Function of Host Proteins in The Agrobacterium-Mediated Plant Transformation Process

  • Stanton B. Gelvin

Genetic transformation results from a complex interaction between Agrobacterium and host plant cells. Many decades of genetic, biochemical, and molecular analyses have revealed in detail those events taking place within the bacterium that contribute to TDNA and Virulence protein transfer. However, we understand much less about the plant contribution to the transformation process. Plant species, and even varieties/ecotypes, differ markedly in their susceptibility to Agrobacterium. A genetic component underlies these differences, permitting scientists to identify specific host genes and proteins mediating transformation. In this chapter, I review what is known about the plant contribution to transformation, and the tools which scientists are using to reveal the mechanisms by which host genes and proteins function in various steps of the transformation process.


Agrobacterium Tumefaciens Host Protein Crown Gall Histone Gene VirD2 Protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Abuodeh RO, Orbach MJ, Mandel MA, Das A, Galgiani JN (2000) Genetic trans-formation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J Infect Dis 181: 2106-2110PubMedCrossRefGoogle Scholar
  2. Akama K, Shiraishi H, Ohta S, Nakamura K, Okada K, Shimura Y (1992) Effi-cient transformation of Arabidopsis thaliana: Comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains. Plant Cell Rep 12: 7-11CrossRefGoogle Scholar
  3. An G, Lee S, Kim S-H, Kim S-R (2005) Molecular genetics using T-DNA in rice. Plant Cell Physiol 46: 14-22PubMedCrossRefGoogle Scholar
  4. An S, Park S, Jeong DH, Lee DY, Kang HG, Yu JH, Hur J, Kim SR, Kim YH, Lee M, Han S, Kim SJ, Yang J, Kim E, Wi SJ, Chung HS, Hong JP, Choe V, Lee HK, Choi JH, Nam J, Park PB, Park KY, Kim WT, Choe S, Lee CB, An G (2003) Generation and analysis of end sequence database for T-DNA tag-ging lines in rice. Plant Physiol 133: 2040-2047PubMedCrossRefGoogle Scholar
  5. Anderson AR, Moore LW (1979) Host specificity in the genus Agrobacterium. Phytopathology 69: 320-323CrossRefGoogle Scholar
  6. Bailey MA, Boerma HR, Parrott WA (1994) Inheritance of Agrobacterium tume-faciens-induced tumorigenesis of soybean. Crop Sci 34: 514-519Google Scholar
  7. Bakó L, Umeda M, Tiburcio AF, Schell J, Koncz C (2003) The VirD2 pilot pro-tein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100: 10108-10113PubMedCrossRefGoogle Scholar
  8. Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94: 10723-10728PubMedCrossRefGoogle Scholar
  9. Baron C, Zambryski PC (1996) Plant transformation: a pilus in Agrobacterium T-DNA transfer. Curr Biol 6: 1567-1569PubMedCrossRefGoogle Scholar
  10. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci 316: 1194-1199Google Scholar
  11. Bechtold N, Jaudeau B, Jolivet S, Maba B, Vezon D, Voisin R, Pelletier G (2000) The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 155: 1875-1887PubMedGoogle Scholar
  12. Bechtold N, Jolivet S, Voisin R, Pelletier G (2003) The endosperm and the em-bryo of Arabidopsis thaliana are independently transformed through infiltra-tion by Agrobacterium tumefaciens. Transgenic Res 12: 509-517PubMedCrossRefGoogle Scholar
  13. Bent AF (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124: 1540-1547PubMedCrossRefGoogle Scholar
  14. Binns AN, Beaupre CE, Dale EM (1995) Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010. J Bacteriol 177: 4890-4899PubMedGoogle Scholar
  15. Bliss FA, Almehdi AA, Dandekar AM, Schuerman PL, Bellaloui N (1999) Crown gall resistance in accessions of 20 Prunus species. Hort Sci 34: 326-330Google Scholar
  16. Brencic A, Angert ER, Winans SC (2005) Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumour free. Mol Microbiol 57:1522-1531PubMedCrossRefGoogle Scholar
  17. Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69: 155-194PubMedCrossRefGoogle Scholar
  18. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14: 3206-3214PubMedGoogle Scholar
  19. Bundock P, Hooykaas PJJ (1996) Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc Natl Acad Sci USA 93: 15272-15275PubMedCrossRefGoogle Scholar
  20. Bundock P, van Attikum H, den Dulk-Ras A, Hooykaas PJJ (2002) Insertional mutagenesis in yeasts using T-DNA from Agrobacterium tumefaciens. Yeast 19: 529-536PubMedCrossRefGoogle Scholar
  21. Bytebier B, Deboeck F, De Greve H, Van Montagu M, Hernalsteens JP (1987) T-DNA organization in tumor cultures and transgenic plants of the monocotyle-don Asparagus officinalis. Proc Natl Acad Sci USA 84: 5345-5349PubMedCrossRefGoogle Scholar
