Advertisement

Intracellular Transport of Agrobacterium T-DNA

  • Benoît Lacroix
  • Michael Elbaum
  • Vitaly Citovsky
  • Tzvi Tzfira

To transfer genes to plants or other organisms, Agrobacterium exports its transferred DNA (T-DNA), along with several virulence proteins, into the host cell. The T-DNA must then be transported through the cytoplasm to the nuclear pore, pass through the nuclear pore complex, and finally move inside the nucleus toward a potential site of integration into the host genome. This T-DNA voyage inside the host cell results from a complex interplay between numerous bacterial and host factors, where host-cell machineries that allow macromolecular movements are employed by Agrobacterium to achieve the transfer and integration of T-DNA into the host genome.

Keywords

Nuclear Import Intracellular Transport Nuclear Pore Complex African Swine Fever Virus Importin Beta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf proto-plasts: a versatile experimental system to study gene expression. Plant J 5: 421-427PubMedGoogle Scholar
  2. Abu-Arish A, Frenkiel-Krispin D, Fricke T, Tzfira T, Citovsky V, Grayer Wolf S, Elbaum M (2004) Three-dimensional reconstruction of Agrobacterium VirE2 protein with single-stranded DNA. J Biol Chem 279: 25359-25363PubMedGoogle Scholar
  3. Afolabi AS, Worland B, Snape JW, Vain P (2004) A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theor Appl Genet 109: 815-826PubMedGoogle Scholar
  4. Alonso C, Miskin J, Hernaez B, Fernandez-Zapatero P, Soto L, Canto C, Rodri-guez-Crespo I, Dixon L, Escribano JM (2001) African swine fever virus pro-tein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J Virol 75: 9819-9827PubMedGoogle Scholar
  5. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657PubMedGoogle Scholar
  6. Bakó L, Umeda M, Tiburcio AF, Schell J, Koncz C (2003) The VirD2 pilot pro-tein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100: 10108-10113PubMedGoogle Scholar
  7. Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94: 10723-10728PubMedGoogle Scholar
  8. Briels W (1986) The theory of polymer dynamics. Clarendon Press, OxfordGoogle Scholar
  9. Chilton M-DM, Que Q (2003) Targeted integration of T-DNA into the tobacco genome at double-strand breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133: 956-965PubMedGoogle Scholar
  10. Christie PJ, Ward JE, Winans SC, Nester EW (1988) The Agrobacterium tumefa-ciens virE2 gene product is a single-stranded-DNA-binding protein that asso-ciates with T-DNA. J Bacteriol 170: 2659-2667PubMedGoogle Scholar
  11. Citovsky V, Guralnick B, Simon MN, Wall JS (1997) The molecular structure of Agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. J Mol Biol 271: 718-727PubMedGoogle Scholar
  12. Citovsky V, Kapelnikov A, Oliel S, Zakai N, Rojas MR, Gilbertson RL, Tzfira T, Loyter A (2004) Protein interactions involved in nuclear import of the Agro-bacterium VirE2 protein in vivo and in vitro. J Biol Chem 279: 29528-29533PubMedGoogle Scholar
  13. Citovsky V, Warnick D, Zambryski PC (1994) Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 91: 3210-3214PubMedGoogle Scholar
  14. Citovsky V, Wong ML, Zambryski PC (1989) Cooperative interaction of Agro-bacterium VirE2 protein with single stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci USA 86: 1193-1197PubMedGoogle Scholar
  15. Citovsky V, Zupan J, Warnick D, Zambryski PC (1992) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256: 1802-1805PubMedGoogle Scholar
  16. Dauty E, Verkman AS (2005) Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm: a new barrier for non-viral gene delivery. J Biol Chem 280: 7823-7828PubMedGoogle Scholar
  17. Dean DA, Strong DD, Zimmer WE (2005) Nuclear entry of nonviral vectors. Gene Ther 12: 881-890PubMedGoogle Scholar
  18. Deng W, Chen L, Peng WT, Liang X, Sekiguchi S, Gordon MP, Comai L, Nester EW (1999) VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol 31: 1795-1807PubMedGoogle Scholar
  19. Deng W, Chen L, Wood DW, Metcalfe T, Liang X, Gordon MP, Comai L, Nester EW (1998) Agrobacterium VirD2 protein interacts with plant host cyclophil-ins. Proc Natl Acad Sci USA 95: 7040-7045PubMedGoogle Scholar
  20. Drouet J, Delteil C, Lefrancois J, Concannon P, Salles B, Calsou P (2005) DNA-dependent protein kinase and XRCC4-DNA ligase IV mobilization in the cell in response to DNA double strand breaks. J Biol Chem 280: 7060-7069PubMedGoogle Scholar
  21. Duckely M, Oomen C, Axthelm F, Van Gelder P, Waksman G, Engel A (2005) The VirE1VirE2 complex of Agrobacterium tumefaciens interacts with sin-gle-stranded DNA and forms channels. Mol Microbiol 58: 1130-1142PubMedGoogle Scholar
  22. Dumas F, Duckely M, Pelczar P, Van Gelder P, Hohn B (2001) An Agrobacte-rium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci USA 98: 485-490PubMedGoogle Scholar
  23. Durrenberger F, Crameri A, Hohn B, Koukolikova-Nicola Z (1989) Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci USA 86: 9154-9158PubMedGoogle Scholar
  24. Fahrenkrog B, Koser J, Aebi U (2004) The nuclear pore complex: a jack of all trades? Trends Biochem Sci 29: 175-182PubMedGoogle Scholar
  25. Forbes DJ (1992) Structure and function of the nuclear pore complex. Annu Rev Cell Biol 8: 495-527PubMedGoogle Scholar
  26. Frary A, Hamilton CM (2001) Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res 10: 121-132PubMedGoogle Scholar
  27. Frenkiel-Krispin D, Grayer-Wolf S, Albeck S, Unger T, Peleg Y, Jacobovitch J, Michael Y, Daube S, Sharon M, Robinson CV, Svergun DI, Fass D, Tzfira T, Elbaum M (2006) Plant transformation by Agrobacterium tumefaciens regula-tion of ssDNA-VirE2 complex assembly by VirE1. 282: 3458-3464Google Scholar
  28. Gelvin SB (2003a) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21: 95-98PubMedGoogle Scholar
  29. Gelvin SB (1998) Agrobacterium VirE2 proteins can form a complex with T strands in the plant cytoplasm. J Bacteriol 180: 4300-4302PubMedGoogle Scholar
  30. Gelvin SB (2003b) Agrobacterium-mediated plant transformation: the biology be-hind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67: 16-37PubMedGoogle Scholar
  31. Görlich D, Vogel F, Mills AD, Hartmann E, Laskey RA (1995) Distinct functions for the two importin subunits in nuclear protein import. Nature 377: 246-248PubMedGoogle Scholar
  32. Greber UF, Fassati A (2003) Nuclear import of viral DNA genomes. Traffic 4: 136-143PubMedGoogle Scholar
  33. Greber UF, Way M (2006) A superhighway to virus infection. Cell 124: 741-754PubMedGoogle Scholar
  34. Guralnick B, Thomsen G, Citovsky V (1996) Transport of DNA into the nuclei of Xenopus oocytes by a modified VirE2 protein of Agrobacterium. Plant Cell 8: 363-373PubMedGoogle Scholar
  35. Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93: 9975-9979PubMedGoogle Scholar
  36. Herrera-Estrella A, Chen Z, Van Montagu M, Wang K (1988) VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA protein complex at the 5’ terminus of T-strand molecules. EMBO J 7: 4055-4062PubMedGoogle Scholar
  37. Herrera-Estrella A, Van Montagu M, Wang K (1990) A bacterial peptide acting as a plant nuclear targeting signal: the amino-terminal portion of Agrobacterium VirD2 protein directs a beta-galactosidase fusion protein into tobacco nuclei. Proc Natl Acad Sci USA 87: 9534-9537PubMedGoogle Scholar
  38. Hirooka T, Kado CI (1986) Location of the right boundary of the virulence region on Agrobacterium tumefaciens plasmid pTiC58 and a host specifying gene next to the boundary. J Bacteriol 168: 237-243PubMedGoogle Scholar
  39. Hodges LD, Cuperus J, Ream W (2004) Agrobacterium rhizogenes GALLS pro-tein substitutes for Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 186: 3065-3077PubMedGoogle Scholar
  40. Howard E, Zupan J, Citovsky V, Zambryski PC (1992) The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: impli-cations for nuclear uptake of DNA in plant cells. Cell 68: 109-118PubMedGoogle Scholar
  41. Hubner S, Smith HMS, Hu W, Chan CK, Rihs HP, Paschal BM, Raikhel NV, Jans DA (1999) Plant importin alpha binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin beta. J Biol Chem 274: 22610-22617PubMedGoogle Scholar
  42. Jans DA, Xiao CY, Lam MH (2000) Nuclear targeting signal recognition: a key control point in nuclear transport? BioEssays 22: 532-544PubMedGoogle Scholar
  43. Jasper F, Koncz C, Schell J, Steinbiss HH (1994) Agrobacterium T-strand produc-tion in vitro: sequence-specific cleavage and 5’ protection of single-stranded DNA templates by purified VirD2 protein. Proc Natl Acad Sci USA 91: 694-698PubMedGoogle Scholar
  44. Kalogeraki VS, Zhu J, Stryker JL, Winans SC (2000) The right end of the vir re-gion of an octopine-type Ti plasmid contains four new members of the vir regulon that are not essential for pathogenesis. J Bacteriol 182: 1774-1778PubMedGoogle Scholar
  45. Kim SR, Lee J, Jun SH, Park S, Kang HG, Kwon S, An G (2003) Transgene struc-tures in T-DNA-inserted rice plants. Plant Mol Biol 52: 761-773PubMedGoogle Scholar
  46. King SM (2002) Dyneins motor on in plants. Traffic 3: 930-931PubMedGoogle Scholar
  47. Koukolikova-Nicola Z, Raineri D, Stephens K, Ramos C, Tinland B, Nester EW, Hohn B (1993) Genetic analysis of the virD operon of Agrobacterium tumefa-ciens: a search for functions involved in transport of T-DNA into the plant cell nucleus and in T-DNA integration. J Bacteriol 175: 723-731PubMedGoogle Scholar
  48. Krichevsky A, Kozlovsky SV, Gafni Y, Citovsky V (2006) Nuclear import and export of plant virus proteins and genomes. Mol Plant Pathol 7: 131-146Google Scholar
  49. Kumar S, Fladung M (2002) Transgene integratin in aspen: structures of integra-tion sites and mechanism of T-DNA integration. Plant J 31: 543-551PubMedGoogle Scholar
  50. Lacroix B, Li J, Tzfira T, Citovsky V (2006a) Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cell. Cana-dian J Physiol Pharmacol 84: 333-345Google Scholar
  51. Lacroix B, Tzfira T, Vainstein A, Citovsky V (2006b) A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22: 29-37PubMedGoogle Scholar
  52. Lacroix B, Vaidya M, Tzfira T, Citovsky V (2005) The VirE3 protein of Agrobac-terium mimics a host cell function required for plant genetic transformation. EMBO J 24: 428-437PubMedGoogle Scholar
  53. Landau L, EM L (1980) Stastitical physics. Pergamon Press, OxfordGoogle Scholar
  54. Lasek RJ, Brady ST (1985) Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP. Nature 316: 645-647PubMedGoogle Scholar
  55. Lawrence CJ, Morris NR, Meagher RB, Dawe RK (2001) Dyneins have run their course in plant lineage. Traffic 2: 362-363PubMedGoogle Scholar
  56. Lechardeur D, Lukacs GL (2002) Intracellular barriers to non-viral gene transfer. Curr Gene Ther 2: 183-194PubMedGoogle Scholar
  57. Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW, Beatty B, Squire J, O’Brodovich H, Lukacs GL (1999) Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 6: 482-497PubMedGoogle Scholar
  58. Leonetti JP, Mechti N, Degols G, Gagnor C, Lebleu B (1991) Intracellular distri-bution of microinjected antisense oligonucleotides. Proc Natl Acad Sci USA 88: 2702-2706PubMedGoogle Scholar
  59. Lessl M, Lanka E (1994) Common mechanisms in bacterial conjugation and Ti-mediated transfer to plant cells. Cell 77: 321-324PubMedGoogle Scholar
  60. Li J, Krichevsky A, Vaidya M, Tzfira T, Citovsky V (2005) Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Nat Acad Sci USA 102: 5733-5738PubMedGoogle Scholar
  61. Loyter A, Rosenbluh J, Zakai N, Li J, Kozlovsky SV, Tzfira T, Citovsky V (2005) The plant VIP1 protein — a molecular link between the Agrobacterium T-complex and the host cell chromatin? Plant Physiol 138: 1318-1321PubMedGoogle Scholar
  62. Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192: 189-221PubMedGoogle Scholar
  63. Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275: 1625-1629PubMedGoogle Scholar
  64. Mathur J, Koncz C (1998) PEG-mediated protoplast transformation with naked DNA. Methods Mol Biol 82: 267-276PubMedGoogle Scholar
  65. Merkle T (2001) Nuclear import and export of proteins in plants: a tool for the regulation of signalling. Planta 213: 499-517PubMedGoogle Scholar
  66. Mirzoeva OK, Petrini JH (2001) DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol 21: 281-288PubMedGoogle Scholar
  67. Mysore KS, Bassuner B, Deng XB, Darbinian NS, Motchoulski A, Ream LW, Gelvin SB (1998) Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol Plant-Microbe Interact 11: 668-683PubMedGoogle Scholar
  68. Mysore KS, Nam J, Gelvin SB (2000) An Arabidopsis histone H2A mutant is de-ficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97: 948-953PubMedGoogle Scholar
  69. Nagai H, Roy CR (2003) Show me the substrates: modulation of host cell function by type IV secretion systems. Cell Microbiol 5: 373-383PubMedGoogle Scholar
  70. Narasimhulu SB, Deng X-B, Sarria R, Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8: 873-886PubMedGoogle Scholar
  71. Otten L, DeGreve H, Leemans J, Hain R, Hooykass P, Schell J (1984) Restoration of virulence of vir region mutants of A. tumefaciens strain B6S3 by coinfec-tion with normal and mutant Agrobacterium strains. Mol Gen Genet 195: 159-163Google Scholar
  72. Pante N, Kann M (2002) Nuclear pore complex is able to transport macromole-cules with diameters of about 39 nm. Mol Biol Cell 13: 425-434PubMedGoogle Scholar
  73. Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nu-cleus. Nature 404: 604-609PubMedGoogle Scholar
  74. Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM (2003) Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol 81: 123-129PubMedGoogle Scholar
  75. Pollard H, Toumaniantz G, Amos JL, Avet-Loiseau H, Guihard G, Behr JP, Escande D (2001) Ca2+-sensitive cytosolic nucleases prevent efficient deliv-ery to the nucleus of injected plasmids. J Gene Med 3: 153-164PubMedGoogle Scholar
  76. Puchta H (1998) Repair of genomic double-strand breaks in somatic plant cells by one-sided invasion of homologous sequences. Plant J 13: 77-78Google Scholar
  77. Relic B, Andjelkovic M, Rossi L, Nagamine Y, Hohn B (1998) Interaction of the DNA modifying proteins VirD1 and VirD2 of Agrobacterium tumefaciens: analysis by subcellular localization in mammalian cells. Proc Natl Acad Sci USA 95: 9105-9110PubMedGoogle Scholar
  78. Rhee Y, Gurel F, Gafni Y, Dingwall C, Citovsky V (2000) A genetic system for detection of protein nuclear import and export. Nat Biotechnol 18: 433-437 Romano PG, Horton P, Gray JE (2004) The Arabidopsis cyclophilin gene family. Plant Physiol 134: 1268-1282Google Scholar
  79. Rossi L, Hohn B, Tinland B (1993) The VirD2 protein of Agrobacterium tumefa-ciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol Gen Genet 239: 345-353PubMedGoogle Scholar
  80. Salman H, Abu-Arish A, Oliel S, Loyter A, Klafter J, Granel R, Elbaum M (2005) Nuclear localization signal peptides induce molecular delivery along micro-tubules. Biophys J 89: 2134-2145PubMedGoogle Scholar
  81. Scali M, Vignani R, Moscatelli A, Jellbauer S, Cresti M (2003) Molecular evi-dence for a cytoplasmic dynein heavy chain from Nicotiana tabacum L. Cell Biol Int 27: 261-262PubMedGoogle Scholar
  82. Schrammeijer B, den Dulk-Ras A, Vergunst AC, Jurado Jacome E, Hooykaas PJJ (2003) Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharom c es cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res 31: 860-868PubMedGoogle Scholar
  83. Sen P, Pazour GJ, Anderson D, Das A (1989) Cooperative binding of Agrobacte-rium tumefaciens VirE2 protein to single-stranded DNA. J Bacteriol 171: 2573-2580PubMedGoogle Scholar
  84. Sheng J, Citovsky V (1996) Agrobacterium-plant cell interaction: have virulence proteins - will travel. Plant Cell 8: 1699-1710PubMedGoogle Scholar
  85. Shimizu T (1995) Inhibitors of the dynein ATPase and ciliary or flagellar motility. Methods Cell Biol 47: 497-501PubMedGoogle Scholar
  86. Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner WM, Petrini JH, Haber JE, Lichten M (2004) Distribution and dynamics of chromatin modification in-duced by a defined DNA double-strand break. Curr Biol 14: 1703-1711PubMedGoogle Scholar
  87. Shurvinton CE, Hodges L, Ream LW (1992) A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 en-donuclease are important for tumor formation. Proc Natl Acad Sci USA 89: 11837-11841PubMedGoogle Scholar
  88. Smith HMS, Raikhel NV (1998) Nuclear localization signal receptor importin alpha associates with the cytoskeleton. Plant Cell 10: 1791-1799PubMedGoogle Scholar
  89. Stachel SE, An G, Flores C, Nester EW (1985) A Tn3 lacZ transposon for the ran-dom generation of beta-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. EMBO J 4: 891-898PubMedGoogle Scholar
  90. Stahl R, Horvath H, Van Fleet J, Voetz M, von Wettstein D, Wolf N (2002) T-DNA integration into the barley genome from single and double cassette vectors. Proc Natl Acad Sci USA 99: 2146-2151PubMedGoogle Scholar
  91. Sundberg C, Meek L, Carrol K, Das A, Ream LW (1996) VirE1 protein mediates export of single-stranded DNA binding protein VirE2 from Agrobacterium tumefaciens into plant cells. J Bacteriol 178: 1207-1212PubMedGoogle Scholar
  92. Sundberg CD, Ream LW (1999) The Agrobacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction. J Bacteriol 181: 6850-6855PubMedGoogle Scholar
  93. Suntharalingam M, Wente SR (2003) Peering through the pore. Nuclear pore complex structure, assembly, and function. Dev Cell 4: 775-789PubMedGoogle Scholar
  94. Tao Y, Rao PK, Bhattacharjee S, Gelvin SB (2004) Expression of plant protein phosphatase 2C interferes with nuclear import of the Agrobacterium T-complex protein VirD2. Proc Natl Acad Sci USA 101: 5164-5169PubMedGoogle Scholar
  95. Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant sci-ence and agricultural biotechnology. DNA Cell Biol 21: 963-977PubMedGoogle Scholar
  96. Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1: 178-184Google Scholar
  97. Tzfira T (2006) On tracks and locomotives: the long route of DNA to the nucleus. Trends Microbiol 14: 61-63PubMedGoogle Scholar
  98. Tzfira T, Citovsky V (2001) Comparison between nuclear import of nopaline- and octopine-specific VirE2 protein of Agrobacterium in plant and animal cells. Mol Plant Pathol 2: 171-176Google Scholar
  99. Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12: 121-129PubMedGoogle Scholar
  100. Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17: 147-154PubMedGoogle Scholar
  101. Tzfira T, Frankmen L, Vaidya M, Citovsky V (2003) Site-specific integration of Agrobacterium T-DNA via double-stranded intermediates. Plant Physiol 133: 1011-1023PubMedGoogle Scholar
  102. Tzfira T, Lacroix B, Citovsky V (2005) Nuclear Import of Agrobacterium T-DNA. In T Tzfira, V Citovsky, eds, Nuclear Import and Export in Plants and Animals. Eurekah.com and Kluwer Academic/Plenum, pp 83-99Google Scholar
  103. Tzfira T, Li J, Lacroix B, Citovsky V (2004a) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20: 375-383PubMedGoogle Scholar
  104. Tzfira T, Rhee Y, Chen M-H, Citovsky V (2000) Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54: 187-219PubMedGoogle Scholar
  105. Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an Arabidopsis protein that inter-acts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20: 3596-3607PubMedGoogle Scholar
  106. Tzfira T, Vaidya M, Citovsky V (2002) Increasing plant susceptibility to Agrobac-terium infection by overexpression of the Arabidopsis VIP1 gene. Proc Natl Acad Sci USA 99: 10435-10440PubMedGoogle Scholar
  107. Tzfira T, Vaidya M, Citovsky V (2004b) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431: 87-92PubMedGoogle Scholar
  108. Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16: 991-1002PubMedGoogle Scholar
  109. van Attikum H, Fritsch O, Hohn B, Gasser SM (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodel-ing with DNA double-strand break repair. Cell 119: 777-788PubMedGoogle Scholar
  110. Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CMT, Regensburg-Tuink TJ, Hooykaas PJJ (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290: 979-982PubMedGoogle Scholar
  111. AC, van Lier MCM, den Dulk-Ras A, Hooykaas PJJ (2003) Recognition of the Agrobacterium VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant Physiol 133: 978-988Google Scholar
  112. Vergunst AC, van Lier MCM, den Dulk-Ras A, Stüve TA, Ouwehand A, Hooykaas PJJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Nat Acad Sci USA 102: 832-837PubMedGoogle Scholar
  113. Verkman AS (2002) Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci 27: 27-33PubMedGoogle Scholar
  114. Waigmann E, Ueki S, Trutnyeva K, Citovsky V (2004) The ins and outs of non-destructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci 23: 195-250Google Scholar
  115. Ward D, Zupan J, Zambryski PC (2002) Agrobacterium VirE2 gets the VIP1 treatment in plant nuclear import. Trends Plant Sci 7: 1-3PubMedGoogle Scholar
  116. Ward E, Barnes W (1988) VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5’ end of T-strand DNA. Science 242: 927-930Google Scholar
  117. Whittaker GR (2003) Virus nuclear import. Adv Drug Deliv Rev 55: 733-747PubMedGoogle Scholar
  118. Whittaker GR, Helenius A (1998) Nuclear import and export of viruses and virus genomes. Virology 246: 1-23PubMedGoogle Scholar
  119. Whittaker GR, Kann M, Helenius A (2000) Viral entry into the nucleus. Annu Rev Cell Dev Biol 16: 627-651PubMedGoogle Scholar
  120. Winans SC, Allenza P, Stachel SE, McBride KE, Nester EW (1987) Characteriza-tion of the virE operon of the Agrobacterium Ti plasmid pTiA6. Nucleic Ac-ids Res 15: 825-837Google Scholar
  121. Yi H, Mysore KS, Gelvin SB (2002) Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation. Plant J 32: 285-298PubMedGoogle Scholar
  122. Young C, Nester EW (1988) Association of the VirD2 protein with the 5’ end of T-strands in Agrobacterium tumefaciens. J Bacteriol 170: 3367-3374PubMedGoogle Scholar
  123. Yusibov VM, Steck TR, Gupta V, Gelvin SB (1994) Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Proc Natl Acad Sci USA 91: 2994-2998PubMedGoogle Scholar
  124. Zaidi SK, Young DW, Choi JY, Pratap J, Javed A, Montecino M, Stein JL, Lian JB, van Wijnen AJ, Stein GS (2004) Intranuclear trafficking: organization and assembly of regulatory machinery for combinatorial biological control. J Biol Chem 279: 43363-43366PubMedGoogle Scholar
  125. Zaidi SK, Young DW, Choi JY, Pratap J, Javed A, Montecino M, Stein JL, van Wijnen AJ, Lian JB, Stein GS (2005) The dynamic organization of gene-regulatory machinery in nuclear microenvironments. EMBO Rep 6: 128-133PubMedGoogle Scholar
  126. Zhu Y, Nam J, Humara JM, Mysore K, Lee LY, Cao H, Valentine L, Li J, Kaiser A, Kopecky A, Hwang HH, Bhattacharjee S, Rao P, Tzfira T, Rajagopal J, Yi HC, Yadav VBS, Crane Y, Lin K, Larcher Y, Gelvin M, Knue M, Zhao X, Davis S, Kim SI, Kumar CTR, Choi YJ, Hallan V, Chattopadhyay S, Sui X, Ziemienowitz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132: 494-505PubMedGoogle Scholar
  127. Ziemienowicz A, Görlich D, Lanka E, Hohn B, Rossi L (1999) Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacte-rium. Proc Natl Acad Sci USA 96: 3729-3733PubMedGoogle Scholar
  128. Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L (2001) Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13: 369-384PubMedGoogle Scholar
  129. Zupan J, Citovsky V, Zambryski PC (1996) Agrobacterium VirE2 protein medi-ates nuclear uptake of ssDNA in plant cells. Proc Natl Acad Sci USA 93: 2392-2397PubMedGoogle Scholar
  130. Zupan J, Muth TR, Draper O, Zambryski PC (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23: 11-28PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Benoît Lacroix
    • 1
  • Michael Elbaum
    • 2
  • Vitaly Citovsky
    • 1
  • Tzvi Tzfira
    • 3
  1. 1.Department of Biochemistry and Cell BiologyState University of New YorkStony BrookUSA
  2. 2.Department of Materials and InterfaceWeizmann Institute of ScienceRehovotIsrael
  3. 3.Department of Molecular, Cellular and Developmental BiologyThe University of MichiganMI 48109USA

Personalised recommendations