Skip to main content

The Oncogenes of Agrobacterium Tumefaciens and Agrobacterium Rhizogenes

  • Chapter
Agrobacterium: From Biology to Biotechnology

The common soil bacteria Agrobacterium tumefaciens and Agrobacterium rhizogenes are unique genetic pathogens capable of fundamentally redirecting plant metabolism in order to generate macroscopic tissue masses (crown galls and hairy roots, respectively) which support the growth of large populations of Agrobacteria. Central to pathogenesis is the horizontal transfer of a suite of oncogenes from the tumor-inducing (Ti) plasmids of A. tumefaciens and the root-inducing (Ri) plasmids of A. rhizogenes into the plant cell genome. These oncogenes alter the synthesis, perception and/or transport of phytohormones in planta, leading to the development of the crown gall and hairy root structures from single genetically transformed plant cells. Crown galls and hairy roots become effective sinks that divert plant resources to produce opine compounds that can only be metabolized by the infecting strain of Agrobacterium. The basic genetic and biochemical mechanisms underlying A. tumefaciens tumorigenesis were initially described over 20 years ago, with the characterization of the ipt, iaaM and iaaH oncogenes. However, the simplistic view of crown gall development as solely a function of ipt-driven cytokinin synthesis and iaaM/iaaH-driven auxin synthesis has recently given way to a more nuanced understanding of the roles of secondary oncogenes in modulating hormone perception and the complex hormone activation cascade in crown galls involving ethylene, abscisic acid and jasmonic acid. The biochemistry and functional significance of specific oncogenes in A. rhizogenes-mediated hairy root development is less well understood, but recent work has substantially increased our understanding of the A. rhizogenes oncogenes, especially the rol genes. Expression of the rolA, B and C oncogenes in planta induces a subtle interaction with endogenous plant signal transduction pathways and transcription factors, affecting the local concentrations of several classes of plant hormones. These interactions lead to de novo meristem formation in transformed cells, with subsequent differentiation depending on the local hormone balance. This process most often results in the induction of highly branched non-geotropic adventitious roots, the “hairy root” phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  • Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81: 5994-5998

    PubMed  CAS  Google Scholar 

  • Akiyoshi DE, Morris RO, Hinz R, Kosuge T, Garfinkel DJ, Gordon MP, Nester EW (1983) Cytokinin/auxin balance in crown gall tumors is regulated by spe-cific loci in the T DNA. Proc Natl Acad Sci USA 80: 407-411

    PubMed  CAS  Google Scholar 

  • Akiyoshi DE, Reiger DA, Jen G, Gordon MP (1985) Cloning and nucleotide se-quence of the tzs gene from Agrobacterium tumefaciens strain T37. Nucl Ac-ids Res 13: 2773-2788

    CAS  Google Scholar 

  • Aloni R, Wolf A, Feigenbaum P, Avni A, Klee HJ (1998) The never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato stems. Plant Physiol 117: 841-849

    PubMed  CAS  Google Scholar 

  • Altamura MM (2004) Agrobacterium rhizogenes rolB and rolD genes: regulation and involvement in plant development. Plant Cell Tissue Org Cult 77: 89-101

    CAS  Google Scholar 

  • Altamura MM, Artchilletti T, Capone I, Costantino P (1991) Histological analysis of the expression of Agrobacterium rhizogenes rolB-GUS gene fusions in transgenic tobacco. New Phytol 118: 67-78

    Google Scholar 

  • Altamura MM, Capitani F, Gazza L, Capone I, Costantino P (1994) The plant on-cogene rolB stimulates the formation of flower and root meristemoids in to-bacco thin cell layers. New Phytol 126: 283-293

    CAS  Google Scholar 

  • Altamura MM, D’Angeli S, Capitani F (1998) The protein of rolB gene enhances shoot formation in tobacco leaf explants and thin cell layers from plants in dif-ferent physiological stages. J Exp Bot 49: 1139-1146

    CAS  Google Scholar 

  • Aoki S (2004) Resurrection of an ancestral gene: functional and evolutionary analyses of the Ngrol genes transferred from Agrobacterium to Nicotiana. J Plant Res 117: 329-337

    PubMed  CAS  Google Scholar 

  • Aoki S, Kawaoka A, Sekine M, Ichikawa T, Fujita T, Shinmyo A, Syǀno K (1994) Sequence of the cellular T-DNA in the untransformed genome of Nicotiana glauca that is homologous to ORFs 13 and 14 of the Ri plasmid and analysis of its expression in genetic tumours of N. glauca x N. langsdorffii. Mol Gen Genet 243: 706-710

    PubMed  CAS  Google Scholar 

  • Aoki S, Syǀno K (1999a) Horizontal gene transfer and mutation: Ngrol genes in the genome of Nicotiana glauca. Proc Natl Acad Sci USA 96: 13229-13234

    PubMed  CAS  Google Scholar 

  • Aoki S, Syǀno K (1999b) Synergistic function of rolB, rolC, ORF13 and ORF14 of TL-DNA of Agrobacterium rhizogenes in hairy root induction in Nicotiana tabacum. Plant Cell Physiol 40: 252-256

    CAS  Google Scholar 

  • Astot C, Dolezal K, Nordström A, Wang Q, Kunkel T, Moritz T, Chua N-H, Sandberg G (2000) An alternative cytokinin biosynthesis pathway. Proc Natl Acad Sci USA 97: 14778-14783

    PubMed  CAS  Google Scholar 

  • Barker R, Idler K, Thompson DV, Kemp J (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi 15955. Plant Mol Biol 2: 335-350

    CAS  Google Scholar 

  • Barros LMG, Curtis RH, Viana AAB, Campos L, Carneiro M (2003) Fused RolA protein enhances beta-glucoronidase activity 50-fold: implication for RolA mechanism of action. Protein Pept Lett 10: 303-311

    PubMed  CAS  Google Scholar 

  • Barry GF, Rogers SG, Fraley RT, Brand L (1984) Identification of cloned cyto-kinin biosynthesis gene. Proc Natl Acad Sci USA 81: 4776-4780

    PubMed  CAS  Google Scholar 

  • Baumann K, De Paolis A, Costantino P, Gualberti G (1999) The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell 11: 323-334

    PubMed  CAS  Google Scholar 

  • Binns AN, Chen RH, Wood HN, Lynn DG (1987) Cell division promoting activ-ity of naturally occurring dehydrodiconiferyl glucosides: Do cell wall compo-nents control cell division? Proc Natl Acad Sci USA 84: 980-984

    PubMed  CAS  Google Scholar 

  • Binns AN, Costantino P (1998) The Agrobacterium oncogenes. In HP Spaink, A Kondorosi, PJJ Hooykaas, eds, The Rhizobiaceae. Kluwer Academic Publish-ers, Dordrecht, The Netherlands, pp 251-266

    Google Scholar 

  • Bouchez D, Camilleri C (1990) Identification of a putative rolB gene on the TR-DNA of the Agrobacterium rhizogenes A4 Ri plasmid. Plant Mol Biol 14: 617-619

    PubMed  CAS  Google Scholar 

  • Braun AC (1982) A history of the crown gall problem. In G Kahl, J Schell, eds, Molecular Biology of Plant Tumors. Academic Press, New York, pp 155-210

    Google Scholar 

  • Capone I, Spanò L, Cardarelli M, Bellincampi D, Petit A, Costantino P (1989) In-duction and growth properties of carrot roots with different complements of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 13: 43-52

    PubMed  CAS  Google Scholar 

  • Cardarelli M, Mariotti D, Pomponi M, Spanò L, Capone I, Costantino P (1987a) Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phe-notype. Mol Gen Genet 209: 475-480

    PubMed  CAS  Google Scholar 

  • Cardarelli M, Spanò L, Mariotti D, Mauro ML, Van Sluys MA, Costantino P (1987b) The role of auxin in hairy root induction. Mol Gen Genet 208: 457-463

    CAS  Google Scholar 

  • Carneiro M, Vilaine F (1993) Differential expression of the rolA plant oncogene and its effect on tobacco development. Plant J 3: 785-792

    PubMed  CAS  Google Scholar 

  • Casanova E, Trillas MI, Moysset L, Vainstein A (2005) Influence of rol genes in floriculture. Biotechnol Adv 23: 3-39

    PubMed  CAS  Google Scholar 

  • Chateau S, Sangwan RS, Sangwan-Norreel BS (2000) Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. J Exp Bot 51: 1961-1968

    PubMed  CAS  Google Scholar 

  • Chilton M-D, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263-271

    PubMed  CAS  Google Scholar 

  • Chilton M-D, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of host plant root cells. Nature 295: 432-434

    CAS  Google Scholar 

  • Cohen JD, Slovin JP, Hendrickson AM (2003) Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends Plant Sci 8: 197-199 response by autoregulated synthesis of a growth hormone antagonist in plants. Embo J 10: 3983-3991

    PubMed  CAS  Google Scholar 

  • Kulescha Z (1954) Croissance et teneur en auxin de divers tissues normaux et tu-moraux. L’Annee Biol 3e Ser 30: 319-327

    Google Scholar 

  • Kunkel T, Niu QW, Chan YS, Chua N-H (1999) Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nat Biotechnol 17: 916-919

    PubMed  CAS  Google Scholar 

  • Leach F, Aoyagi K (1991) Promoter analysis of the highly expressed rolC and rolD root-inducing genes of Agrobacterium rhizogenes: enhancer and tissue-specific DNA determinants are dissociated. Plant Sci 79: 69-76

    CAS  Google Scholar 

  • Lee BM, Park YJ, Park DS, Kang HW, Kim JG, Song ES, Park IC, Yoon UH, Hahn JH, Koo BS, Lee GB, Kim H, Park HS, Yoon KO, Kim JH, Jung CH, Koh NH, Seo JS, Go SJ (2005) The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 33: 577-586

    PubMed  CAS  Google Scholar 

  • Leemans J, Deblaere R, Willmitzer L, De Greeve H, Hernalsteens JP (1982) Ge-netic identification of functions of TL-DNA transcripts in octopine crown galls. Embo J 1: 147-152

    PubMed  CAS  Google Scholar 

  • Lemcke K, Prinsen E, van Onckelen H, Schmülling T (2000) The ORF8 gene product of Agrobacterium rhizogenes TL-DNA has tryptophan 2-monooxy-genase activity. Mol Plant-Microbe Interact 13: 787-790

    PubMed  CAS  Google Scholar 

  • Lemcke K, Schmülling T (1998a) Gain of function assays identify non-rol genes from Agrobacterium rhizogenes TL-DNA that alter plant morphogenesis or hormone sensitivity. Plant J 15: 423-433

    PubMed  CAS  Google Scholar 

  • Lemcke K, Schmülling T (1998b) A putative rolB gene homologue of the Agro-bacterium rhizogenes TR-DNA has different morphogenetic activity in to-bacco than rolB. Plant Mol Biol 36: 803-808

    PubMed  CAS  Google Scholar 

  • Levesque H, Delepelaire P, Rouzé P, Slightom J, Tepfer D (1988) Common evo-lutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Plant Mol Biol 11: 731-744

    CAS  Google Scholar 

  • Magrelli A, Langenkemper K, Dehio C, Schell J, Spena A (1994) Splicing of the rolA transcript of Agrobacterium rhizogenes in Arabidopsis. Science 266: 1986-1988

    PubMed  CAS  Google Scholar 

  • Manulis S, Haviv-Chesner A, Brandl MT, Lindow SE, Barash I (1998) Differen-tial involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol Plant-Microbe Interact 11: 634-642

    PubMed  CAS  Google Scholar 

  • Martin-Tanguy J, Corbineau F, Burtin D, Ben-Hayyim G, Tepfer D (1993) Ge-netic transformation with a derivative of rolC from Agrobacterium rhizogenes and treatment with a-aminoisobutyric acid produce similar phenotypes and re-duce ethylene production and the accumulation of water-insoluble polyamine-hydroxycinnamic acid conjugates in tobacco flowers. Plant Sci 93: 63-76

    CAS  Google Scholar 

  • Matsuki R, Uchimiya H (1994) A 43-kDa nuclear tobacco protein interacts with a specific single-stranded DNA sequence from the 5’-upstream region of the Agrobacterium rhizogenes rolC gene. Gene 141: 201-205

    PubMed  CAS  Google Scholar 

  • Maurel C, Brevet J, Barbier-Brygoo H, Guern J, Tempé J (1990) Auxin regulates the promoter of the root-inducing rolB gene of Agrobacterium rhizogenes in transgenic tobacco. Mol Gen Genet 223: 58-64

    PubMed  CAS  Google Scholar 

  • Maurel C., Barbier-Brygoo H, Spena A, Tempé J. Guern, J. (1991) Single rol genes from the Agrobacterium rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum. Plant Physiol 97: 212-216

    PubMed  CAS  Google Scholar 

  • Maurel C, Leblanc N, Barbier-Brygoo H, Perrot-Rechenmann C, Bouvier-Durand M, Guern J (1994) Alterations of auxin perception in rolB-transformed to-bacco protoplasts. Time course of rolB mRNA expression and increase in auxin sensitivity reveal multiple control by auxin. Plant Physiol 105: 1209-1215

    PubMed  CAS  Google Scholar 

  • Mauro ML, De Lorenzo G, Costantino P, Bellincampi D (2002) Oligogalacturon-ides inhibit the induction of late but not of early auxin-responsive genes in to-bacco. Planta 215: 494-501

    PubMed  CAS  Google Scholar 

  • Mauro ML, Trovato M, Paolis AD, Gallelli A, Costantino P, Altamura MM (1996) The plant oncogene rolD stimulates flowering in transgenic tobacco plants. Dev Biol 180: 693-700

    PubMed  CAS  Google Scholar 

  • Messens E, Lenaerts A, van Montagu M, Hedges RW (1985) Genetic basis for opine secretion from crown gall tumor cells. Mol Gen Genet 199: 344-348

    CAS  Google Scholar 

  • Meyer AD, Ichikawa T, Meins F, Jr. (1995) Horizontal gene transfer: regulated expression of a tobacco homologue of the Agrobacterium rhizogenes rolC gene. Mol Gen Genet 249: 265-273

    PubMed  CAS  Google Scholar 

  • Meyer AD, Tempé J, Costantino P (2000) Hairy root: a molecular overview. Functional analysis of Agrobacterium rhizogenes T-DNA genes. In G Stacy, NT Keen, eds, Plant Microbe Interactions. APS Press, St. Paul, MN, pp 93-139

    Google Scholar 

  • Miller CO (1974) Ribosyl-trans-zeatin, a major cytokinin produced by crown gall tumor tissue. Proc Natl Acad Sci USA 71: 334-338

    PubMed  CAS  Google Scholar 

  • Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2: 617-626

    PubMed  CAS  Google Scholar 

  • Moritz T, Schmülling T (1998) The gibberellin content of rolA transgenic tobacco plants is specifically altered. J Plant Physiol 153: 774-776

    CAS  Google Scholar 

  • Moriuchi H, Okamoto C, Nishihama R, Yamashita I, Machida Y, Tanaka N (2004) Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB. Plant J 38: 260-275

    PubMed  CAS  Google Scholar 

  • Neuteboom STC, Hulleman E, Schilperoort RA, Hoge HC (1993) In planta analy-sis of the Agrobacterium tumefaciens T-cyt gene promoter: identification of an upstream region essential for promoter activity in leaf, stem and root cells of transgenic tobacco. Plant Mol Biol 22: 923-929

    PubMed  CAS  Google Scholar 

  • Nilsson O, Little CHA, Sandberg G, Olsson O (1996) Expression of two heterolo-gous promoters, Agrobacterium rhizogenes rolC and cauliflower mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy. Plant Mol Biol 31: 887-895

    PubMed  CAS  Google Scholar 

  • Nilsson O, Moritz T, Imbault N, Sandberg G, Olsson O (1993) Hormonal charac-terization of transgenic tobacco plants expressing the rolC gene of Agrobacte-rium rhizogenes TL-DNA. Plant Physiol 102: 363-371

    PubMed  CAS  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: The role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100: 463-473

    CAS  Google Scholar 

  • O’Neill DP, Ross JJ (2002) Auxin regulation of the gibberelllin pathway in pea. Plant Physiol 130: 1974-1982

    PubMed  Google Scholar 

  • Oono Y, Kanaya K, Uchimiya H (1990) Early flowering in transgenic tobacco plants possessing the rolC gene of Agrobacterium rhizogenes Ri plasmid. Jpn J Genet 68: 7-16

    Google Scholar 

  • Otten L, Helfer A (2001) Biological activity of the rolB-like 5’ end of the A4-orf8 gene from the Agrobacterium rhizogenes TL-DNA. Mol Plant-Microbe Inter-act 14: 405-411

    CAS  Google Scholar 

  • Otten L, Salomone J-Y, Helfer A, Schmidt J, Hammann P, De Ruffray P (1999) Sequence and functional analysis of the left-hand part of the T-region from the nopaline-type Ti plasmid, pTiC58. Plant Mol Biol 41: 765-776

    PubMed  CAS  Google Scholar 

  • Otten L, Schmidt J (1998) A T-DNA from the Agrobacterium tumefaciens lim-ited-host-range strain AB2/73 contains a single oncogene. Mol Plant-Microbe Interact 11: 335-342

    PubMed  CAS  Google Scholar 

  • Ouartsi A, Clérot D, Meyer AD, Dessaux Y, Brevet J, Bonfill M (2004) The T-DNA ORF8 of the cucumopine-type Agrobacterium rhizogenes Ri plasmid is involved in auxin response in transgenic tobacco. Plant Sci 166: 5577-5567

    Google Scholar 

  • Palazón J, Cusidó RM, Roig C, Piñol MT (1998) Expression of the rolC gene and nicotine production in transgenic roots and their regenerated plants. Plant Cell Rep 17: 384-390

    Google Scholar 

  • Pandolfini T, Storlazzi A, Calabria E, Defez R, Spena A (2000) The spliceosomal intron of the rolA gene of Agrobacterium rhizogenes is a prokaryotic pro-moter. Mol Microbiol 35: 1326-1334

    PubMed  CAS  Google Scholar 

  • Robinette D, Matthysse AG (1990) Inhibition by Agrobacterium tumefaciens and Pseduomonas savastanoi of development of the hypersensitive response elic-ited by Pseudomonas syringae pv. phaseolicola. J Bact 172: 5742-5749

    PubMed  CAS  Google Scholar 

  • Porter JR (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10: 387-421

    Google Scholar 

  • Powell GK, Morris RO (1986) Nucleotide sequence and expression of a Pseudo-monas savastanoi cytokinin biosynthetic gene: homology with Agrobacterium tumefaciens tmr and tzs loci. Nucl Acids Res 14: 2555-2565

    PubMed  CAS  Google Scholar 

  • Ross J, O’Neill J (2001) New interactions between classical plant hormones. Trends Plant Sci 6: 2-4

    PubMed  CAS  Google Scholar 

  • Sakakibara H, Kasahara H, Ueda N, Kojima M, Takei K, Hishiyama S, Asami T, Okada K, Kamiya Y, Yamaya T, Yamaguchi S (2005) Agrobacterium tumefa-ciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci USA 102: 9972-9977

    PubMed  CAS  Google Scholar 

  • Sans N, Schindler U, Schröder J (1988) Ornithine cyclodeaminase from Ti plas-mid C58: DNA sequence, enzyme properties and regulation of activity by ar-ginine. Eur J Biochem 173: 123-130

    PubMed  CAS  Google Scholar 

  • Sauter C, Blum S (2003) Regression of lung lesions in Hodgkin’s disease by anti-biotics: case report and hypothesis on the etiology of Hodgkin’s disease. Am J Clin Oncol 26: 92-94

    PubMed  Google Scholar 

  • Schindler U, Sans N, Schröder J (1989) Ornithine cyclodeaminase from octopine Ti plasmid Ach5: identification, DNA sequence, enzyme properties, and com-parison with gene and enzyme from nopaline Ti plasmid C58. J Bacteriol 171: 847-854

    PubMed  CAS  Google Scholar 

  • Schmülling T, Fladung M, Grossmann K, Schell J (1993) Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenes T-DNA. Plant J 3: 371-382

    Google Scholar 

  • Schmülling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. Embo J 7: 2621-2629

    PubMed  Google Scholar 

  • Schmülling T, Schell J, Spena A (1989) Promoters of the rolA, B, and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants. Plant Cell 1: 665-670

    PubMed  Google Scholar 

  • Schröder G, Waffenschmidt S, Weiler EW, Schröder J (1984) The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Bio-chem 138: 387-391

    Google Scholar 

  • Schwalm K, Aloni R, Langhans M, Heller W, Stich S, Ullrich CI (2003) Flavon-oid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors. Planta 218: 163-178

    PubMed  CAS  Google Scholar 

  • Shen WH, Davioud E, David C, Barbier-Brygoo H, Tempé J, Guern J (1990) High sensitivity to auxin is a common feature of hairy root. Plant Physiol 94: 554-560

    PubMed  CAS  Google Scholar 

  • Shen WH, Petit A, Guern J, Tempé J (1988) Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci USA 85: 3417-3421

    PubMed  CAS  Google Scholar 

  • Sinkar VP, Pythoud F, White FF, Nester EW, Gordon MP (1988) rolA locus of the Ri plasmid directs developmental abnormalities in transgenic tobacco plants. Genes Dev 2: 688-697

    PubMed  CAS  Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261: 108-121

    PubMed  CAS  Google Scholar 

  • Smith EF, Townsend CO (1907) A plant tumor of bacterial origin. Science 25: 671-673

    PubMed  Google Scholar 

  • Spanò L, Mariotti D, Cardarelli M, Branca C, Costantino P (1998) Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA. Plant Physiol 87: 479-483

    Google Scholar 

  • Specq A, Hansen G, Vaubert D, Clérot D, Heron JN, Tempé J, Brevet J (1994) Studies on hairy root T-DNA: regulation and properties of ORF13 from Agrobacterium rhizogenes 8196. In Plant Pathogenic Bacteria, Versailles (France), pp 465-468

    Google Scholar 

  • Spena A, Schmülling T, Koncz C, Schell JS (1987) Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. Embo J 6: 3891-3899

    PubMed  CAS  Google Scholar 

  • Sprunck S, Jacobsen HJ, Reinard T (1995) Indole-3-lactic acid is a weak auxin analogue but not an anti auxin. J Plant Growth Regul 14: 191-197

    CAS  Google Scholar 

  • Stieger PA, Meyer AD, Kathmann P, Fründt C, Niederhauser I, Barone M, Kuhlemeier C (2004) The orf13 T-DNA gene of Agrobacterium rhizogenes confers meristematic competence to differentiated cells. Plant Physiol 135: 1798-1808

    PubMed  CAS  Google Scholar 

  • Strabala TJ, Crowell DN, Amasino RM (1993) Levels and location of expression of the Agrobacterium tumefaciens pTiA6 ipt gene promoter in transgenic to-bacco. Plant Mol Biol 21: 1011-1021

    PubMed  CAS  Google Scholar 

  • Sugaya S, Hayakawa K, Handa T, Uchimiya H (1989) Cell-specific expression of the rolC gene of the TL-DNA of Ri plasmid in transgenic tobacco plants. Plant Cell Physiol 305: 649-653

    Google Scholar 

  • Sugaya S, Uchimiya H (1992) Deletion analysis of the 5’-upstream region of the Agrobacterium rhizogenes Ri plasmid rolC gene required for tissue-specific expression. Plant Physiol 99: 464-467

    PubMed  CAS  Google Scholar 

  • Sun J, Niu Q-W, Tarkowski P, Zheng B, Tarkowska D, Sandberg G, Chua N-H, Zuo J (2003) The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis. Plant Physiol 131: 167-176

    PubMed  CAS  Google Scholar 

  • Suzuki A, Kato A, Uchimiya H (1992) Single-stranded DNA of 5’-upstream re-gion of the rolC gene interacts with nuclear proteins of carrot cell cultures. Biochem Biophys Res Commun 188: 727-733

    PubMed  CAS  Google Scholar 

  • Suzuki K, Yamashita I, Tanaka N (2002) Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J 32: 775-787

    PubMed  CAS  Google Scholar 

  • Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding ade-nylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidop-sis thaliana. J Biol Chem 276: 26405-26410

    PubMed  CAS  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacte-rium rhizogenes: sexual transmission of the transformed genotype and pheno-type. Cell 37: 959-967

    PubMed  CAS  Google Scholar 

  • Thomashow LS, Reeves S, Thomashow MF (1984) Crown gall oncogenesis: evi-dence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci USA 81: 5071-5075

    PubMed  CAS  Google Scholar 

  • Thomashow MF, Hughly S, Buchholz WG, Thomashow LS (1986) Molecular ba-sis for the auxin-independent phenotype of crown gall tumor tissue. Science 231: 616-618

    PubMed  CAS  Google Scholar 

  • Tinland B, Fournier P, Heckel T, Otten L (1992) Expression of a chimaeric heat-shock-inducible Agrobacterium 6b oncogene in Nicotiana rustica. Plant Mol Biol 18: 921-930

    PubMed  CAS  Google Scholar 

  • Tinland B, Rohfritsch O, Michler P, Otten L (1990) Agrobacterium tumefaciens T-DNA gene 6b stimulates rol-induced root formation, permits growth at high auxin concentrations and increases root size. Mol Gen Genet 223: 1-10

    PubMed  CAS  Google Scholar 

  • Trovato M, Maras B, Linhares F, Costantino P (2001) The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Proc Natl Acad Sci USA 98: 13449-13453

    PubMed  CAS  Google Scholar 

  • Trovato M, Mauro ML, Costantino P, Altamura MM (1997) The rolD gene from Agrobacterium rhizogenes is developmentally regulated in transgenic tobacco. Protoplasma 197: 111-120

    CAS  Google Scholar 

  • Ullrich CI, Aloni R (2000) Vascularization is a general requirement for growth of plant and animal tumours. J Exp Bot 51: 1951-1960

    PubMed  CAS  Google Scholar 

  • Umber M, Clément B, Otten L (2005) The T-DNA oncogene A4-orf8 from Agro-bacterium rhizogenes A4 induces abnormal growth in tobacco. Mol Plant-Microbe Interact 18: 205-211

    PubMed  CAS  Google Scholar 

  • Umber M, Voll L, Weber A, Michler P, Otten L (2002) The rolB-like part of the Agrobacterium rhizogenes orf8 gene inhibits sucrose export in tobacco. Mol Plant-Microbe Interact 15: 956-962

    PubMed  CAS  Google Scholar 

  • Uozumi N (2004) Large-scale production of hairy root. Adv Biochem Eng Bio-technol 91: 75-103

    CAS  Google Scholar 

  • van Onckelen H, Prinsen E, Inzé D, Rüdelsheim P, Van Lijsebettens M, Follin A, Schell J, Van Montagu M, De Greef J (1986) Agrobacterium T-DNA gene 1 codes for tryptophan 2-monooxygenase activity in tobacco crown gall cells. FEBS Lett 198: 357-360

    Google Scholar 

  • Vansuyt G, Vilaine F, Tepfer M, Rossigno M (1992) rolA modulates the sensitiv-ity to auxin of the proton translocation catalyzed by the plasma membrane H+-ATPase in transformed tobacco. FEBS Lett 298: 89-92

    PubMed  CAS  Google Scholar 

  • Venis MA, Napier RM, Barbier-Brygoo H, Maurel C, Perrot-Rechenmann C, Guern J (1992) Antibodies to a peptide from the maize auxin-binding protein have auxin agonist activity. Proc Natl Acad Sci USA 89: 7208-7212

    PubMed  CAS  Google Scholar 

  • Veselov D, Langhans M, Hartung W, Aloni R, Feussner I, Götz C, Veselova S, Schlomski S, Dickler C, Bächmann K, Ullrich CI (2003) Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid. Planta 216: 512-522

    PubMed  CAS  Google Scholar 

  • Vilaine F, Casse-Delbart F (1987) Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol Gen Genet 206: 17-23

    CAS  Google Scholar 

  • Vilaine F, Rembur J, Chriqui D, Tepfer M (1998) Modified development in transgenic tobacco plants expressing a rolA::GUS translational fusion and subcellular localization of the fusion protein. Mol Plant-Microbe Interact 11: 855-859

    PubMed  CAS  Google Scholar 

  • Wabiko H, Minemura M (1996) Exogenous phytohormone-independent growth and regeneration of tobacco plants transgenic for the 6b gene of Agrobacte-rium tumefaciens AKE10. Plant Physiol 112: 939-951

    PubMed  CAS  Google Scholar 

  • Weiler EW, Spanier K (1981) Phytohormones in the formation of crown gall tu-mors. Planta 153: 326-337

    CAS  Google Scholar 

  • White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW (1983) Sequence homologous to Agrobacterium rhizogenes T-DNA in the genomes of unin-fected plants. Nature 301: 348-350

    CAS  Google Scholar 

  • White FF, Ghidossi G, Gordon MP, Nester EW (1982) Tumor induction by Agro-bacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci USA 79: 3193-3197

    PubMed  CAS  Google Scholar 

  • White FF, Nester EW (1980a) Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141: 1134-1141

    PubMed  CAS  Google Scholar 

  • White FF, Nester EW (1980b) Relationship of plasmids responsible for hairy root and crown gall tumorigenicity. J Bacteriol 144: 710-720

    PubMed  CAS  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164: 33-44

    PubMed  CAS  Google Scholar 

  • White PR, Braun AC (1942) A cancerous neoplasm of plants. Autonomous bacte-ria-free crown gall tissue. Cancer Res 2: 597-617

    Google Scholar 

  • Willmitzer L, Dhaese P, Schreier PH, Schmalenbach W, Van Montagu M, Schell J (1983) Size, location and polarity of T-DNA-encoded transcripts in nopaline crown gall tumors; common transcripts in octopine and nopaline tumors. Cell 32: 1045-1056

    PubMed  CAS  Google Scholar 

  • Yamada T, Palm CJ, Brooks B, Kosuge T (1985) Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agro-bacterium tumefaciens T-DNA. Proc Natl Acad Sci USA 82: 6522-6526

    PubMed  CAS  Google Scholar 

  • Yokoyama R, Hirose T, Fujii N, Aspuria ET, Kato A, Uchimiya H (1994) The rolC promoter of Agrobacterium rhizogenes Ri plasmid is activated by su-crose in transgenic tobacco plants. Mol Gen Genet 244: 15-22

    PubMed  CAS  Google Scholar 

  • Zhang XD, Letham DS, Zhang R, Higgins TJV (1996) Expression of the isopen-tenyl transferase gene is regulated by auxin in transgenic tobacco tissues. Transgenic Res 5: 57-65

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Britton, M.T., Escobar, M.A., Dandekar, A.M. (2008). The Oncogenes of Agrobacterium Tumefaciens and Agrobacterium Rhizogenes. In: Tzfira, T., Citovsky, V. (eds) Agrobacterium: From Biology to Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72290-0_14

Download citation

Publish with us

Policies and ethics