  22. Cangelosi GA, Hung L, Puvanesarajah V, Stacey G, Ozga DA, Leigh JA, Nester EW (1987) Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. J Bacteriol 169: 2086-2091PubMedGoogle Scholar
  23. Cangelosi GA, Martinetti G, Leigh JA, Lee CC, Theines C, Nester EW (1989) Role for [corrected] Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan. J Bacteriol 171: 1609-1615PubMedGoogle Scholar
  24. Cascales E, Christie PJ (2004) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304: 1170-1173PubMedCrossRefGoogle Scholar
  25. Chan M-T, Lee T-M, Chang H-H (1992) Transformation of Indica rice (Oryza sa-tiva L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol 33: 577Google Scholar
  26. Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P (2003) Dis-tribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36: 105-113PubMedCrossRefGoogle Scholar
  27. Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tume-faciens. Plant Physiol 115: 971-980PubMedGoogle Scholar
  28. Chilton M-D, Que Q (2003) Targeted integration of T-DNA into the tobacco ge-nome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133: 956-965PubMedCrossRefGoogle Scholar
  29. Christie PJ, Vogel JP (2000) Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8: 354-360PubMedCrossRefGoogle Scholar
  30. Christie PJ, Ward JE, Winans SC, Nester EW (1988) The Agrobacterium tumefa-ciens virE2 gene product is a single-stranded-DNA-binding protein that asso-ciates with T-DNA. J Bacteriol 170: 2659-2667PubMedGoogle Scholar
  31. Citovsky V, De Vos G, Zambryski P (1988) Single-stranded DNA binding protein encoded by the virE locus of Agrobacterium tumefaciens. Science 240: 501-504PubMedCrossRefGoogle Scholar
  32. Citovsky V, Guralnick B, Simon MN, Wall JS (1997) The molecular structure of Agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. J Mol Biol 271: 718-727PubMedCrossRefGoogle Scholar
  33. Citovsky V, Warnick D, Zambryski P (1994) Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 91: 3210-3214PubMedCrossRefGoogle Scholar
  34. Citovsky V, Wong ML, Zambryski P (1989) Cooperative interaction of Agrobac-terium VirE2 protein with single stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci USA 86: 1193-1197PubMedCrossRefGoogle Scholar
  35. Citovsky V, Zupan J, Warnick D, Zambryski P (1992) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256: 1802-1805PubMedCrossRefGoogle Scholar
  36. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743PubMedCrossRefGoogle Scholar
  37. Conner AJ, Dommisse EM (1992) Monocotyledonous plants as hosts for Agro-bacterium. Int J Plant Sci 153: 550-555CrossRefGoogle Scholar
  38. Crews JL, Colby S, Matthysse AG (1990) Agrobacterium rhizogenes mutants that fail to bind to plant cells. J Bacteriol 172: 6182-6188PubMedGoogle Scholar
  39. Das A (1988) Agrobacterium tumefaciens virE operon encodes a single-stranded DNA-binding protein. Proc Natl Acad Sci USA 85: 2909-2913PubMedCrossRefGoogle Scholar
  40. De Block M, Debrouwer D (1991) Two T-DNA’s co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82: 257-263CrossRefGoogle Scholar
  41. De Buck S, Jacobs A, Van Montagu M, Depicker A (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a re-combination process resembling T-DNA integration. Plant J 20: 295-304PubMedCrossRefGoogle Scholar
  42. De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42: 389-466CrossRefGoogle Scholar
  43. de Groot MJ, Bundock P, Hooykaas PJJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16: 839-842PubMedCrossRefGoogle Scholar
  44. de Iannino NI, Ugalde RA (1989) Biochemical characterization of avirulent Agro-bacterium tumefaciens chvA mutants: synthesis and excretion of ȕ-(1-2)glucan. J Bacteriol 171: 2842-2849PubMedGoogle Scholar
  45. De Neve M, De Buck S, Jacobs A, Van Montagu M, Depicker A (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11: 15-29PubMedCrossRefGoogle Scholar
  46. Deasey MC, Matthysse AG (1984) Interactions of wild-type and a cellulose-minus mutant of Agrobacterium tumefaciens with tobacco mesophyll and tobacco tissue culture cells. Phytopathol 74: 991-994CrossRefGoogle Scholar
  47. Deng W, Chen L, Wood DW, Metcalfe T, Liang X, Gordon MP, Comai L, Nester EW (1998) Agrobacterium VirD2 protein interacts with plant host cyclophil-ins. Proc Natl Acad Sci USA 95: 7040-7045PubMedCrossRefGoogle Scholar
  48. Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the pri-mary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123: 895-904PubMedCrossRefGoogle Scholar
  49. Ditt RF, Nester E, Comai L (2005) The plant cell defense and Agrobacterium tu-mefaciens. FEMS Microbiol Lett 247: 207-213PubMedCrossRefGoogle Scholar
  50. Ditt RF, Nester EW, Comai L (2001) Plant gene expression response to Agrobac-terium tumefaciens. Proc Natl Acad Sci USA: 10954-10959Google Scholar
  51. Dommisse EM, Leung DWM, Shaw ML, Conner AJ (1990) Onion is a monocoty-ledonous host for Agrobacterium. Plant Sci 69: 249-257CrossRefGoogle Scholar
  52. Dong J, Teng W, Buchholz WG, Hall TC (1996) Agrobacterium-mediated trans-formation of Javanica rice. Mol Breed 2: 267-276CrossRefGoogle Scholar
  53. Douglas CJ, Halperin W, Nester EW (1982) Agrobacterium tumefaciens mutants affected in attachment to plant cell. J Bacteriol 152: 1265-1275PubMedGoogle Scholar
  54. Douglas CJ, Staneloni RJ, Rubin RA, Nester EW (1985) Identification and genetic analysis of an Agrobacterium tumefaciens chromsomal virulence region. J Bacteriol 161: 850-860PubMedGoogle Scholar
  55. Duckely M, Hohn B (2003) The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett 223: 1-6PubMedCrossRefGoogle Scholar
  56. Duckely M, Oomen C, Axthelm F, Van Gelder P, Waksman G, Engel A (2005) The VirE1VirE2 complex of Agrobacterium tumefaciens interacts with sin-gle-stranded DNA and forms channels. Mol Microbiol 58: 1130-1142PubMedCrossRefGoogle Scholar
  57. Dumas F, Duckely M, Pelczar P, Van Gelder P, Hohn B (2001) An Agrobacte-rium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci USA 98: 485-490PubMedCrossRefGoogle Scholar
  58. Durrenberger F, Crameri A, Hohn B, Koukolikova-Nicola Z (1989) Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci USA 86: 9154-9158PubMedCrossRefGoogle Scholar
  59. Eisenbrandt R, Kalkum M, Lai EM, Lurz R, Kado CI, Lanka E (1999) Conjuga-tive pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 274: 22548-22555PubMedCrossRefGoogle Scholar
  60. Escudero J, Hohn B (1997) Transfer and integration of T-DNA without cell injury in the host plant. Plant Cell 9: 2135-2142PubMedCrossRefGoogle Scholar
  61. Friesner J, Britt AB (2003) Ku80- and DNA ligase IV-deficient plants are sensi-tive to ionizing radiation and defective in T-DNA integration. Plant J 34: 427-440PubMedCrossRefGoogle Scholar
  62. Fullner KJ, Lara JC, Nester EW (1996) Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273: 1107-1109PubMedCrossRefGoogle Scholar
  63. Gallego ME, Bleuyard JY, Daoudal-Cotterell S, Jallut N, White CI (2003) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35: 557-565PubMedCrossRefGoogle Scholar
  64. Gaspar YM, Nam J, Schultz CJ, Lee LY, Gilson PR, Gelvin SB, Bacic A (2004) Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of Agrobacte-rium transformation. Plant Physiol 135: 2162-2171PubMedCrossRefGoogle Scholar
  65. Geier T, Sangwan RS (1996) Histology and chimeral segreation reveal cell-specific differences in the competence for shoot regeneration and Agrobace-rium-mediated transformation in Kohleria internode explants. Plant Cell Rep 15: 386-390CrossRefGoogle Scholar
  66. Gelvin SB (1998) Agrobacterium VirE2 proteins can form a complex with T strands in the plant cytoplasm. J Bacteriol 180: 4300-4302PubMedGoogle Scholar
  67. Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51: 223-256PubMedCrossRefGoogle Scholar
  68. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology be-hind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67: 16-37PubMedCrossRefGoogle Scholar
  69. Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5: 287-297PubMedCrossRefGoogle Scholar
  70. Gietl C, Koukolikova-Nicola Z, Hohn B (1987) Mobilization of T-DNA from Agrobacterium to plant cells involves a protein that binds single-stranded DNA. Proc Natl Acad Sci USA 84: 9006-9010PubMedCrossRefGoogle Scholar
  71. Gouin E, Welch MD, Cossart P (2005) Actin-based motility of intracellular pathogens. Curr Opin Microbiol 8: 35-45PubMedCrossRefGoogle Scholar
  72. Grevelding C, Fantes V, Kemper E, Schell J, Masterson R (1993) Single-copy T-DNA insertions in Arabidopsis are the predominant form of integration in root-derived transgenics, whereas multiple insertions are found in leaf discs. Plant Mol Biol 23: 847-860PubMedCrossRefGoogle Scholar
  73. Guralnick B, Thomsen G, Citovsky V (1996) Transport of DNA into the nuclei of Xenopus oocytes by a modified VirE2 protein of Agrobacterium. Plant Cell 8: 363-373PubMedCrossRefGoogle Scholar
  74. Gurlitz RHG, Lamb PW, Matthysse AG (1987) Involvement of carrot cell surface proteins in attachment of Agrobacterium tumefaciens. Plant Physiol 83: 564-568PubMedCrossRefGoogle Scholar
  75. Hawes MC, Pueppke SG (1989) Variation in binding and virulence of Agrobacte-rium tumefaciens chromosomal virulence (chv) mutant bacteria on different plant species. Plant Physiol 91: 113-118PubMedCrossRefGoogle Scholar
  76. Herrera-Estrella A, Chen Z-M, Van Montagu M, Wang K (1988) VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA protein complex at the 5’ terminus of T-strand molecules. EMBO J 7: 4055-4062PubMedGoogle Scholar
  77. Herrera-Estrella A, Van Montagu M, Wang K (1990) A bacterial peptide acting as a plant nuclear targeting signal: the amino-terminal portion of Agrobacterium VirD2 protein directs a beta-galactosidase fusion protein into tobacco nuclei. Proc Natl Acad Sci USA 87: 9534-9537PubMedCrossRefGoogle Scholar
  78. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271-282PubMedCrossRefGoogle Scholar
  79. Hood EE, Fraley RT, Chilton M-D (1987) Virulence of Agrobacterium tumefa-ciens strain A281 on legumes. Plant Physiol 83: 529-534PubMedCrossRefGoogle Scholar
  80. Howard EA, Citovsky V (1990) The emerging structure of the Agrobacterium T-DNA transfer complex. BioEssays 12: 103-108CrossRefGoogle Scholar
  81. Howard EA, Winsor BA, De Vos G, Zambryski P (1989) Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand protein complex: tight association of VirD2 with the 5’ ends of T-strands. Proc Natl Acad Sci USA 86: 4017-4021PubMedCrossRefGoogle Scholar
  82. Howard EA, Zupan JR, Citovsky V, Zambryski P (1992) The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: impli-cations for nuclear uptake of DNA in plant cells. Cell 68: 109-118PubMedCrossRefGoogle Scholar
  83. Hwang HH, Gelvin SB (2004) Plant proteins that interact with VirB2, the Agro-bacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16: 3148-3167PubMedCrossRefGoogle Scholar
  84. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefa-ciens. Nat Biotechnol 14: 745-750PubMedCrossRefGoogle Scholar
  85. Jakubowski SJ, Cascales E, Krishnamoorthy V, Christie PJ (2005) Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacte-riol 187: 3486-3495CrossRefGoogle Scholar
  86. Kado CI (1994) Promiscuous DNA transfer system of Agrobacterium tumefa-ciens: role of the virB operon in sex pilus assembly and synthesis. Mol Mi-crobiol 12: 17-22CrossRefGoogle Scholar
  87. Kamoun S, Cooley MB, Rogowsky PM, Kado CI (1989) Two chromosomal loci involved in production of exopolysaccharide in Agrobacterium tumefaciens. J Bacteriol 171: 1755-1759PubMedGoogle Scholar
  88. Kirik A, Salomon S, Puchta H (2000) Species-specific double-strand break repair and genome evolution in plants. Embo J 19: 5562-5566PubMedCrossRefGoogle Scholar
  89. Koukolikova-Nicola Z, Hohn B (1993) How does the T-DNA of Agrobacterium tumefaciens find its way into the plant cell nucleus? Biochimie 75: 635-638PubMedCrossRefGoogle Scholar
  90. Koukolikova-Nicola Z, Raineri D, Stephens K, Ramos C, Tinland B, Nester EW, Hohn B (1993) Genetic analysis of the virD operon of Agrobacterium tumefaciens: a search for functions involved in transport of T-DNA into the plant cell nucleus and in T-DNA integration. J Bacteriol 175: 723-731PubMedGoogle Scholar
  91. Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98: 1871-1876PubMedCrossRefGoogle Scholar
  92. Lacroix B, Tzfira T, Vainstein A, Citovsky V (2006) A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22: 29-37PubMedCrossRefGoogle Scholar
  93. Lacroix B, Vaidya M, Tzfira T, Citovsky V (2005) The VirE3 protein of Agrobac-terium mimics a host cell function required for plant genetic transformation. EMBO J 24: 428-437PubMedCrossRefGoogle Scholar
  94. Lai EM, Kado CI (1998) Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180: 2711-2717PubMedGoogle Scholar
  95. Lee LY, Gelvin SB, Kado CI (1999) pSa causes oncogenic suppression of Agro-bacterium by inhibiting VirE2 protein export. J Bacteriol 181: 186-196PubMedGoogle Scholar
  96. Levee V, Garin E, Klimaszewska K, Seguin A (1999) Stable genetic transforma-tion of white pine (Pinus strobus L.) after cocultivation of embryogenic tisues with Agrobacterium tumefaciens. Mol Breed 5: 429-440CrossRefGoogle Scholar
  97. Li J, Krichevsky A, Vaidya M, Tzfira T, Citovsky V (2005a) Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci USA 102: 5733-5738PubMedCrossRefGoogle Scholar
  98. Li J, Vaidya M, White C, Vainstein A, Citovsky V, Tzfira T (2005b) Involvement of KU80 in T-DNA integration in plant cells. Proc Natl Acad Sci USA 102: 19231-19236PubMedCrossRefGoogle Scholar
  99. Loyter A, Rosenbluh J, Zakai N, Li J, Kozlovsky SV, Tzfira T, Citovsky V (2005) The plant VirE2 interacting protein 1. A molecular link between the Agrobac-terium T-complex and the host cell chromatin? Plant Physiol 138: 1318-1321PubMedCrossRefGoogle Scholar
  100. Lu H-J, Zhou X-R, Gong Z-X, Upadhyaya NM (2001) Generation of selectable marker-free transgenic rice using double right-border (DRB) vectors. Aust J Plant Physiol 28: 241-248Google Scholar
  101. Macara IG (2001). Transport into and out of the nucleus. Microbiol Mol Biol Rev 65: 570-594PubMedCrossRefGoogle Scholar
  102. Matthysse AG (1987) Characterization of nonattaching mutants of Agrobacterium tumefaciens. J Bacteriol 169: 313-323PubMedGoogle Scholar
  103. Matthysse AG, Holmes KV, Gurlitz RH (1981) Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol 145: 583-595PubMedGoogle Scholar
  104. Matthysse AG, Marry M, Krall L, Kaye M, Ramey BE, Fuqua C, White AR (2005) The effect of cellulose overproduction on binding and biofilm forma-tion on roots by Agrobacterium tumefaciens. Mol Plant Microbe Interact 18: 1002-1010PubMedCrossRefGoogle Scholar
  105. Mauro AO, Pfeiffer TW, Collins GB (1995) Inheritance of soybean susceptibility to Agrobacterium tumefaciens and its relationship to transformation. Crop Sci 35: 1152-1156CrossRefGoogle Scholar
  106. Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10: 697-704PubMedGoogle Scholar
  107. McAfee BJ, White EE, Pelcher LE, Lapp MS (1993) Root induction in pine (Pinus) and larch (Larix) spp. using Agrobacterium rhizogenes. Plant Cell Tissue Organ Cultur 34: 53-62CrossRefGoogle Scholar
  108. Melchers LS, Maroney MJ, den Dulk-Ras A, Thompson DV, van Vuuren HAJ, Schilperoort RA, Hooykaas PJJ (1990) Octopine and nopaline strains of Agrobacterium tumefaciens differ in virulence; molecular characterization of the virF locus. Plant Mol Biol 14: 249-259PubMedCrossRefGoogle Scholar
  109. Merkle T (2004) Nucleo-cytoplasmic partitioning of proteins in plants: Implica-tions for the regulation of environmental and developmental signaling. Curr Genet 44: 231-260CrossRefGoogle Scholar
  110. Michielse CB, Ram AFJ, Hooykaas PJJ, van den Hondel CAMJJ (2004) Agrobac-terium-mediated transformation of Aspergillus awamori in the absence of full-length VirD2, VirC2, or VirE2 leads to insertion of aberrant T-DNA structures. J Bacteriol 186: 2038-2045PubMedCrossRefGoogle Scholar
  111. Morris JW, Morris RO (1990) Identification of an Agrobacterium tumefaciens virulence gene inducer from the pinaceous gymnosperm Pseudotsuga menzie-sii. Proc Natl Acad Sci USA 87: 3614-3618PubMedCrossRefGoogle Scholar
  112. Mysore KS, Bassuner B, Deng X-B, Darbinian NS, Motchoulski A, Ream W, Gelvin SB (1998) Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol Plant-Microbe Interact 11: 668-683PubMedCrossRefGoogle Scholar
  113. Mysore KS, Kumar CTR, Gelvin SB (2000a) Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J 21: 9-16PubMedCrossRefGoogle Scholar
  114. Mysore KS, Nam J, Gelvin SB (2000b) An Arabidopsis histone H2A mutant is de-ficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97: 948-953PubMedCrossRefGoogle Scholar
  115. Nam J, Matthysse AG, Gelvin SB (1997) Differences in susceptibility of Arabi-dopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9: 317-333PubMedCrossRefGoogle Scholar
  116. Nam J, Mysore KS, Gelvin SB (1998) Agrobacterium tumefaciens transformation of the radiation hypersensitive Arabidopsis thaliana mutants uvh1 and rad5. Mol Plant-Microbe Interact 11: 1136-1141PubMedCrossRefGoogle Scholar
  117. Nam J, Mysore KS, Zheng C, Knue MK, Matthysse AG, Gelvin SB (1999) Identi-fication of T-DNA tagged Arabidopsis mutants that are resistant to transfor-mation by Agrobacterium. Mol Gen Genet 261: 429-438PubMedCrossRefGoogle Scholar
  118. Narasimhulu SB, Deng X-B, Sarria R, Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8: 873-886PubMedCrossRefGoogle Scholar
  119. Neff NT, Binns AN (1985) Agrobacterium tumefaciens interaction with suspen-sion-cultured tomato cells. Plant Physiol 77: 35-42PubMedCrossRefGoogle Scholar
  120. O’Connell KP, Handelsman J (1999) chvA locus may be involved in export of neutral cyclic beta-1,2 linked D-glucan from Agrobacterium tumefaciens. Mol Plant Microbe Interact 2: 11-16Google Scholar
  121. Otten L, DeGreve H, Leemans J, Hain R, Hooykass P, Schell J (1984) Restoration of virulence of vir region mutants of Agrobacterium tumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains. Mol Gen Genet 195: 159-163CrossRefGoogle Scholar
  122. Owens LD, Cress DE (1984) Genotypic variability of soybean response to Agro-bacterium strains harboring the Ti or Ri plasmids. Plant Physiol 77: 87-94CrossRefGoogle Scholar
  123. Pena L, Seguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19: 500-506PubMedCrossRefGoogle Scholar
  124. Piers KL, Heath JD, Liang X, Stephens KM, Nester EW (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci USA 93: 1613-1618PubMedCrossRefGoogle Scholar
  125. Puvanesarajah V, Schell FM, Stacey G, Douglas CJ, Nester EW (1985) Role for 2-linked-ȕ-D-glucan in the virulence of Agrobacterium tumefaciens. J Bacte-riol 164: 102-106Google Scholar
  126. Ramey BE, Matthysse AG, Fuqua C (2004) The FNR-type transcriptional regula-tor SinR controls maturation of Agrobacterium tumefaciens biofilms. Mol Microbiol 52: 1495-1511PubMedCrossRefGoogle Scholar
  127. Rao P (2002) Involvement of the plant cytoskeleton in Agrobacterium transforma-tion. PhD Thesis, Purdue UniversityGoogle Scholar
  128. Rashid H, Yokoi S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep 15: 727-730CrossRefGoogle Scholar
  129. Regensburg-Tuink AJ, Hooykaas PJJ (1993) Transgenic N. glauca plants express-ing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 363: 69-71PubMedCrossRefGoogle Scholar
  130. Relic B, Andjelkovic M, Rossi L, Nagamine Y, Hohn B (1998) Interaction of the DNA modifying proteins VirD1 and VirD2 of Agrobacterium tumefaciens: analysis by subcellular localization in mammalian cells. Proc Natl Acad Sci USA 95: 9105-9110PubMedCrossRefGoogle Scholar
  131. Reuhs BL, Kim JS, Matthysse AG (1997) Attachment of Agrobacterium tumefa-ciens to carrot cells and Arabidopsis wound sites is correlated with the pres-ence of a cell-associated, acidic polysaccharide. J Bacteriol 179: 5372-5379PubMedGoogle Scholar
  132. Rhee Y, Gurel F, Gafni Y, Dingwall C, Citovsky V (2000) A genetic system for detection of protein nuclear import and export. Nat Biotechnol 18: 433-437PubMedCrossRefGoogle Scholar
  133. Robbs SL, Hawes MC, Lin H-J, Pueppke SG, Smith LY (1991) Inheritance of re-sistance to crown gall in Pisum sativum. Plant Physiol 95: 52-57PubMedCrossRefGoogle Scholar
  134. Robertson JL, Holliday T, Matthysse AG (1988) Mapping of Agrobacterium tu-mefaciens chromosomal genes affecting cellulose synthesis and bacterial at-tachment to host cells. J Bacteriol 170: 1408-1411PubMedGoogle Scholar
  135. Rossi L, Hohn B, Tinland B (1993) The VirD2 protein of Agrobacterium tumefa-ciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol Gen Genet 239: 345-353PubMedCrossRefGoogle Scholar
  136. Sagulenko V, Sagulenko E, Jakubowski S, Spudich E, Christie PJ (2001) VirB7 lipoprotein is exocellular and associates with the Agrobacterium tumefaciens T pilus. J Bacteriol 183: 3642-3651PubMedCrossRefGoogle Scholar
  137. Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P, Piegu B, Droc G, Regad F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszmann JC, Delseny M, Guiderdoni E (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39: 450-464PubMedCrossRefGoogle Scholar
  138. Salman H, Abu-Arish A, Oliel S, Loyter A, Klafter J, Granek R, Elbaum M (2005) Nuclear localization signal peptides induce molecular delivery along micro-tubules. Biophys J 89: 2134-2145PubMedCrossRefGoogle Scholar
  139. Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17: 6086-6095PubMedCrossRefGoogle Scholar
  140. Sangwan RS, Bourgeois Y, Brown S, Vasseur G, Sangwan-Norreel B (1992) Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188: 439-456CrossRefGoogle Scholar
  141. Schafer W, Gorz A, Kahl G (1987) T-DNA integration and expression in a mono-cot crop plant after induction of Agrobacterium. Nature 327: 529-532CrossRefGoogle Scholar
  142. Schmidt-Eisenlohr H, Domke N, Angerer C, Wanner G, Zambryski P, Baron C (1999) Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J Bacteriol 181: 7485-7492PubMedGoogle Scholar
  143. Schrammeijer B, den Dulk-Ras A, Vergunst AC, Jácome JE, Hooykaas PJJ (2003) Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effec-tor protein VirE3. Nucleic Acids Res 31: 860-868PubMedCrossRefGoogle Scholar
  144. Schrammeijer B, Risseeuw E, Pansegrau W, Regensburg-Tuïnk TJG, Crosby WL, Hooykaas PJJ (2001) Interaction of the virulence protein VirF of Agrobacte-rium tumefaciens with plant homologs of the yeast Skp1 protein. Curr Biol 11: 258-262PubMedCrossRefGoogle Scholar
  145. Sen P, Pazour GJ, Anderson D, Das A (1989) Cooperative binding of Agrobacte-rium tumefaciens VirE2 protein to single-stranded DNA. J Bacteriol 171: 2573-2580PubMedGoogle Scholar
  146. Shibasaki F, Kondo E, Akagi T, McKeon F (1997) Suppression of signaling through transcription factor NF-AT by interaction between calcineurin and Bcl-2. Nature 386: 728-731PubMedCrossRefGoogle Scholar
  147. Shibasaki F, Price ER, Milan D, McKeon F (1996) Role of kinases and the phos-phatase calcineurin in the nuclear shuttling of transcription factor NF-AT4. Nature 382: 370-373PubMedCrossRefGoogle Scholar
  148. Silva H, Yoshioka K, Dooner HK, Klessig DF (1999) Characterization of a new Arabidopsis mutant exhibiting enhanced disease resistance. Mol Plant-Microbe Interact 12: 1053-1063PubMedCrossRefGoogle Scholar
  149. Smarrelli J, Watters MT, Diba LH (1986) Response of various cucurbits to infec-tion by plasmid-harboring strains of Agrobacterium. Plant Physiol 82: 622-624PubMedCrossRefGoogle Scholar
  150. Smith HMS, Raikhel NV (1998) Nuclear localization signal receptor importin al-pha associates with the cytoskeleton. Plant Cell 10: 1791-1799PubMedCrossRefGoogle Scholar
  151. Sparrow PAC, Townsend TM, Arthur AE, Dale PJ, Irwin JA (2004) Genetic analysis of Agrobacterium tumefaciens susceptibility in Brassica oleracea. Theor Appl Genet 108: 644-650PubMedCrossRefGoogle Scholar
  152. Stomp A-M, Loopstra C, Chilton WS, Sederoff RR, Moore LW (1990) Extended host range of Agrobacterium tumefaciens in the genus Pinus. Plant Physiol 92: 1226-1232.PubMedCrossRefGoogle Scholar
  153. Swart S, Logman TJ, Smit G, Lugtenberg BJJ, Kijne JW (1994) Purification and partial characterization of a glycoprotein from pea (Pisum sativum) with re-ceptor activity for rhicadhesin, an attachment protein of Rhizobiaceae. Plant Mol Biol 24: 171-183PubMedCrossRefGoogle Scholar
  154. Szegedi E, Kozma P (1984) Studies on the inheritance of resistance to crown gall disease of grapevine. Vitis 23: 121-126Google Scholar
  155. Tao Y (1998) Isolation and characterization of a cDNA encoding a plant phos-phatase implicated in nuclear import of the Agrobacterium VirD2 protein. PhD Thesis, Purdue UniversityGoogle Scholar
  156. Tao Y, Rao PK, Bhattacharjee S, Gelvin SB (2004) Expression of plant protein phosphatase 2C interferes with nuclear import of the Agrobacterium T-complex protein VirD2. Proc Natl Acad Sci USA 101: 5164-5169PubMedCrossRefGoogle Scholar
  157. Thomashow MF, Karlinsey JE, Marks JR, Hurlbert RE (1987) Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J Bacteriol 169: 3209-3216PubMedGoogle Scholar
  158. Tian L, Wang J, Fong MP, Chen M, Cao H, Gelvin SB, Chen ZJ (2003) Genetic control of developmental changes induced by disruption of Arabidopsis his-tone deacetylase 1 (AtHD1) expression. Genetics 165: 399-409PubMedGoogle Scholar
  159. Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11: 1369-1376CrossRefGoogle Scholar
  160. Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1: 178-184CrossRefGoogle Scholar
  161. Tinland B, Hohn B (1995) Recombination between prokaryotic and eukaryotic DNA: integration of Agrobacterium tumefaciens T-DNA into the plant genome. In JK Settoe, ed, Genetic Engineering, Plenum Press, New York pp. 209-229Google Scholar
  162. Tinland B, Koukolikova-Nicola Z, Hall MN, Hohn B (1992) The T-DNA-linked VirD2 protein contains two distinct nuclear localization signals. Proc Natl Acad Sci USA 89: 7442-7446PubMedCrossRefGoogle Scholar
  163. Toki S (1997) Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep 15: 16-21CrossRefGoogle Scholar
  164. Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12: 121-129PubMedCrossRefGoogle Scholar
  165. Tzfira T, Citovsky V (2003) The Agrobacterium-plant cell interaction. Taking bi-ology lessons from a bug. Plant Physiol 133: 943-947PubMedCrossRefGoogle Scholar
  166. Tzfira T, Frankman LR, Vaidya M, Citovsky V (2003) Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol 133: 1011-1023PubMedCrossRefGoogle Scholar
  167. Tzfira T, Li J, Lacroix B, Citovsky V (2004a) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20: 375-383PubMedCrossRefGoogle Scholar
  168. Tzfira T, Rhee Y, Chen M-H, Kunik T, Citovsky V (2000) Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54: 187-219PubMedCrossRefGoogle Scholar
  169. Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an Arabidopsis protein that inter-acts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20: 3596-3607PubMedCrossRefGoogle Scholar
  170. Tzfira T, Vaidya M, Citovsky V (2002) Increasing plant susceptibility to Agrobac-terium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci USA 99: 10435-10440PubMedCrossRefGoogle Scholar
  171. Tzfira T, Vaidya M, Citovsky V (2004b) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431: 87-92PubMedCrossRefGoogle Scholar
  172. Valentine L (2003) Agrobacterium tumefaciens and the plant: the David and Goli-ath of modern genetics. Plant Physiol 133: 948-955PubMedCrossRefGoogle Scholar
  173. van Attikum H, Bundock P, Hooykaas PJJ (2001) Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. Embo J 20: 6550-6558PubMedCrossRefGoogle Scholar
  174. van Attikum H, Bundock P, Overmeer RM, Lee LY, Gelvin SB, Hooykaas PJJ (2003) The Arabidopsis AtLIG4 gene is required for the repair of DNA dam-age, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res 31: 4247-4255PubMedCrossRefGoogle Scholar
  175. van Attikum H, Hooykaas PJJ (2003) Genetic requirements for the targeted inte-gration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Ac-ids Res 31: 826-832CrossRefGoogle Scholar
  176. Vandromme M, Gauthier-Rouviere C, Lamb N, Fernandez A (1996) Regulation of transcription factor localization: Fine-tuning of gene expression. Trends Bio-chem Sci 21: 59-64Google Scholar
  177. van Wordragen MF, Dons HJM (1992) Agrobacterium tumefaciens-mediated transformation of recalcitrant crops. Plant Mol Biol Rep 10: 12-36CrossRefGoogle Scholar
  178. Veena, Jiang H, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir pro-teins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35: 219-236PubMedCrossRefGoogle Scholar
  179. Vogel AM, Das A (1992) Mutational analysis of Agrobacterium tumefaciens virD2: tyrosine 29 is essential for endonuclease activity. J Bacteriol 174: 303-308PubMedGoogle Scholar
  180. Wagner VT, Matthysse AG (1992) Involvement of vitronectin-like protein in at-tachment of Agrobacterium tumefaciens to carrot suspension culture cells. J Bacteriol 174: 5999-6003PubMedGoogle Scholar
  181. Ward ER, Barnes WM (1988) VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5’ end of T-strand DNA. Science 242: 927-930Google Scholar
  182. Wenck AR, Quinn M, Whetten RW, Pullman G, Sederoff R (1999) High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol 39: 407-416PubMedCrossRefGoogle Scholar
  183. Windels P, De Buck S, Van Bockstaele E, De Loose M, Depicker A (2003) T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences. Plant Physiol 133: 2061-2068PubMedCrossRefGoogle Scholar
  184. Ye GN, Stone D, Pang SZ, Creely W, Gonzalez K, Hinchee M (1999) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transforma-tion. Plant J 19: 249-257PubMedCrossRefGoogle Scholar
  185. Yi H, Mysore KS, Gelvin SB (2002) Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation. Plant J 32: 285-298PubMedCrossRefGoogle Scholar
  186. Yi H, Sardesai N, Fujinuma T, Chan C-W, Veena, Gelvin SB (2006) Constitutive expression exposes functional redundancy between the Arabidopsis histone H2A gene HTA1 and other H2A gene family members. Plant Cell 18: 1575-1589PubMedCrossRefGoogle Scholar
  187. Young C, Nester EW (1988) Association of the VirD2 protein with the 5’ end of T-strands in Agrobacterium tumefaciens. J Bacteriol 170: 3367-3374PubMedGoogle Scholar
  188. Zhu Y, Nam J, Carpita NC, Matthysse AG, Gelvin SB (2003a) Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellu-lose synthase-like gene. Plant Physiol 133: 1000-1010PubMedCrossRefGoogle Scholar
  189. Zhu Y, Nam J, Humara JM, Mysore KS, Lee LY, Cao H, Valentine L, Li J, Kaiser AD, Kopecky AL, Hwang HH, Bhattacharjee S, Rao PK, Tzfira T, Rajagopal J, Yi H, Veena, Yadav BS, Crane YM, Lin K, Larcher Y, Gelvin MJ, Knue M, Ramos C, Zhao X, Davis SJ, Kim SI, Ranjith-Kumar CT, Choi YJ, Hallan VK, Chattopadhyay S, Sui X, Ziemienowicz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003b) Identification of Arabidopsis rat mutants. Plant Physiol 132: 494-505PubMedCrossRefGoogle Scholar
  190. Ziemienowicz A, Görlich D, Lanka E, Hohn B, Rossi L (1999) Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacte-rium. Proc Natl Acad Sci USA 96: 3729-3733PubMedCrossRefGoogle Scholar
  191. Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L (2001) Import of Agrobacterium T-DNA into plant nuclei: Two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13: 369-383PubMedCrossRefGoogle Scholar
  192. Zorreguieta A, Ugalde RA (1986) Formation in Rhizobium and Agrobacterium spp. of a 235-kilodalton protein intermediate in b-D(1-2) glucan synthesis. J Bacteriol 167: 947-951PubMedGoogle Scholar
  193. Zupan J, Citovsky V, Zambryski PC (1996) Agrobacterium VirE2 protein medi-ates nuclear uptake of single-stranded DNA in plant cells. Proc Natl Acad Sci USA 93: 2392-2397PubMedCrossRefGoogle Scholar
  194. Zupan J, Muth TR, Draper O, Zambryski PC (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23: 11-28PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stanton B. Gelvin
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations