrient import into the tumor parenchyma. The phloem sieve element/companion cell complex is well coupled to the tumor parenchyma by numerous plasmodesmata. Spatio-temporal analysis of the activity of sucrose degrading enzymes and of sugar accumulation confirm symplastic metabolite phloem unloading. In conclusion, predominantly auxin and cytokinin-induced ethylene have a key role for successful tumor establishment by tumor vascularization and, together with cuticular disruption, by redirecting of water flow and symplastic phloem unloading of carbohydrate, amino acid and anion import.

Keywords

Tracheary Element Crown Gall Sieve Element Tumor Periphery Tumor Parenchyma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Agrios GN (2004) Bacterial Galls. Plant Pathology. 5th ed. Elsevier Academic Press, AmsterdamGoogle Scholar
  2. Aisenberg AC (1961) The glycolysis and respiration of tumors. Academic Press, New YorkGoogle Scholar
  3. Aloni A, Aloni E, Langhans M, Ullrich CI (2005) Cytokinin-dependent root apical dominance, regulation of root vascular differentiation, root gravitropism and the control of lateral root initiation. Ann BotGoogle Scholar
  4. Aloni R (1979) Role of auxin and gibberellin in differentiation of primary phloem fibres. Plant Physiol 63: 609-614CrossRefPubMedGoogle Scholar
  5. Aloni R (2004) The induction of vascular tissue by auxin. In PJ Davies, ed, Plant Hormones: Biosynthesis, Signal Transduction, Action! Kluwer, Dordrecht, pp 471-492Google Scholar
  6. Aloni R, Peterson C (1991) Seasonal changes in callose levels and fluorescein translocation in the phloem of Vitis vinifera L. IAWA Bull 12: 223-234Google Scholar
  7. Aloni R, Pradel KS, Ullrich CI (1995) The three-dimensional structure of vascular tissues in Agrobacterium tumefaciens-induced crown galls and in the host stem of Ricinus communis L. Planta 196: 597-605CrossRefGoogle Scholar
  8. Aloni R, Raviv A, Peterson C (1991) The role of auxin in the renewal of dor-mancy callose and resumption in the phloem activity in Vitis vinifera L. Can J Bot 69: 1825-1832CrossRefGoogle Scholar
  9. Aloni R, Ullrich CI (2002) Tumor-induced ethylene controls crown gall morpho-genesis. In Plant Physiology Online Essay 221 http://wwwplantphysnet
  10. Aloni R, Wolf A, Feigenbaum P, Avni A, Klee HJ (1998) The never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato stems. Plant Physiol 117: 841-849CrossRefPubMedGoogle Scholar
  11. Aloni R, Zimmermann MH (1983) The control of vessel size and density along the plant axis. Differentiation 24: 203-208CrossRefGoogle Scholar
  12. Bartel B, LeClere S, Magidin M, Zolman BK (2001) Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis and indole-3-butyric acid ȕ-oxidation. J Plant Growth Regul 20: 198-216CrossRefGoogle Scholar
  13. Beiderbeck R (1977) Pflanzliche Tumoren. Ulmer Verlag, StuttgartGoogle Scholar
  14. Bopp M, Leppla E (1964) Ein Vergleich der Histogenese der Wurzelhalsgallen an Blättern und Sprossachsen von Kalanchoe daigremontiana. Planta 61: 36-55CrossRefGoogle Scholar
  15. Brucker W, Schmidt WAK (1959) Zum Zuckerstoffwechsel des Kallus- und crown-gall-Gewebes von Datura und Daucus. Ber Dtsch Bot Ges 72: 321-332Google Scholar
  16. Chateau S, Sangwan RS, Sangwan-Norreel BS (2000) Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. J Exp Bot 51: 1961-1968CrossRefPubMedGoogle Scholar
  17. Creasap JE, Reid CL, Goffinet MC, Aloni R, Ullrich C, Burr TJ (2005) Effect of wound position, auxin and Agrobacterium vitis strain F2/5 on wound healing and crown gall in grapevine. Phytopathology 95: 362-367CrossRefPubMedGoogle Scholar
  18. De Boer AH, Prins HBA (1985) Xylem perfusion of tap root segments of Plan-tago maritima: the physiological significance of electrogenic xylem pumps. Plant Cell Environ 8: 587-594CrossRefGoogle Scholar
  19. Deeken R, Engelmann J, Efetova M, Müller T, Kaiser W, Palme K, Schartl M, Dandekar T, Hedrich R (2005) An integrated view of gene expression and solute profiles in Arabidopsis tumour cells: a genome-wide approach.Google Scholar
  20. Deeken R, Ivashikina N, Czirjak T, Philippar K, Becker D, Ache P, Hedrich R (2003) Tumour development in Arabidopsis thaliana involves the Shaker-like K+ channels AKT1 and AKT2/3. Plant J 34: 778-787CrossRefPubMedGoogle Scholar
  21. Dehio C (2004) Molecular and cellular basis of Bartonella pathogenesis. Annu Rev Microbiol 58: 365-390CrossRefPubMedGoogle Scholar
  22. Dehio C (2005) Bartonella-host-cell interactions and vascular tumour formation. Nat Rev Microbiol 3: 621-631CrossRefPubMedGoogle Scholar
  23. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53: 275-297CrossRefPubMedGoogle Scholar
  24. Fischer-Schliebs E, Ratajczak R, Weber P, Tavakoli N, Ullrich CI, Lüttge U (1998) Concordant time-dependent patterns of activities and enzyme protein amounts of V-PPase and V-ATPase in induced (flowering and CAM or tu-mour) and non-induced plant tissues. Bot Acta 111: 130-136Google Scholar
  25. Folkman J (1971) Tumor angiogenesis: therapeutic implications. New England J Med 285: 1182-1186CrossRefGoogle Scholar
  26. Gàlis I, Kakiuchi Y, Šimek P, Wabiko H (2004) Agrobacterium tumefaciens AK-6b gene modulates phenolic compound metabolism in tobacco. Phytochemis-try 65: 169-179CrossRefGoogle Scholar
  27. Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud J-B, Sentenac H (1998) Identification and distribution of a Shaker-like outward channel involved in K+ release into the xylem sap. Cell 94: 647-655CrossRefPubMedGoogle Scholar
  28. Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport in-hibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425-428CrossRefPubMedGoogle Scholar
  29. Gimbrone MAJ, Cotran RS, Leapman SB, Folkman J (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 52: 413-427PubMedGoogle Scholar
  30. Gordon MP (1982) Reversal of crown gall tumors. In G Kahl, JS Schell, eds, Mo-lecular biology of plant tumors. Academic Press, New York, pp 415-426Google Scholar
  31. Hall AE, Chen QG, Findell JL, Schaller GE, Bleecker AB (1999) The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol 121: 291-299CrossRefPubMedGoogle Scholar
  32. Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124: 1437-1448CrossRefPubMedGoogle Scholar
  33. Heller W, Forkmann G (1993) Biosynthesis of flavonoids. In JB Harborne, ed, The Flavonoids: Advances in Research Since 1986. Chapman and Hall, Lon-don, pp 499-535Google Scholar
  34. Hooykaas PJJ, Ooms G, Schilperoort RA (1982) Tumors induced by different strains of Agrobacterium tumefaciens. In G Kahl, JS Schell, eds, Molecular biology of plant tumors. Academic Press, New York, pp 373-390Google Scholar
  35. Hoth A, Schneidereit A, Lauterbach C, Scholz-Starke J, Sauer N (2005) Nematode infection triggers the de novo formation of unloading phloem that allows mac-romolecular trafficking of green fluorescent protein into syncytia. Plant Physiol 138: 383-392CrossRefPubMedGoogle Scholar
  36. Kado CI (1984) Phytohormone-mediated tumorigenesis by plant pathogenic bacte-ria. In DPS Verma, T Hohn, eds, Genes Involved in Microbe-Plant Interactions. Springer-Verlag, Wien, pp 311-336Google Scholar
  37. Kakiuchi Y, Gàlis I, Tamogami S, Wabiko H (2005) Reduction of polar auxin transport in tobacco by the tumorigenic Agrobacterium tumefaciens AK-6b gene. PlantaGoogle Scholar
  38. Kempf VA, Hitziger N, Riess T, Autenrieth IB (2002) Do plant and human patho-gens have a common pathogenicity strategy? Trends Microbiol 10: 269-275CrossRefPubMedGoogle Scholar
  39. Klein RM (1952) Nitrogen and phosphorous fractions, respiration, and structure of normal and crown-gall tissue of tomato. Plant Physiol 27: 335-354CrossRefPubMedGoogle Scholar
  40. Kupila-Ahvenniemi S, Therman E (1968) Morphogenesis of crown gall. Adv in Morphogen 7: 45-78Google Scholar
  41. Läuchli A, Spurr AR, Epstein E (1971) Lateral transport of ions into the xylem of corn roots. Plant Physiol 48: 118-124CrossRefPubMedGoogle Scholar
  42. Malsy S, Van Bel AJE, Kluge M, Hartung W, Ullrich CI (1992) Induction of crown galls by Agrobacterium tumefaciens (strain C 58) reverses assimilate translocation and accumulation in Kalanchoe daigremontiana. Plant Cell Environ 15: 519-529CrossRefGoogle Scholar
  43. Marx S, Ullrich-Eberius CI (1988) Solute accumulation and electrical membrane potential in Agrobacterium tumefaciens-induced crown galls in Kalanchoe daigremontiana. Plant Sci 57: 27-36CrossRefGoogle Scholar
  44. Mathesius U (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J Exp Bot 52: 419-426PubMedGoogle Scholar
  45. Mistrik I, Pavlovkin J, Wächter R, Pradel KS, Schwalm K, Hartung W, Mathesius U, Stöhr C, Ullrich CI (2000) Impact of Agrobacterium tumefaciens-induced stem tumours on NO3- uptake in Ricinus communis. Plant Soil 226: 87-98CrossRefGoogle Scholar
  46. Neish AC, Hibbert H (1943-44) Studies on plant tumors. II. Carbohydrate metabo-lism of normal and tumor tissue of beet root. Arch Biochem 3: 141-157Google Scholar
  47. Normanly J, Slovin JP, Cohen JD (1995) Rethinking auxin biosynthesis and me-tabolism. Plant Physiol 107: 323-329PubMedGoogle Scholar
  48. Okamoto H, Ichino K, Katou K (1978) Radial electrogenic activity in the stem of Vigna unguiculata: involvement of spatially separate pumps. Plant Cell Envi-ron 1: 279-284CrossRefGoogle Scholar
  49. Ooms G, Bakker A, Molendijk L, Wullems GJ, Gordon MP, Nester EW, Schil-peroort RA (1982) T-DNA organization in homogeneous and heterogeneous octopine-type crown gall tissues of Nicotiana tabacum. Cell 30: 589-597CrossRefPubMedGoogle Scholar
  50. Palme K, Gälweiler L (1999) PIN-pointing the molecular basis of auxin transport. Curr Opin Plant Biol 2: 375-381CrossRefPubMedGoogle Scholar
  51. Pavlovkin J, Okamoto H, Wächter R, Läuchli A, Ullrich CI (2002) Evidence for high activity of xylem parenchyma and ray cells in the interface of host stem and Agrobacterium tumefaciens-induced tumours of Ricinus communis. J Exp Bot 53: 1143-1154CrossRefPubMedGoogle Scholar
  52. Pedersen PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22: 190-274PubMedGoogle Scholar
  53. Pradel KS, Rezmer C, Krausgrill S, Rausch T, Ullrich CI (1996) Evidence for symplastic phloem unloading with a concomitant high level of acid cell-wall invertase in Agrobacterium tumefaciens-induced plant tumors. Bot Acta 109: 397-404Google Scholar
  54. Pradel KS, Ullrich CI, Santa Cruz S, Oparka KJ (1999) Symplastic continuity in Agrobacterium tumefaciens-induced tumours. J Exp Bot 50: 183-192CrossRefGoogle Scholar
  55. Ramaiah KVA, Mookerjee A (1982) A comparative study of membrane related phenomena in normal and crown-gall tissues of red beet (Beta vulgaris L.). Experientia 38: 1324-1325CrossRefGoogle Scholar
  56. Rezmer C, Schlichting R, Wächter R, Ullrich CI (1999) Identification and local-ization of transformed cells in Agrobacterium tumefaciens-induced plant tu-mors. Planta 209: 399-405CrossRefPubMedGoogle Scholar
  57. Roberts SK, Tester M (1995) Inward and outward K+-selective currents in the plasma membrane of protoplasts from maize root cortex and stele. Plant J 8: 811-825CrossRefGoogle Scholar
  58. Rojo E, Titarenko E, Leon J, Berger S, Vancanneyt G, Sanchez-Serrano JJ (1998) Reversible protein phosphorylation regulates jasmonic acid-dependent and -independent wound signal transduction pathways in Arabidopsis thaliana. Plant J 13: 153-165CrossRefPubMedGoogle Scholar
  59. Sachs T (1991) Callus and tumor development. In T Sachs, ed, Pattern formation in plant tissues. Cambridge University Press, Cambridge, pp 38-55CrossRefGoogle Scholar
  60. Sacristan MD, Melchers G (1977) Regeneration of plants from ‘habituated’ and ‘Agrobacterium-transformed’ single-cell clones of tobacco. Mol Gen Genet 152: 111-117CrossRefGoogle Scholar
  61. Sauter C, Blum S (2003) Regression of lung lesions in Hodgkin’s disease by anti-biotics: case report and hypothesis on the etiology of Hodgkin’s disease. Am J Clin Oncol 26: 92-94CrossRefPubMedGoogle Scholar
  62. Schell J, Koncz C, Spena A, Palme K, Walden R (1994) The role of phytohor-mones in plant growth and development. In Proc V Int Bot Congr, To-kyo/Yokohama, Japan, pp 38-48Google Scholar
  63. Schurr U, Schuberth B, Aloni R, Pradel KS, Schmundt D, Jähne B, Ullrich CI (1996) Structural and functional evidence for xylem-mediated water transport and high transpiration in Agrobacterium tumefaciens-induced tumors of Ricinus communis. Bot Acta 109: 405-411Google Scholar
  64. Schwalm K, Aloni R, Langhans M, Heller W, Stich S, Ullrich CI (2003) Flavon-oid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors. Planta 218: 163-178CrossRefPubMedGoogle Scholar
  65. Sitbon F, Sundberg B, Olsson O, Sandberg G (1991) Free and conjugated in-doleacetic acid (IAA) contents in transgenic tobacco plants expressing the iaaM and iaaH IAA biosynthesis gene from Agrobacterium tumefaciens. Plant Physiol 95: 480-485CrossRefPubMedGoogle Scholar
  66. Stenlid G (1976) Effects of flavonoids on the polar transport of auxins. Physiol Plant 38: 262-266CrossRefGoogle Scholar
  67. Suzuki K, Kasamo K (1993) Effects of aging on the ATP- and pyrophosphate-dependent pumping of protons across the tonoplast isolated from pumpkin cotyledons. Plant Cell Physiol 34: 613-619Google Scholar
  68. Tarbah FA, Goodman RN (1988) Anatomy of tumor development in grape stem tissue inoculated with Agrobacterium tumefaciens biovar 3, strain AG 63. Mol Plant-Microbe Interact 32: 455-466Google Scholar
  69. Ullrich CI, Aloni R (2000) Vascularization is a general requirement for growth of plant and animal tumours. J Exp Bot 51: 1951-1960CrossRefPubMedGoogle Scholar
  70. Van Slogteren GMS, Hoge JHC, Hooykaas PJ, Schilperoort RA (1983) Clonal analysis of heterogeneous crown gall tumor tissues in wild-type and shooter mutant strains of Agrobacterium tumefaciens-expression of T-DNA genes. Plant Mol Biol 2: 321-333CrossRefGoogle Scholar
  71. Veselov D, Langhans M, Hartung W, Aloni R, Feussner I, Götz C, Veselova S, Schlomski S, Dickler C, Bächmann K, Ullrich CI (2003) Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid. Planta 216: 512-522PubMedGoogle Scholar
  72. Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cyto-kinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95: 4766-4771CrossRefPubMedGoogle Scholar
  73. Wächter R, Fischer K, Gäbler R, Kühnemann F, Urban W, Bögemann GM, Voesenek LACJ, Blom CWPM, Ullrich CI (1999) Ethylene production and ACC-accumulation in Agrobacterium tumefaciens-induced plant tumours and their impact on tumour and host stem structure and function. Plant Cell Envi-ron 22: 1263-1273CrossRefGoogle Scholar
  74. Wächter R, Langhans M, Aloni R, Götz G, Weilmünster A, Koops A, Temguia L, Mistrik I, Pavlovkin J, Rascher U, Schwalm K, Koch KE, Ullrich CI (2003) Vascularization, high-volume solution flow, and localized roles for enzymes of sucrose metabolism during tumorigenesis by Agrobacterium tumefaciens. Plant Physiol 133: 1024-1037CrossRefPubMedGoogle Scholar
  75. Warburg O (1930) The Metabolism of Tumors. Arnold Constable, LondonGoogle Scholar
  76. Weil M, Rausch T (1990) Cell wall invertase in tobacco crown gall cells: enzyme properties and regulation by auxin. Plant Physiol 94: 1575-1581CrossRefPubMedGoogle Scholar
  77. Weiler EW, Schröder J (1987) Hormone genes and crown gall disease. Trends Biochem Sci 12: 271-275CrossRefGoogle Scholar
  78. Weiler EW, Spanier K (1981) Phytohormones in the formation of crown gall tu-mors. Planta 153: 326-337CrossRefGoogle Scholar
  79. Winter-Sluiter E, Läuchli A, Kramer D (1977) Cytochemical localization of K+-stimulated adenosine triphosphatase activity in xylem parenchyma cells of barley roots. Plant Physiol 60: 923-927CrossRefPubMedGoogle Scholar
  80. Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida Jr. NF, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee Sr. D, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri P, Raymond C, Rouse R, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 2317-2323CrossRefPubMedGoogle Scholar
  81. Wood HN, Braun AC (1965) Studies on the net uptake of solutes by normal and crown-gall tumor cells. Proc Natl Acad Sci USA 54: 1532-1538CrossRefPubMedGoogle Scholar
  82. Zambryski PC, Tempé J, Schell J (1989) Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56: 193-201CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Roni Aloni
    • 1
  • Cornelia I. Ullrich
    • 2
  1. 1.Department of Plant SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Institute of BotanyDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations