Agrobacterium: A disease-causing bacterium

  • Léon Otten
  • Thomas Burr
  • Ernö Szegedi

The common use of Agrobacterium as a gene vector for plants has somewhat obscured the fact that this bacterium remains an important plant pathogen. Pathogenic strains of the genus Agrobacterium cause unorganized tissue growth called crown gall or profuse abnormal root development called hairy root. Agrobacterium tumefaciens induces galls on roots and crowns of several fruit and forest trees and ornamental plants. A. vitis is responsible for the crown gall disease of grapevine, while A. rhizogenes induces abnormal rooting on its hosts. Plants tissues that become diseased undergo physiological changes resulting in weak growth, low yields or even death of the entire plant. Tumors originate from dividing plant cells, e. g. from cambium. Thus the cambial region becomes unable to differentiate into efficient phloem and xylem elements leading to deficient nutrient transport. Symptoms may appear on roots, crowns and aerial parts of attacked plants (Figure 1–1). Tumors are usually comprised of unorganized tissue, but sometimes they differentiate into roots or shoots. This depends on the host plant, the position on the infected plant or the inducing bacterium (Figure 1–2). As indicated by several reviews, crown gall has been a worldwide problem in agriculture for over hundred years (Moore and Cooksey, 1981; Burr et al., 1998; Burr and Otten, 1999; Escobar and Dandekar, 2003).


Hairy Root Agrobacterium Tumefaciens Agrobacterium Strain Crown Gall Crown Gall Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Albiach MR, Lopez MM (1992) Plasmid heterogeneity in Spanish isolates of Agrobacterium tumefaciens from thirteen different hosts. Appl Environm Microbiol 58: 2683-2687Google Scholar
  2. Allen ON, Holding AJ (1974) Genus II. Agrobacterium. In RE Buchanan, NE Gibbons, eds, Bergey’s Manual of Determinative Bacteriology, 8th Edition. Williams and Wilkins Co., Baltimore, pp 264-267Google Scholar
  3. Anderson AR, Moore LW (1979) Host specificity in the genus Agrobacterium. Phytopathology 69: 320-323CrossRefGoogle Scholar
  4. Bauer C, Schulz TF, Lorenz D, Eichhorn KW, Plapp R (1994) Population dynam-ics of Agrobacterium vitis in two grapevine varieties during the vegetation period. Vitis 33: 25-20Google Scholar
  5. Bazzi C, Alexandrova M, Stefani E, Anaclerio F, Burr TJ (1999) Biological con-trol of Agrobacterium vitis using non-tumorigenic agrobacteria. Vitis 38: 31-35Google Scholar
  6. Bazzi C, Piazza C, Burr TJ (1987) Detection of Agrobacterium tumefaciens in grapevine cuttings. EPPO Bulletin 17: 105-112CrossRefGoogle Scholar
  7. Bazzi C, Rosciglione B (1982) Agrobacterium tumefaciens biotype 3, causal agent of crown gall on Chrysanthemum in Italy. Phytopath Z 103: 280-284CrossRefGoogle Scholar
  8. Bazzi C, Stefani E, Gozzi R, Burr TJ, Moore CL, Anaclerio F (1991) Hot-water treatment of dormant grape cuttings: Its effects on Agrobacterium tumefaciens and on grafting and growth of wine. Vitis 30: 177-187Google Scholar
  9. Beauchamp CJ, Chilton WS, Dion P, Antoun H (1990) Fungal catabolism of crown gall opines. Appl Environ Microbiol 56: 150-155PubMedGoogle Scholar
  10. Bell CR, Dickie GA, Chan JW (1995) Variable response of bacteria isolated from grapevine xylem to control grape crown gall disease in planta. Am J Enol Vitic 46: 499-508Google Scholar
  11. Bien E, Lorenz D, Eichhorn K, Plapp R (1990) Isolation and characterization of Agrobacterium tumefaciens from the German vineregion Rheinpfalz. J Plant Dis Prot 97: 313-322Google Scholar
  12. Bishop AL, Burr TJ, Mittak VL, Katz BH (1989) A monoclonal antibody specific to Agrobacterium tumefaciens biovar 3 and its utilization for indexing grape-vine propagation material. Phytopathology 79: 995-998CrossRefGoogle Scholar
  13. Bishop AL, Katz BH, Burr TJ (1988) Infection of grapevine by soilborne Agro-bacterium tumefaciens biovar 3 and population dynamics in host and nonhost rhizospheres. Phytopathology 78: 945-948CrossRefGoogle Scholar
  14. Bliss FA, Almehdi AA, Dandekar AM, Schuerman PL, Bellaloui N (1999) Crown gall resistance in accessions of 20 Prunus species. Hortscience 34: 326-330Google Scholar
  15. Bouchez D, Tourneur J (1991) Organization of the agropine synthesis region of the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid 25: 27-39PubMedCrossRefGoogle Scholar
  16. Boulton MI, Buchholz WG, Marks MS, Markham PG, Davies JW (1989) Speci-ficity of Agrobacterium-mediated delivery of maize streak virus DNA to members of the Gramineae. Plant Mol Biol 12: 31-40CrossRefGoogle Scholar
  17. Bouzar H, Chilton WS, Nesme X, Dessaux Y, Vaudequin V, Petit A, Jones JB, Hodge NC (1995) A new Agrobacterium strain isolated from aerial tumors on Ficus benjamina L. Appl Environ Microbiol 61: 65-73PubMedGoogle Scholar
  18. Bouzar H, Jones JB (2001) Agrobacterium larrymoorei sp. nov., a pathogen iso-lated from aerial tumours of Ficus benjamina. Int J Syst Evol Microbiol 51: 1023-1026PubMedGoogle Scholar
  19. Bouzar H, Moore LW (1987) Isolation of different Agrobacterium biovars from a natural oak savanna and tallgrass prairie. Appl Environm Microbiol 53: 717-721Google Scholar
  20. Bouzar H, Quadah D, Krimi Z, Jones JB, Trovato M, Petit A, Dessaux Y (1993) Correlative association between resident plasmids and the host chromosome in a diverse Agrobacterium soil population. Appl Environm Microbiol 59: 1310-1317Google Scholar
  21. Burr TJ, Bazzi C, Süle S, Otten L (1998) Crown gall of grape: biology of Agro-bacterium vitis and the development of disease control strategies. Plant Dis-ease 82: 1288-1297CrossRefGoogle Scholar
  22. Burr TJ, Katz BH (1983) Isolation of Agrobacterium tumefaciens biovar 3 from grapevine galls and sap, and from vineyard soil. Phytopathology 73: 163-165CrossRefGoogle Scholar
  23. Burr TJ, Katz BH (1984) Grapevine cuttings as potential sites of survival and means of dissemination of Agrobacterium tumefaciens. Plant Disease 68: 976-978CrossRefGoogle Scholar
  24. Burr TJ, Katz BH, Bishop AL (1987) Populations of Agrobacterium in vineyard and non vineyard soils and grape roots in vineyards and nurseries. Plant Dis-ease 71: 617-620CrossRefGoogle Scholar
  25. Burr TJ, Katz BH, Bishop AL, Meyers CA, Mittak VL (1988) Effect of shoot age and tip culture propagation of grapes on systemic infestations by Agrobacterium tumefaciens biovar 3. Am J Enol Vitic 39: 67-70Google Scholar
  26. Burr TJ, Norelli JL, Katz BH, Bishop AL (1990) Use of Ti plasmid DNA probes for determining tumorigenicity of Agrobacterium strains. Appl Environm Microbiol 56: 1782-1785Google Scholar
  27. Burr TJ, Ophel K, Katz BH, Kerr A (1989) Effect of hot water treatment on sys-temic Agrobacterium tumefaciens biovar 3 in dormant grape cuttings. Plant Disease 73: 242-245CrossRefGoogle Scholar
  28. Burr TJ, Otten L (1999) Crown gall of grape: biology and disease management. Annu Rev Phytopathol 37: 53-80PubMedCrossRefGoogle Scholar
  29. Burr TJ, Reid CL (1994) Biological control of grape crown gall with non-tumorigenic Agrobacterium vitis strain F2/5. Am J Enol Vitic 45: 213-219Google Scholar
  30. Burr TJ, Reid CL, Adams CE, Momol EA (1999) Characterization of Agrobacte-rium vitis strains isolated from feral Vitis riparia. Plant Disease 83: 102-107CrossRefGoogle Scholar
  31. Burr TJ, Reid CL, Splittstoesser DF, Yoshimura M (1996) Effect of heat treatment on grape bud mortality and survival of Agrobacterium vitis in vitro and in dormant grapevine cuttings. Am J Enol Vitic 47: 119-123Google Scholar
  32. Burr TJ, Reid CL, Tagliati E, Bazzi C, Süle S (1997) Biological control of grape crown gall by strain F2/5 is not associated with agrocin production or compe-tition for attachment sites on grape cells. Phytopathology 87: 706-711PubMedCrossRefGoogle Scholar
  33. Burr TJ, Reid CL, Yoshimura M, Momol EA, Bazzi C (1995) Survival and tumorigenicity of Agrobacterium vitis in living and decaying grape roots and canes in soil. Plant Disease 79: 677-682Google Scholar
  34. Bush AL, Pueppke SG (1991a) Characterization of an unusual new Agrobacterium tumefaciens strain from Chrysanthemum morifolium Ram. Appl Environm Microbiol 57: 2468-2472Google Scholar
  35. Bush AL, Pueppke SG (1991b) Cultivar-strain specificity between Chrysanthemum morifolium and Agrobacterium tumefaciens. Physiol Mol Plant Pathol 39: 309-323CrossRefGoogle Scholar
  36. Canaday J, Gérard JC, Crouzet P, Otten L (1992) Organization and functional analysis of three T-DNAs from the vitopine Ti plasmid pTiS4. Mol Gen Genet 235: 292-303PubMedCrossRefGoogle Scholar
  37. Canfield ML, Moore LW (1991) Isolation and characterization of opine-utilizing strains of Agrobacterium tumefaciens and fluorescent strains of Pseudomonas spp. from rootstocks of Malus. Phytopathology 81: 440-443CrossRefGoogle Scholar
  38. Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D (2003) The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-Acyl homoserine lactonase activity. Appl Environ Microbiol 69: 4989-4993PubMedCrossRefGoogle Scholar
  39. Cevallos MA, Porta H, Izquierdo J, Tun-Garrido C, Garcia-de-los-Santos A, Davila G, Brom S (2002) Rhizobium etli CFN42 contains at least three plas-mids of the repABC family: a structural and evolutionary analysis. Plasmid 48: 104-116PubMedCrossRefGoogle Scholar
  40. Chang CC, Chen CM, Adams BR, Trost BM (1983) Leucinopine, a characteristic compound of some crown-gall tumors. Proc Natl Acad Sci USA 80: 3573-3576PubMedCrossRefGoogle Scholar
  41. Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115: 971-980PubMedGoogle Scholar
  42. Chilton WS, Petit A, Chilton MD, Dessaux Y (2001) Structure and characteriza-tion of the crown gall opines heliopine, vitopine and rideopine. Phytochemis-try 58: 137-142CrossRefGoogle Scholar
  43. Chilton WS, Tempé J, Matzke M, Chilton MD (1984) Succinamopine: a new crown gall opine. J Bacteriol 157: 357-362PubMedGoogle Scholar
  44. Citovsky V, Warnick D, Zambryski PC (1994) Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 91: 3210-3214PubMedCrossRefGoogle Scholar
  45. Clare BG, Kerr A, Jones DA (1990) Characteristics of the nopaline catabolic plasmid in Agrobacterium strains K84 and K1026 used for biological control of crown gall disease. Plasmid 23: 126-137PubMedCrossRefGoogle Scholar
  46. Conner AJ, Dommisse EM (1992) Monocotyledonous plants as hosts for Agro-bacterium. Int J Plant Sci 153: 550-555CrossRefGoogle Scholar
  47. Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21: 1-18PubMedCrossRefGoogle Scholar
  48. Cotado-Sampayo M, Segura A, Wuest J, Strasser RJ, Barja F (2001) Interaction of Agrobacterium vitis with grapevine rootstocks. Archs Sci Geneve 54: 223-231Google Scholar
  49. Couturier M, Bex F, Bergquist PL, Maas WK (1988) Identification and classifica-tion of bacterial plasmids. Microbiol Rev 52: 375-395PubMedGoogle Scholar
  50. Creasap JE, Reid CL, Goffinet MC, Aloni R, Ullrich C, Burr TJ (2005) Effect of wound position, auxin and Agrobacterium vitis strain F2/5 on wound healing and crown gall in grapevine. Phytopathology 95: 362-367PubMedCrossRefGoogle Scholar
  51. Cubero J, Martinez MC, Llop P, Lopez MM (1999) A simple and efficient PCR method for the detection of Agrobacterium tumefaciens in plant tumours. J Appl Microbiol 86: 591-602PubMedCrossRefGoogle Scholar
  52. Cubero J, van der Wolf J, van Beckhoven J, Lopez MM (2002) An internal control for the diagnosis of crown gall by PCR. J Microbiol Methods 51: 387-392PubMedCrossRefGoogle Scholar
  53. De Cleene M (1979) Crown gall: economic importance and control. Zbl Bakt II Abt 134: 551-554Google Scholar
  54. De Cleene M (1985) Susceptibility of monocotyledons to Agrobacterium tumefa-ciens. Phytopath Z 113: 81-89CrossRefGoogle Scholar
  55. De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42: 389-466CrossRefGoogle Scholar
  56. De Cleene M, De Ley J (1981) The host range of infectious hairy root. Bot Rev 47: 147-194CrossRefGoogle Scholar
  57. Deng W, Chen L, Wood DW, Metcalfe T, Liang X, Gordon MP, Comai L, Nester EW (1998) Agrobacterium VirD2 protein interacts with plant host cyclophil-ins. Proc Natl Acad Sci USA 95: 7040-7045PubMedCrossRefGoogle Scholar
  58. Dessaux Y, Petit A, Farrand SK, Murphy PJ (1998) Opines and opine-like molecules involved in Plant-Rhizobiaceae interactions. In HP Spaink, A Kondorosi, PJJ Hooykaas, eds, The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria. Kluwer Academic Publisher, Dordrecht-Boston-London, pp 173-197Google Scholar
  59. Dong LC, Sun CW, Thies KL, Luthe DS, Graves CH (1992) Use of polymerase chain reaction to detect pathogenic strains of Agrobacterium. Phytopathology 82: 434-439CrossRefGoogle Scholar
  60. Donner SC, Jones DA, McClure NC, Rosewarne GM, Tate ME, Kerr A, Fajardo NN, Clare BG (1993) Agrocin 434, a new plasmid-encoded agrocin from the biocontrol Agrobacterium strains K84 and K1026, which inhibits biovar 2 agrobacteria. Physiol Mol Plant Pathol 42: 185-194CrossRefGoogle Scholar
  61. Drevet C, Brasileiro AC, Jouanin L (1994) Oncogene arrangement in a shooty strain of Agrobacterium tumefaciens. Plant Mol Biol 25: 83-90PubMedCrossRefGoogle Scholar
  62. Drummond MH, Chilton MD (1978) Tumor-inducing (Ti) plasmids of Agrobacte-rium share extensive regions of DNA homology. J Bacteriol 136: 1178-1183PubMedGoogle Scholar
  63. Eastwell KC, Willis LG, Cavileer TD (1995) A rapid and sensitive method to de-tect Agrobacterium vitis in grapevine cuttings using the polymerase chain re-action. Plant Disease 79: 822-827Google Scholar
  64. Ebinuma H, Matsunaga E, Yamada K, Yamakado M (1997) Transformation of hybrid aspen for resistance to crown gall disease. In USDA Forest Service Gen Tech Rep RM-GTR-297, pp 161-164Google Scholar
  65. Edmont MB, Riddler SA, Baxter CM, Wicklund BM, Pasculle AW (1993) Agro-bacterium radiobacter: a recently recognized opportunistic pathogen. Clin Infect Dis 16: 388-391Google Scholar
  66. Ehemann A (1998) Untersuchung von Interaktionen im Wirt-Parasit System Vitis/Agrobacterium. Dissertation. University Hohenheim, StuttgartGoogle Scholar
  67. Engler G, Holsters M, Van Montagu M, Schell J, Hernalsteens JP, Schilperoort RA (1975) Agrocin 84 sensitivity: a plasmid determined property in Agrobacterium tumefaciens. Mol Gen Genet 138: 345-349PubMedCrossRefGoogle Scholar
  68. Escobar MA, Civerolo EL, Politito VS, Pinney KA, Dandekar AM (2003) Charac-terization of oncogene-silenced transgenic plants: implications for Agrobacte-rium biology and post-transcriptional gene silencing. Mol Plant Pathol 4: 57-65CrossRefPubMedGoogle Scholar
  69. Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA 98: 13437-13442PubMedCrossRefGoogle Scholar
  70. Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8: 380-386PubMedCrossRefGoogle Scholar
  71. Escobar MA, Leslie CA, McGranahan GH, Dandekar AM (2002) Silencing crown gall disease in walnut (Juglans regia L.). Plant Sci 163: 591-597CrossRefGoogle Scholar
  72. Facciotti D, O’Neal JK, Lee S, Shewmaker CK (1985) Light-inducible expression of a chimeric gene in soybean tissue transformed with Agrobacterium. Bio/Technology 3: 241-246CrossRefGoogle Scholar
  73. Farkas E, Haas JH (1985) Biological control of crown gall in rose nursery stock. Phytoparasitica 13: 121-127CrossRefGoogle Scholar
  74. Farrand SK, Qin Y, Oger P (2002) Quorum-sensing system of Agrobacterium plasmids: analysis and utility. Methods Enzymol 358: 452-484PubMedCrossRefGoogle Scholar
  75. Ferreira JHS, van Zyl FGH (1986) Susceptibility of grapevine rootstocks to strains of Agrobacterium tumefaciens biovar 3. South Afr J Enol Vitic 7: 101-104Google Scholar
  76. Fournier P, de Ruffray P, Otten L (1994) Natural instability of Agrobacterium vitis Ti plasmid due to unusual duplication of a 2.3-kb DNA fragment. Mol Plant-Microbe Interact 7: 164-172PubMedGoogle Scholar
  77. Garrett CME (1987) The effect of crown gall on growth of cherry trees. Plant Pathol 36: 339-345CrossRefGoogle Scholar
  78. Gaudin V, Vrain T, Jouanin L (1994) Bacterial genes modifying hormonal bal-ances in plants. Plant Physiol Biochem 32: 11-29Google Scholar
  79. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67: 16-37PubMedCrossRefGoogle Scholar
  80. Goodman RN, Butrov D, Tarbah F (1987) The occurrence of Agrobacterium tumefaciens in grapevine-propagating material and a simplified indexing system. Am J Enol Vitic 38: 189-193Google Scholar
  81. Goodman RN, Grimm R, Frank M (1993) The influence of grape rootstocks on the crown gall infection process and on tumor development. Am J Enol Vitic 44: 22-26Google Scholar
  82. Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling H, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323-2328PubMedCrossRefGoogle Scholar
  83. Grimsley NH, Ramos C, Hein T, Hohn B (1988) Meristematic tissues of maize plants are most susceptible to Agrobacterium with maize streak virus. Bio/Technology 6: 185-189CrossRefGoogle Scholar
  84. Guyon P, Chilton MD, Petit A, Tempé J (1980) Agropine in “null-type” tumors: evidence for the generality of the opine concept. Proc Natl Acad Sci USA 77: 2693-2697PubMedCrossRefGoogle Scholar
  85. Guyon P, Petit A, Tempé J, Dessaux Y (1993) Transformed plants producing opines specifically promote growth of opine-degrading agrobacteria. Mol Plant-Microbe Interact 6: 92-98Google Scholar
  86. Haas JH, Moore LW, Ream W, Manulis S (1995) Universal PCR primers for de-tection of phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61: 2879-2884PubMedGoogle Scholar
  87. Hansen G, Larribe M, Vaubert D, Tempé J, Biermann BJ, Montoya AL, Chilton MD, Brevet J (1991) Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc Natl Acad Sci USA 88: 7763-7767PubMedCrossRefGoogle Scholar
  88. Hao G, Zhang H, Zheng D, Burr TJ (2005) luxR homolog avhR in Agrobacterium vitis affects the development of a grape-specific necrosis and a tobacco hyper-sensitive response. J Bacteriol 187: 185-192PubMedCrossRefGoogle Scholar
  89. Hayes RJ, MacDonald H, Coutts RHA, Buck KW (1988) Agroinfection of Triti-cum aestivum with cloned DNA of wheat dwarf virus. J Gen Virol 69: 891-896CrossRefGoogle Scholar
  90. Heil M (1993) Untersuchungen zur Resistenz von Vitis gegen Agrobacterium tumefaciens. Dissertation. University Hohenheim, StuttgartGoogle Scholar
  91. Herlache TC, Triplett EW (2002) Expression of a crown gall biological control phenotype in an avirulent strain of Agrobacterium vitis by addition of the tri-folitoxin production and resistance genes. BMC Biotechnol 2: 2PubMedCrossRefGoogle Scholar
  92. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271-282PubMedCrossRefGoogle Scholar
  93. Holden M, Krastanova S, Xue B, Pang S, Sekiya M, Momol EA, Gonzalves D, Burr TJ (2003) Genetic engineering of grape for resistance to crown gall. Acta Hort 603: 481-484Google Scholar
  94. Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168: 1291-1301PubMedGoogle Scholar
  95. Hooykaas PJ, den Dulk-Ras H, Ooms G, Schilperoort RA (1980) Interactions be-tween octopine and nopaline plasmids in Agrobacterium tumefaciens. J Bacte-riol 143: 1295-1306Google Scholar
  96. Hooykaas-Van Slogteren GMS, Hooykaas PJJ, Schilperoort RA (1984) Expres-sion of Ti plasmid genes in monocotyledonous plants infected with Agrobac-terium tumefaciens. Nature 311: 763-764CrossRefGoogle Scholar
  97. Huffman GA, White FF, Gordon MP, Nester EW (1984) Hairy-root-inducing plasmid: physical map and homology to tumor-inducing plasmids. J Bacteriol 157: 269-276PubMedGoogle Scholar
  98. Hulse M, Johnson S, Ferrieri P (1993) Agrobacterium infections in humans: experience at one hospital and review. Clin Infect Dis 16: 112-117PubMedGoogle Scholar
  99. Hwang HH, Gelvin SB (2004) Plant proteins that interact with VirB2, the Agro-bacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16: 3148-3167PubMedCrossRefGoogle Scholar
  100. Irelan NA, Meredith CP (1996) Genetic analysis of Agrobacterium tumefaciens and A. vitis using randomly amplified polymorphic DNA. Amer J Enol Vitic 47: 145-151Google Scholar
  101. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefa-ciens. Nat Biotechnol 14: 745-750PubMedCrossRefGoogle Scholar
  102. Jäger J, Lorenz D, Plapp R, Eichhorn KW (1990) Untersuchungen zum latenten Vorkommen von Agrobacterium tumefaciens Biovar 3 in der Weinrebe (Vitis vinifera L.). Die Weinwissenschaft 45: 14-20Google Scholar
  103. Jones DA, Kerr A (1989) Agrobacterium radiobacter strain K1026, a genetically engineered derivative of strain K84, for biological control of crown gall. Plant Disease 73: 15-18CrossRefGoogle Scholar
  104. Jones DA, Ryder MH, Clare BG, Farrand SK, Kerr A (1988) Construction of a Tra- deletion mutant of pAgK84 to safeguard the biological control of crown gall. Mol Gen Genet 212: 207-214CrossRefGoogle Scholar
  105. Jones DA, Ryder MH, Clare BG, Farrand SK, Kerr A (1991) Biological control of crown gall using Agrobacterium strains K84 and K1026. In H Komada, K Kiritani, J Bay-Petersen, eds, The Biological Control of Plant Diseases, FTC Book Series no 42, Vol 42. Food and Fertilizer Technology Center for the Asian and Pacific Region, Taipei, Taiwan, pp 161-170Google Scholar
  106. Jones JB, Raju BC (1988) Systemic movement of A. tumefaciens in symptomless stem tissue of Chrysanthemum morifolium. Plant Disease 72: 51-54CrossRefGoogle Scholar
  107. Kado CI (1998) Origin and evolution of plasmids. Antonie Van Leeuwenhoek 73: 117-126PubMedCrossRefGoogle Scholar
  108. Karimi M, van Montagu M, Gheysen G (2000) Nematodes as vectors to introduce Agrobacterium into plant roots. Mol Plant Pathol 1: 383-387CrossRefPubMedGoogle Scholar
  109. Kauffmann M, Kassemeyer HH, Otten L (1996) Isolation of Agrobacterium vitis from grapevine propagating material by means of PCR after immunocapture cultivation. Vitis 35: 151-153Google Scholar
  110. Kerr A (1972) Biological control of crown gall: seed inoculation. J Appl Bacteriol 35: 493-497Google Scholar
  111. Kerr A (1980) Biological control of crown gall through production of agrocin 84. Plant Disease 64: 25-30Google Scholar
  112. Kerr A, Panagopoulos CG (1977) Biotypes of Agrobacterium radiobacter var. tumefaciens and their biological control. Phytopath Z 90: 172-179CrossRefGoogle Scholar
  113. Kerr A, Roberts WP (1976) Agrobacterium: correlations between and transfer of pathogenicity, octopine and nopaline metabolism and bacteriocin 84 sensitiv-ity. Physiol Plant Pathol 9: 205-211CrossRefGoogle Scholar
  114. Kersters K, De Ley J (1984) Genus III. Agrobacterium Conn. In NR Krieg, JG Holt, eds, Bergey’s Manual of Systematic Bacteriology, Vol 1, Vol 1. Williams and Wilkins Co., Baltimore-London, pp 244-254Google Scholar
  115. Khmel IA, Sorokina TA, Lemanova LB, Lipasova VA, Metlitsky OZ, Burdeynaya TV, Chernin LS (1998) Biological control of crown gall in grapevine and raspberry by two Pseudomonas spp. with a wide spectrum of antagonistic ac-tivity. Biocontr Sci Technol 8: 45-57CrossRefGoogle Scholar
  116. Knauf VC, Panagopoulos CG, Nester EW (1982) Genetic factors controlling the host range of Agrobacterium tumefaciens. Phytopathology 72: 1545-1549CrossRefGoogle Scholar
  117. Knauf VC, Panagopoulos CG, Nester EW (1983) Comparison of Ti plasmids from three different biotypes of Agrobacterium tumefaciens isolated from grape-vines. J Bacteriol 153: 1535-1542PubMedGoogle Scholar
  118. Krimi Z, Petit A, Mougel C, Dessaux Y, Nesme X (2002) Seasonal fluctuations and long-term persistence of pathogenic populations of Agrobacterium spp. in soils. Appl Environ Microbiol 68: 3358-3365PubMedCrossRefGoogle Scholar
  119. Landron C, Le Moal G, Roblot F, Grignon B, Bonnin A, Becq-Giraudon B (2002) Central venous catheter-related infection due to Agrobacterium radiobacter: a report of 2 cases. Scand J Infect Dis 34: 693-694PubMedCrossRefGoogle Scholar
  120. Lee H, Humann JL, Pitrak JS, Cuperus JT, Parks TD, Whistler CA, Mok MC, Ream LW (2003) Translation start sequences affect the efficiency of silencing of Agrobacterium tumefaciens T-DNA oncogenes. Plant Physiol 133: 966-977PubMedCrossRefGoogle Scholar
  121. Lehoczky J (1968) Spread of Agrobacterium tumefaciens in the vessels of the grapevine, after natural infection. Phytopath Z 63: 239-246CrossRefGoogle Scholar
  122. Lehoczky J (1971) Further evidences concerning the systemic spreading of Agro-bacterium tumefaciens in the vascular system of grapevines. Vitis 10: 215-221Google Scholar
  123. Lehoczky J (1978) Root-system of the grapevine as a reservoir of Agrobacterium tumefaciens cells. In Proc 4th Internat Conf Plant Path Bact, Angers, France, pp 239-243Google Scholar
  124. Levesque H, Delepelaire P, Rouzé P, Slightom J, Tepfer D (1988) Common evo-lutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Plant Mol Biol 11: 731-744CrossRefGoogle Scholar
  125. Llop P, Caruso P, Cubero J, Morente C, Lopez MM (1999) A simple extraction procedure for efficient routine detection of pathogenic bacteria in plant mate-rial by polymerase chain reaction. J Microbiol Methods 37: 23-31PubMedCrossRefGoogle Scholar
  126. Llop P, Lastra B, Marsal H, Murillo J, Lopez MM (2003) Tracking Agrobacterium strains by a RAPD system to identify single colonies from plant tumors. Eur J Plant Pathol 109: 381-389CrossRefGoogle Scholar
  127. Louws F, Rademaker J, de Bruijn F (1999) The three ds of PCR-based genomic analysis of phytobacteria: diversity, detection, and disease diagnosis. Annu Rev Phytopathol 37: 81-125PubMedCrossRefGoogle Scholar
  128. Macrae S, Thomson JA, van Staden J (1988) Colonization of tomato plants by two agrocin-producing strains of Agrobacterium tumefaciens. Appl Environm Microbiol 54: 3133-3137Google Scholar
  129. Mahmoodzadeh H, Nazemieh A, Majidi I, Paygami I, Khalighi A (2003) Effects of thermotherapy treatments on systemic Agrobacterium vitis in dormant grape cuttings. J Phytopathol 151: 481-484CrossRefGoogle Scholar
  130. Mahmoodzadeh H, Nazemieh A, Majidi I, Paygami I, Khalighi A (2004) Evalua-tion of crown gall resistance in Vitis vinifera and hybrids of Vitis spp. Vitis 43: 75-79Google Scholar
  131. Manfredi R, Nanetti A, Ferri M, Mastroianni A, Coronado OV, Chiodo F (1999) Emerging gram-negative pathogens in the immunocompromised host: Agro-bacterium radiobacter septicemia during HIV disease. New Microbiol 22: 375-382PubMedGoogle Scholar
  132. Mansouri H, Petit A, Oger P, Dessaux Y (2002) Engineered rhizosphere: the tro-phic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl Environ Microbiol 68: 2562-2566PubMedCrossRefGoogle Scholar
  133. Marti R, Cubero J, Daza A, Piquer J, Salcedo CI, Morente C, Lopez MM (1999) Evidence of migration and endophytic presence of Agrobacterium tumefa-ciens in rose plants. Eur J Plant Pathol 105: 39-50CrossRefGoogle Scholar
  134. McClure NC, Ahmadi AR, Clare BG (1998) Construction of a range of derivatives of the biological control strain Agrobacterium rhizogenes K84: a study of fac-tors involved in biological control of crown gall disease. Appl Environ Microbiol 64: 3977-3982PubMedGoogle Scholar
  135. McKenna JR, Epstein L (2003) Susceptibility of Juglans species and interspecific hybrids to Agrobacterium tumefaciens. Hortscience 38: 435-439Google Scholar
  136. Messens E, Lenaerts A, van Montagu M, Hedges RW (1985) Genetic basis for opine secretion from crown gall tumor cells. Mol Gen Genet 199: 344-348CrossRefGoogle Scholar
  137. Michel MF, Brasileiro ACM, Depierreux C, Otten L, Delmotte F, Jouanin L (1990) Identification of different Agrobacterium strains isolated from the same forest nursery. Appl Environm Microbiol 56: 3537-3545Google Scholar
  138. Miller HN (1975) Leaf, stem, crown, and root galls induced in Chrysanthemum by Agrobacterium tumefaciens. Phytopathology 65: 805-811CrossRefGoogle Scholar
  139. Mohammadi M, Fatehi-Paykani R (1999) Phenotypical characterization of Iranian isolates of Agrobacterium vitis, the causal agent of crown gall disease of grapevine. Vitis 38: 115-121Google Scholar
  140. Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Défago G (2003) Degradation of pathogen quorum sensing molecules by soil bacteria: a pre-ventive and curative biological control mechanism. FEMS Microbiol Ecol 45: 71-81PubMedCrossRefGoogle Scholar
  141. Momol EA, Burr TJ, Reid CL, Momol MT, Otten L (1998) Genetic diversity of Agrobacterium vitis as determined by DNA fingerprints of the 5’ end of the 23S rRNA gene and Random Amplified Polymorphic DNA. J Appl Microbiol 85: 685-692CrossRefGoogle Scholar
  142. Moore LW (1977) Prevention of crown gall on Prunus roots by bacterial antago-nists. Phytopathology 67: 139-144CrossRefGoogle Scholar
  143. Moore LW, Bouzar H, Burr TJ (2001) Agrobacterium. In NW Schaad, JB Jones, W Chun, eds, Laboratory Guide for Identification of Plant Pathogenic Bacte-ria. American Phytopathological Society Press, St. Paul, Minnesota, pp 17-33Google Scholar
  144. Moore LW, Cooksey DA (1981) Biology of Agrobacterium tumefaciens: plant in-teractions. Internat Rev Cytol suppl 13: 15-46Google Scholar
  145. Moore LW, Warren G (1979) Agrobacterium radiobacter strain K84 and biologi-cal control of crown gall. Annu Rev Phytopathol 17: 163-179CrossRefGoogle Scholar
  146. Moriguchi K, Maeda Y, Satou M, Hardayani NS, Kataoka M, Tanaka N, Yoshida K (2001) The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J Mol Biol 307: 771-784PubMedCrossRefGoogle Scholar
  147. Mougel C, Cournoyer B, Nesme X (2001) Novel tellurite-amended media and specific chromosomal and Ti plasmid probes for direct analysis of soil popula-tions of Agrobacterium biovars 1 and 2. Appl Environ Microbiol 67: 65-74PubMedCrossRefGoogle Scholar
  148. Nair GR, Liu Z, Binns AN (2003) Re-examining the role of the cryptic plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58. Plant Physiol 133: 989-999PubMedCrossRefGoogle Scholar
  149. Nam J, Mysore KS, Zheng C, Knue MK, Matthysse AG, Gelvin SB (1999) Identi-fication of T-DNA tagged Arabidopsis mutants that are resistant to transfor-mation by Agrobacterium. Mol Gen Genet 261: 429-438PubMedCrossRefGoogle Scholar
  150. Nesme X, Michel MF, Digat B (1987) Population heterogeneity of Agrobacterium tumefaciens in galls of Populus L. from a single nursery. Appl Environ Microbiol 53: 655-659PubMedGoogle Scholar
  151. Nesme X, Ponsonnet C, Picard C, Normand P (1992) Chromosomal and pTi geno-types of Agrobacterium strains isolated from Populus tumors in two nurseries. FEMS Microbiol Ecol 101: 189-196CrossRefGoogle Scholar
  152. Novak C, Hevesi M, Keck M, Szegedi E (1998) Susceptibility of vegetable crops to Agrobacterium vitis Ophel and Kerr. Acta Phytopathol Entomol Hung 33: 43-47Google Scholar
  153. Ogawa Y, Ishikawa K, Mii M (2000) Highly tumorigenic Agrobacterium tumefa-ciens strain from crown gall tumors of chrysanthemum. Arch Microbiol 173: 311-315PubMedCrossRefGoogle Scholar
  154. Oger P, Mansouri H, Dessaux Y (2000) Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Mol Ecol 9: 881-890PubMedCrossRefGoogle Scholar
  155. Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15: 369-372PubMedCrossRefGoogle Scholar
  156. Ophel K, Burr TJ, Magarey PA, Kerr A (1988) Detection of Agrobacterium tume-faciens biovar 3 in South Australian grapevine propagation material. Austral-asian Plant Pathol 17: 61-66CrossRefGoogle Scholar
  157. Ophel K, Kerr A (1990) Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. Internat J Syst Bacteriol 40: 236-241CrossRefGoogle Scholar
  158. Ophel K, Nicholas PR, Magarey PA, Bass AW (1990) Hot water treatment of dormant grape cuttings reduces crown gall incidence in a field nursery. Am J Enol Vitic 41: 325-329Google Scholar
  159. Otten L, Canaday J, Gérard JC, Fournier P, Crouzet P, Paulus F (1992) Evolution of agrobacteria and their Ti plasmids-a review. Mol Plant-Microbe Interact 5: 279-287PubMedGoogle Scholar
  160. Otten L, Crouzet P, Salomone JY, De Ruffray P, Szegedi E (1995) Agrobacterium vitis strain AB3 harbors two independent tartrate utilization systems, one of which is encoded by the Ti plasmid. Mol Plant-Microbe Interact 8: 138-146Google Scholar
  161. Otten L, De Ruffray P (1994) Agrobacterium vitis nopaline Ti plasmid pTiAB4: relationship to other Ti plasmids and T-DNA structure. Mol Gen Genet 245: 493-505PubMedCrossRefGoogle Scholar
  162. Otten L, De Ruffray P, Momol EA, Momol MT, Burr TJ (1996) Phylogenetic re-lationships between Agrobacterium vitis isolates and their Ti plasmids. Mol Plant-Microbe Interact 9: 782-786Google Scholar
  163. Otten L, Salomone JY, Helfer A, Schmidt J, Hammann P, De Ruffray P (1999) Sequence and functional analysis of the left-hand part of the T-region from the nopaline-type Ti plasmid, pTiC58. Plant Mol Biol 41: 765-776PubMedCrossRefGoogle Scholar
  164. Otten L, Schmidt J (1998) A T-DNA from the Agrobacterium tumefaciens lim-ited-host-range strain AB2/73 contains a single oncogene. Mol Plant-Microbe Interact 11: 335-342PubMedCrossRefGoogle Scholar
  165. Otten L, van Nuenen M (1993) Natural instability of octopine/cucumopine Ti plasmids of clonal origin. Microb Releases 2: 91-96Google Scholar
  166. Panagopoulos CG, Psallidas PG, Alivizatos AS (1978) Studies on biotype 3 of Agrobacterium radiobacter var. tumefaciens. In Proc 4th Internat Conf Plant Path Bact, Angers, France, pp 221-228Google Scholar
  167. Panagopoulos CG, Psallidas PG, Alivizatos AS (1979) Evidence of a breakdown in the effectiveness of biological control of crown gall. In B Schippers, W Gams, eds, Soil-Borne Plant Pathogens. Academic Press, London, pp 569-578Google Scholar
  168. Paulus F, Huss B, Bonnard G, Ridé M, Szegedi E, Tempé J, Petit A, Otten L (1989) Molecular systematics of biotype III Ti plasmids of Agrobacterium tumefaciens. Mol Plant-Microbe Interact 2: 64-74Google Scholar
  169. Peluso R, Raio A, Morra F, Zoina A (2003) Physiological, biochemical and mo-lecular analyses of an Italian collection of Agrobacterium tumefaciens strains. Eur J Plant Pathol 109: 291-300CrossRefGoogle Scholar
  170. Penyalver R, Lopez MM (1999) Cocolonization of the rhizosphere by pathogenic agrobacterium strains and nonpathogenic strains K84 and K1026, used for crown gall biocontrol. Appl Environ Microbiol 65: 1936-1940PubMedGoogle Scholar
  171. Penyalver R, Oger P, Lopez MM, Farrand SK (2001) Iron-binding compounds from Agrobacterium spp.: biological control strain Agrobacterium rhizogenes K84 produces a hydroxamate siderophore. Appl Environ Microbiol 67: 654-664PubMedCrossRefGoogle Scholar
  172. Petersen SG, Stummann BM, Olesen P, Henningsen KW (1989) Structure and function of root-inducing (Ri) plasmids and their relation to tumor-inducing (Ti) plasmids. Physiol Plant 77: 427-435CrossRefGoogle Scholar
  173. Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempé J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190: 204-214CrossRefGoogle Scholar
  174. Pierronnet A, Salesses G (1996) Behaviour of Prunus cultivars and hybrids towards Agrobacterium tumefaciens estimated from hardwood cuttings. Agronomie 16: 247-256CrossRefGoogle Scholar
  175. Pionnat S, Keller H, Hericher D, Bettachini A, Dessaux Y, Nesme X, Poncet C (1999) Ti plasmids from Agrobacterium characterize rootstock clones that ini-tiated a spread of crown gall disease in Mediterranean countries. Appl Envi-ron Microbiol 65: 4197-4206Google Scholar
  176. Ponsonnet C, Nesme X (1994) Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch Microbiol 161: 300-309PubMedGoogle Scholar
  177. Porter JR (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10: 387-421CrossRefGoogle Scholar
  178. Prima-Putra D, Botton B (1998) Organic and inorganic compounds of xylem exu-dates from five woody plants at the stage of bud breaking. J Plant Physiol 153: 670-676Google Scholar
  179. Pu XA, Goodman RN (1993a) Attachment of agrobacteria to grape cells. Appl Environ Microbiol 59: 2572-2577PubMedGoogle Scholar
  180. Pu XA, Goodman RN (1993b) Effects of fumigation and biological control on in-fection of indexed crown gall free grape plants. Am J Enol Vitic 44: 241-248Google Scholar
  181. Pu XA, Goodman RN (1993c) Tumor formation by Agrobacterium tumefaciens is suppressed by Agrobacterium radiobacter HLB-2 on grape plants. Am J Enol Vitic 44: 249-254Google Scholar
  182. Pulawska J, Malinowski T, Sobiczewski P (1998) Diversity of plasmids of Agro-bacterium tumefaciens isolated from fruit trees in Poland. J Phytopathol 146: 465-468CrossRefGoogle Scholar
  183. Pulawska J, Sobiczewski P (2005) Development of a semi-nested PCR based method for sensitive detection of tumorigenic Agrobacterium in soil. J Appl Microbiol 98: 710-721PubMedCrossRefGoogle Scholar
  184. Raineri DM, Bottino P, Gordon MP, Nester EW (1990) Agrobacterium-mediated transformation of rice (Oryza sativa L.). Bio/Technology 8: 33-38CrossRefGoogle Scholar
  185. Raio A, Peluso R, Nesme X, Zoina A (2004) Chromosomal and plasmid diversity of Agrobacterium strains isolated from Ficus benjamina tumors. Eur J Plant Pathol 110: 163-174CrossRefGoogle Scholar
  186. Reynders-Aloisi S, Pelloli G, Bettachini A, Poncet C (1998) Tolerance to crown gall differs among genotypes of rose rootstocks. Hortscience 33: 296-297Google Scholar
  187. Ridé M, Ridé S, Petit A, Bollet C, Dessaux Y, Gardan L (2000) Characterization of plasmid-borne and chromosome-encoded traits of Agrobacterium biovar 1, 2, and 3 strains from France. Appl Environ Microbiol 66: 1818-1825PubMedCrossRefGoogle Scholar
  188. Rinallo C, Mittempergher L, Frugis G, Mariotti D (1999) Clonal propagation in the genus Ulmus: improvement of rooting ability by Agrobacterium rhizogenes T-DNA genes. J Hortic Sci Biotechnol 74: 502-506Google Scholar
  189. Robinette D, Matthysse AG (1990) Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elic-ited by Pseudomonas syringae pv. phaseolicola. J Bacteriol 172: 5742-5749PubMedGoogle Scholar
  190. Rossignol G, Dion P (1985) Octopine, nopaline and octopinic acid utilization in Pseudomonas. Can J Microbiol 31: 68-74Google Scholar
  191. Rubio-Cabetas MJ, Minot JC, Voisin M, Esmenjaud D (2001) Interaction of root-knot nematodes (RKN) and the bacterium Agrobacterium tumefaciens in roots of Prunus cerasifera: evidence of the protective effect of the Ma RKN resis-tance genes against expression of crown gall symptoms. Eur J Plant Pathol 107: 433-441CrossRefGoogle Scholar
  192. Salomone JY, Crouzet P, De Ruffray P, Otten L (1996) Characterization and dis-tribution of tartrate utilization genes in the grapevine pathogen Agrobacterium vitis. Mol Plant-Microbe Interact 9: 401-408PubMedGoogle Scholar
  193. Salomone JY, Szegedi E, Cobanov P, Otten L (1998) Tartrate utilization genes promote growth of Agrobacterium spp. on grapevine. Mol Plant-Microbe Interact 11: 836-838CrossRefGoogle Scholar
  194. Savka MA, Black RC, Binns AN, Farrand SK (1996) Translocation and exudation of tumor metabolites in crown galled plants. Mol Plant-Microbe Interact 9: 310-313PubMedGoogle Scholar
  195. Savka MA, Farrand SK (1997) Modification of rhizobacterial populations by en-gineering bacterium utilization of a novel plant-produced resource. Nat Bio-technol 15: 363-368CrossRefGoogle Scholar
  196. Sawada H, Ieki H, Matsuda I (1995) PCR detection of Ti and Ri plasmids from phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61: 828-831PubMedGoogle Scholar
  197. Schroth MN, McCain AH, Foott JH, Huisman OC (1988) Reduction in yield and vigor of grapevine caused by crown gall disease. Plant Disease 72: 241-246CrossRefGoogle Scholar
  198. Schulz TF, Lorenz D, Eichhorn KW, Otten L (1993) Amplification of different marker sequences for identification of Agrobacterium vitis strains. Vitis 32: 179-182Google Scholar
  199. Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261: 108-121PubMedGoogle Scholar
  200. Slota JE, Farrand SK (1982) Genetic isolation and physical characterization of pAgK84, the plasmid responsible for agrocin 84 production. Plasmid 8: 175-186PubMedCrossRefGoogle Scholar
  201. Smith RH, Hood EE (1995) Agrobacterium tumefaciens transformation of mono-cotyledons. Crop Sci 35: 301-309CrossRefGoogle Scholar
  202. Stockwell VO, Moore LW, Loper JE (1993) Fate of Agrobacterium radiobacter K84 in the environment. Appl Environ Microbiol 59: 2112-2120PubMedGoogle Scholar
  203. Stover E, Walsh C (1998) Crown gall in apple rootstocks: inoculation above and below soil and relationship to root mass proliferation. Hortscience 33: 92-95Google Scholar
  204. Stover EW, Swartz HJ, Burr TJ (1997a) Endophytic Agrobacterium in crown gall-resistant and susceptible Vitis genotypes. Vitis 36: 21-26Google Scholar
  205. Stover EW, Swartz HJ, Burr TJ (1997b) Crown gall formation in a diverse collec-tion of Vitis genotypes inoculated with Agrobacterium vitis. Am J Enol Vitic 48: 26-32Google Scholar
  206. Strobel GA, Nachmias A (1985) Agrobacterium rhizogenes promotes the initial growth of bare root stock almond. J Gen Microbiol 131: 1245-1249Google Scholar
  207. Strobel GA, Nachmias A, Hess WM (1988) Improvements in the growth and yield of olive trees by transformation with the Ri plasmid of Agrobacterium rhizogenes. Can J Bot 66: 2581-2585CrossRefGoogle Scholar
  208. Süle S (1978) Biotypes of Agrobacterium tumefaciens in Hungary. J Appl Bacte-riol 44: 207-213Google Scholar
  209. Süle S (1986) Survival of Agrobacterium tumefaciens in Berlandieri x Riparia grapevine rootstock. Acta Phytopathol Entomol Hung 21: 203-206Google Scholar
  210. Süle S, Burr TJ (1998) The effect of resistance of rootstocks to crown gall (Agro-bacterium spp.) on the susceptibility of scions in grapevine cultivars. Plant Pathol 47: 84-88CrossRefGoogle Scholar
  211. Süle S, Kado CI (1980) Agrocin resistance in virulent derivatives of Agrobacte-rium tumefaciens harboring the pTi plasmid. Physiol Plant Pathol 17: 347-356Google Scholar
  212. Süle S, Lehoczky J, Jenser G, Nagy P, Burr TJ (1995) Infection of grapevine roots by Agrobacterium vitis and Meloidogyne hapla. J Phytopathol 143: 169-171CrossRefGoogle Scholar
  213. Süle S, Mozsar J, Burr TJ (1994) Crown gall resistance of Vitis spp. and grapevine rootstocks. Phytopathology 84: 607-611CrossRefGoogle Scholar
  214. Suzuki K, Hattori Y, Uraji M, Ohta N, Iwata K, Murata K, Kato A, Yoshida K (2000) Complete nucleotide sequence of a plant tumor-inducing Ti plasmid. Gene 242: 331-336PubMedCrossRefGoogle Scholar
  215. Suzuki K, Tanaka N, Kamada H, Yamashita I (2001) Mikimopine synthase (mis) gene on pRi1724. Gene 263: 49-58PubMedCrossRefGoogle Scholar
  216. Szegedi E (2003) Opines in naturally infected grapevine crown gall tumors. Vitis 42: 39-41Google Scholar
  217. Szegedi E, Bottka S (2002) Detection of Agrobacterium vitis by polymerase chain reaction in grapevine bleeding sap after isolation on a semiselective medium. Vitis 41: 37-42Google Scholar
  218. Szegedi E, Bottka S, Mikulas J, Otten L, Süle S (2005) Characterization of Agro-bacterium tumefaciens strains isolated from grapevine. Vitis 44: 49-54Google Scholar
  219. Szegedi E, Czakó M, Otten L (1996) Further evidence that the vitopine-type pTi’s of Agrobacterium vitis represent a novel group of Ti plasmids. Mol Plant-Microbe Interact 9: 139-143Google Scholar
  220. Szegedi E, Czakó M, Otten L, Koncz C (1988) Opines in crown gall tumors in-duced by biotype 3 isolates of Agrobacterium tumefaciens. Physiol Mol Plant Pathol 32: 237-247CrossRefGoogle Scholar
  221. Szegedi E, Dula T (2005) Detection of Agrobacterium infection in grapevine graftings (in Hungarian with English abstract). Növényvédelem (in press)Google Scholar
  222. Szegedi E, Korbuly J, Koleda I (1984) Crown gall resistance in East-Asian Vitis species and in their V. vinifera hybrids. Vitis 23: 21-26Google Scholar
  223. Szegedi E, Korbuly J, Otten L (1989) Types of resistance of grapevine varieties to isolates of Agrobacterium tumefaciens biotype 3. Physiol Mol Plant Pathol 35: 35-43CrossRefGoogle Scholar
  224. Szegedi E, Kozma P (1984) Studies on the inheritance of resistance to crown gall disease of grapevine. Vitis 23: 121-126Google Scholar
  225. Szegedi E, Oberschall A, Bottka S, Oláh R, Tinland B (2001) Transformation of tobacco plants with virE1 gene derived from Agrobacterium tumefaciens pTiA6 and its effect on crown gall tumor formation. Int J Hortic Sci 7: 54-57Google Scholar
  226. Szegedi E, Otten L (1998) Incompatibility properties of tartrate utilization plas-mids derived from Agrobacterium vitis strains. Plasmid 39: 35-40PubMedCrossRefGoogle Scholar
  227. Szegedi E, Süle S, Burr TJ (1999) Agrobacterium vitis strain F2/5 contains tartrate and octopine utilization plasmids which do not encode functions for tumor in-hibition on grapevine. J Phytopath 17: 665-669CrossRefGoogle Scholar
  228. Tarbah FA, Goodman RN (1986) Rapid detection of Agrobacterium tumefaciens in grapevine propagating material and the basis for an efficient indexing sys-tem. Plant Disease 70: 566-568CrossRefGoogle Scholar
  229. Tarbah FA, Goodman RN (1987) Systemic spread of Agrobacterium tumefaciens biovar 3 in the vascular system of grapes. Phytopathology 77: 915-920CrossRefGoogle Scholar
  230. Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79: 140-146CrossRefGoogle Scholar
  231. Thies KL, Graves CH (1992) Meristem micropropagation protocols for Vitis rotundifolia Michx. Hortscience 27: 447-449Google Scholar
  232. Thies KL, Griffin DE, Graves CH, Hedgewood CP (1991) Characterization of Agrobacterium isolates from muscadine grape. Plant Disease 75: 634-637Google Scholar
  233. Thomas P, Schiefelbein JW (2001) Combined in vitro and in vivo propagation for rapid multiplication of grapevine cv. Arka Neelamani. Hortscience 36: 1107-1110Google Scholar
  234. Thomas P, Schiefelbein JW (2004) Roles of leaf in regulation of root and shoot growth from a single node softwood cuttings of grape (Vitis vinifera). Ann Appl Biol 144: 27-23CrossRefGoogle Scholar
  235. Thomashow MF, Knauf VC, Nester EW (1981) Relationship between the limited and wide host range octopine-type Ti plasmids of Agrobacterium tumefaciens. J Bacteriol 146: 484-493PubMedGoogle Scholar
  236. Thomashow MF, Panagopoulos CG, Gordon MP, Nester EW (1980) Host range of Agrobacterium tumefaciens is determined by the Ti plasmid. Nature 283: 794-796CrossRefGoogle Scholar
  237. Thomson J (1986) The potential for biological control of crown gall disease on grapevines. Trends Biotechnol 4: 219-224CrossRefGoogle Scholar
  238. Tipton PA, Beecher BS (1994) Tartrate dehydrogenase, a new member of the fam-ily of metal-dependent decarboxylating R-hydroxyacid dehydrogenases. Arch Biochem Biophys 313: 15-21PubMedCrossRefGoogle Scholar
  239. Tremblay G, Gagliardo R, Chilton WS, Dion P (1987a) Diversity among opine-utilizing bacteria: identification of coryneform isolates. Appl Environ Micro-biol 53: 1519-1524Google Scholar
  240. Tremblay G, Lambert R, Lebeuf H, Dion P (1987b) Isolation of bacteria from soil and crown-gall tumors on the basis of their capacity for opine utilization. Phy-toprotection 68: 35-42Google Scholar
  241. Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12: 121-129PubMedCrossRefGoogle Scholar
  242. Tzfira T, Li J, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20: 375-383PubMedCrossRefGoogle Scholar
  243. Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an Arabidopsis protein that inter-acts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20: 3596-3607PubMedCrossRefGoogle Scholar
  244. Unger L, Ziegler SF, Huffman GA, Knauf VC, Peet R, Moore LW, Gordon MP, Nester EW (1985) New class of limited-host-range Agrobacterium mega-tumor-inducing plasmids lacking homology to the transferred DNA of a wide-host-range, tumor-inducing plasmid. J Bacteriol 164: 723-730PubMedGoogle Scholar
  245. Van Larebeke N, Genetello C, Schell J, Schilperoort RA, Hermans AK, Van Montagu M, Hernalsteens JP (1975) Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature 255: 742-743PubMedCrossRefGoogle Scholar
  246. Vanderleyden J, Desair J, De Meirsman C, Michiels K, Van Gool AP, Chilton M-D, Jen GC (1986) Nucleotide sequence of an insertion sequence (IS) ele-ment identified in the T-DNA region of a spontaneous variant of the Ti-plasmid pTiT37. Nucleic Acids Res 14: 6699-6709PubMedCrossRefGoogle Scholar
  247. Vaudequin-Dransart V, Petit A, Poncet C, Ponsonnet C, Nesme X, Jones JB, Bouzar H, Chilton WS, Dessaux Y (1995) Novel Ti plasmids in Agrobacte-rium strains isolated from fig tree and chrysanthemum tumors and their opine-like molecules. Mol Plant-Microbe Interact 8: 311-321PubMedGoogle Scholar
  248. Veena, Jiang H, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir pro-teins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35: 219-236PubMedCrossRefGoogle Scholar
  249. Vicedo B, Lopez MJ, Asins MJ, Lopez MM (1996) Spontaneous transfer of the Ti plasmid of Agrobacterium tumefaciens and the nopaline catabolism plasmid of A. radiobacter strain K84 in crown gall tissue. Phytopathology 86: 528-534CrossRefGoogle Scholar
  250. Viss WJ, Pitrak J, Humann J, Cook M, Driver J, Ream W (2003) Crown-gall-resistant transgenic apple trees that silence Agrobacterium tumefaciens onco-genes. Mol Breed 12: 283-295CrossRefGoogle Scholar
  251. von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41: 455-482CrossRefGoogle Scholar
  252. Vrain TC, Copeman RJ (1987) Interactions between Agrobacterium tumefaciens and Pratylenchus penetrans in the roots of two red raspberry cultivars. Can J Plant Pathol 9: 236-240Google Scholar
  253. Wabiko H, Kagaya M, Sano H (1991) Polymorphism of Nopaline-type T-DNAs from Agrobacterium tumefaciens. Plasmid 25: 3-15PubMedCrossRefGoogle Scholar
  254. Wample RL (1993) Influence of pre- and post-treatment storage on budbreak of hot water treated Cabernet Sauvignon. Am J Enol Vitic 44: 153-158Google Scholar
  255. Wang HM, Wang HX, Ng TB, Li JY (2003) Purification and characterization of an antibacterial compound produced by Agrobacterium vitis strain E26 with activity against A. tumefaciens. Plant Pathol 52: 134-139CrossRefGoogle Scholar
  256. Watson B, Currier TC, Gordon MP, Chilton MD, Nester EW (1975) Plasmid re-quired for virulence of Agrobacterium tumefaciens. J Bacteriol 123: 255-264PubMedGoogle Scholar
  257. Webster J, Dos Santos M, Thomson JA (1986) Agrocin-producing Agrobacterium tumefaciens strain active against grapevine isolates. Appl Environ Microbiol 52: 217-219PubMedGoogle Scholar
  258. Webster J, Thomson J (1988) Genetic analysis of an Agrobacterium tumefaciens strain producing an agrocin active against biotype 3 pathogens. Mol Gen Genet 214: 142-147CrossRefGoogle Scholar
  259. White FF, Nester EW (1980) Relationship of plasmids responsible for hairy root and crown gall tumorigenicity. J Bacteriol 144: 710-720PubMedGoogle Scholar
  260. Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67: 5849-5854PubMedCrossRefGoogle Scholar
  261. Willmitzer L, Dhaese P, Schreier PH, Schmalenbach W, Van Montagu M, Schell J (1983) Size, location and polarity of T-DNA-encoded transcripts in nopaline crown gall tumors; common transcripts in octopine and nopaline tumors. Cell 32: 1045-1056PubMedCrossRefGoogle Scholar
  262. Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida Jr. NF, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee Sr. D, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri P, Raymond C, Rouse R, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 2317-2323PubMedCrossRefGoogle Scholar
  263. Xu X, Pan SQ (2000) An Agrobacterium catalase is a virulence factor involved in tumorigenesis. Mol Microbiol 35: 407-414PubMedCrossRefGoogle Scholar
  264. Xue B, Ling KS, Reid CL, Krastanova S, Sekiya M, Momol EA, Süle S, Mozsar J, Gonsalves D, Burr TJ (1999) Transformation of five grapevine rootstocks with plant virus genes and a virE2 gene from Agrobacterium tumefaciens. In Vitro Cell Dev Biol-Plant 35: 226-231CrossRefGoogle Scholar
  265. Zhao Z, Sagulenko E, Ding Z, Christie PJ (2001) Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium Type IV secretion pathway. J Bacteriol 183: 3855-3865PubMedCrossRefGoogle Scholar
  266. Zheng D, Zhang H, Carle S, Hao G, Holden MR, Burr TJ (2003) A luxR homolog, aviR, in Agrobacterium vitis is associated with induction of necrosis on grape and a hypersensitive response on tobacco. Mol Plant-Microbe Interact 16: 650-658PubMedCrossRefGoogle Scholar
  267. Zhu J, Oger PM, Schrammeijer B, Hooykaas PJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182: 3885-3895PubMedCrossRefGoogle Scholar
  268. Zhu Y, Nam J, Humara JM, Mysore K, Lee LY, Cao H, Valentine L, Li J, Kaiser A, Kopecky A, Hwang HH, Bhattacharjee S, Rao P, Tzfira T, Rajagopal J, Yi HC, Yadav VBS, Crane Y, Lin K, Larcher Y, Gelvin M, Knue M, Zhao X, Davis S, Kim SI, Kumar CTR, Choi YJ, Hallan V, Chattopadhyay S, Sui X, Ziemienowitz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132: 494-505PubMedCrossRefGoogle Scholar
  269. Zoina A, Raio A, Peluso R, Spasiano A, (2001) Characterization of agrobacteria from weeping fig (Ficus benjamina). Plant Pathol 50: 620-627CrossRefGoogle Scholar
  270. Zupan J, Muth TR, Draper O, Zambryski PC (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23: 11-28PubMedCrossRefGoogle Scholar
  271. Zutra D (1982) Crown gall bacteria (Agrobacterium radiobacter var. tumefaciens) on cotton roots in Israel. Plant Disease 66: 1200-1201Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Léon Otten
    • 1
  • Thomas Burr
    • 2
  • Ernö Szegedi
    • 3
  1. 1.Institut de Biologie Moléculaire des PlantesStrasbourgFrance
  2. 2.Department of Plant PathologyCornell UniversityGenevaUSA
  3. 3.Research Institute for Viticulture and EnologyKecskemétHungary

Personalised recommendations