Skip to main content

Agrobacterium: A disease-causing bacterium

  • Chapter

The common use of Agrobacterium as a gene vector for plants has somewhat obscured the fact that this bacterium remains an important plant pathogen. Pathogenic strains of the genus Agrobacterium cause unorganized tissue growth called crown gall or profuse abnormal root development called hairy root. Agrobacterium tumefaciens induces galls on roots and crowns of several fruit and forest trees and ornamental plants. A. vitis is responsible for the crown gall disease of grapevine, while A. rhizogenes induces abnormal rooting on its hosts. Plants tissues that become diseased undergo physiological changes resulting in weak growth, low yields or even death of the entire plant. Tumors originate from dividing plant cells, e. g. from cambium. Thus the cambial region becomes unable to differentiate into efficient phloem and xylem elements leading to deficient nutrient transport. Symptoms may appear on roots, crowns and aerial parts of attacked plants (Figure 1–1). Tumors are usually comprised of unorganized tissue, but sometimes they differentiate into roots or shoots. This depends on the host plant, the position on the infected plant or the inducing bacterium (Figure 1–2). As indicated by several reviews, crown gall has been a worldwide problem in agriculture for over hundred years (Moore and Cooksey, 1981; Burr et al., 1998; Burr and Otten, 1999; Escobar and Dandekar, 2003).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  • Albiach MR, Lopez MM (1992) Plasmid heterogeneity in Spanish isolates of Agrobacterium tumefaciens from thirteen different hosts. Appl Environm Microbiol 58: 2683-2687

    CAS  Google Scholar 

  • Allen ON, Holding AJ (1974) Genus II. Agrobacterium. In RE Buchanan, NE Gibbons, eds, Bergey’s Manual of Determinative Bacteriology, 8th Edition. Williams and Wilkins Co., Baltimore, pp 264-267

    Google Scholar 

  • Anderson AR, Moore LW (1979) Host specificity in the genus Agrobacterium. Phytopathology 69: 320-323

    Article  Google Scholar 

  • Bauer C, Schulz TF, Lorenz D, Eichhorn KW, Plapp R (1994) Population dynam-ics of Agrobacterium vitis in two grapevine varieties during the vegetation period. Vitis 33: 25-20

    Google Scholar 

  • Bazzi C, Alexandrova M, Stefani E, Anaclerio F, Burr TJ (1999) Biological con-trol of Agrobacterium vitis using non-tumorigenic agrobacteria. Vitis 38: 31-35

    Google Scholar 

  • Bazzi C, Piazza C, Burr TJ (1987) Detection of Agrobacterium tumefaciens in grapevine cuttings. EPPO Bulletin 17: 105-112

    Article  Google Scholar 

  • Bazzi C, Rosciglione B (1982) Agrobacterium tumefaciens biotype 3, causal agent of crown gall on Chrysanthemum in Italy. Phytopath Z 103: 280-284

    Article  Google Scholar 

  • Bazzi C, Stefani E, Gozzi R, Burr TJ, Moore CL, Anaclerio F (1991) Hot-water treatment of dormant grape cuttings: Its effects on Agrobacterium tumefaciens and on grafting and growth of wine. Vitis 30: 177-187

    Google Scholar 

  • Beauchamp CJ, Chilton WS, Dion P, Antoun H (1990) Fungal catabolism of crown gall opines. Appl Environ Microbiol 56: 150-155

    PubMed  CAS  Google Scholar 

  • Bell CR, Dickie GA, Chan JW (1995) Variable response of bacteria isolated from grapevine xylem to control grape crown gall disease in planta. Am J Enol Vitic 46: 499-508

    Google Scholar 

  • Bien E, Lorenz D, Eichhorn K, Plapp R (1990) Isolation and characterization of Agrobacterium tumefaciens from the German vineregion Rheinpfalz. J Plant Dis Prot 97: 313-322

    Google Scholar 

  • Bishop AL, Burr TJ, Mittak VL, Katz BH (1989) A monoclonal antibody specific to Agrobacterium tumefaciens biovar 3 and its utilization for indexing grape-vine propagation material. Phytopathology 79: 995-998

    Article  Google Scholar 

  • Bishop AL, Katz BH, Burr TJ (1988) Infection of grapevine by soilborne Agro-bacterium tumefaciens biovar 3 and population dynamics in host and nonhost rhizospheres. Phytopathology 78: 945-948

    Article  Google Scholar 

  • Bliss FA, Almehdi AA, Dandekar AM, Schuerman PL, Bellaloui N (1999) Crown gall resistance in accessions of 20 Prunus species. Hortscience 34: 326-330

    Google Scholar 

  • Bouchez D, Tourneur J (1991) Organization of the agropine synthesis region of the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid 25: 27-39

    Article  PubMed  CAS  Google Scholar 

  • Boulton MI, Buchholz WG, Marks MS, Markham PG, Davies JW (1989) Speci-ficity of Agrobacterium-mediated delivery of maize streak virus DNA to members of the Gramineae. Plant Mol Biol 12: 31-40

    Article  CAS  Google Scholar 

  • Bouzar H, Chilton WS, Nesme X, Dessaux Y, Vaudequin V, Petit A, Jones JB, Hodge NC (1995) A new Agrobacterium strain isolated from aerial tumors on Ficus benjamina L. Appl Environ Microbiol 61: 65-73

    PubMed  CAS  Google Scholar 

  • Bouzar H, Jones JB (2001) Agrobacterium larrymoorei sp. nov., a pathogen iso-lated from aerial tumours of Ficus benjamina. Int J Syst Evol Microbiol 51: 1023-1026

    PubMed  CAS  Google Scholar 

  • Bouzar H, Moore LW (1987) Isolation of different Agrobacterium biovars from a natural oak savanna and tallgrass prairie. Appl Environm Microbiol 53: 717-721

    CAS  Google Scholar 

  • Bouzar H, Quadah D, Krimi Z, Jones JB, Trovato M, Petit A, Dessaux Y (1993) Correlative association between resident plasmids and the host chromosome in a diverse Agrobacterium soil population. Appl Environm Microbiol 59: 1310-1317

    CAS  Google Scholar 

  • Burr TJ, Bazzi C, Süle S, Otten L (1998) Crown gall of grape: biology of Agro-bacterium vitis and the development of disease control strategies. Plant Dis-ease 82: 1288-1297

    Article  Google Scholar 

  • Burr TJ, Katz BH (1983) Isolation of Agrobacterium tumefaciens biovar 3 from grapevine galls and sap, and from vineyard soil. Phytopathology 73: 163-165

    Article  Google Scholar 

  • Burr TJ, Katz BH (1984) Grapevine cuttings as potential sites of survival and means of dissemination of Agrobacterium tumefaciens. Plant Disease 68: 976-978

    Article  Google Scholar 

  • Burr TJ, Katz BH, Bishop AL (1987) Populations of Agrobacterium in vineyard and non vineyard soils and grape roots in vineyards and nurseries. Plant Dis-ease 71: 617-620

    Article  Google Scholar 

  • Burr TJ, Katz BH, Bishop AL, Meyers CA, Mittak VL (1988) Effect of shoot age and tip culture propagation of grapes on systemic infestations by Agrobacterium tumefaciens biovar 3. Am J Enol Vitic 39: 67-70

    Google Scholar 

  • Burr TJ, Norelli JL, Katz BH, Bishop AL (1990) Use of Ti plasmid DNA probes for determining tumorigenicity of Agrobacterium strains. Appl Environm Microbiol 56: 1782-1785

    CAS  Google Scholar 

  • Burr TJ, Ophel K, Katz BH, Kerr A (1989) Effect of hot water treatment on sys-temic Agrobacterium tumefaciens biovar 3 in dormant grape cuttings. Plant Disease 73: 242-245

    Article  Google Scholar 

  • Burr TJ, Otten L (1999) Crown gall of grape: biology and disease management. Annu Rev Phytopathol 37: 53-80

    Article  PubMed  CAS  Google Scholar 

  • Burr TJ, Reid CL (1994) Biological control of grape crown gall with non-tumorigenic Agrobacterium vitis strain F2/5. Am J Enol Vitic 45: 213-219

    Google Scholar 

  • Burr TJ, Reid CL, Adams CE, Momol EA (1999) Characterization of Agrobacte-rium vitis strains isolated from feral Vitis riparia. Plant Disease 83: 102-107

    Article  Google Scholar 

  • Burr TJ, Reid CL, Splittstoesser DF, Yoshimura M (1996) Effect of heat treatment on grape bud mortality and survival of Agrobacterium vitis in vitro and in dormant grapevine cuttings. Am J Enol Vitic 47: 119-123

    Google Scholar 

  • Burr TJ, Reid CL, Tagliati E, Bazzi C, Süle S (1997) Biological control of grape crown gall by strain F2/5 is not associated with agrocin production or compe-tition for attachment sites on grape cells. Phytopathology 87: 706-711

    Article  PubMed  CAS  Google Scholar 

  • Burr TJ, Reid CL, Yoshimura M, Momol EA, Bazzi C (1995) Survival and tumorigenicity of Agrobacterium vitis in living and decaying grape roots and canes in soil. Plant Disease 79: 677-682

    Google Scholar 

  • Bush AL, Pueppke SG (1991a) Characterization of an unusual new Agrobacterium tumefaciens strain from Chrysanthemum morifolium Ram. Appl Environm Microbiol 57: 2468-2472

    CAS  Google Scholar 

  • Bush AL, Pueppke SG (1991b) Cultivar-strain specificity between Chrysanthemum morifolium and Agrobacterium tumefaciens. Physiol Mol Plant Pathol 39: 309-323

    Article  Google Scholar 

  • Canaday J, Gérard JC, Crouzet P, Otten L (1992) Organization and functional analysis of three T-DNAs from the vitopine Ti plasmid pTiS4. Mol Gen Genet 235: 292-303

    Article  PubMed  CAS  Google Scholar 

  • Canfield ML, Moore LW (1991) Isolation and characterization of opine-utilizing strains of Agrobacterium tumefaciens and fluorescent strains of Pseudomonas spp. from rootstocks of Malus. Phytopathology 81: 440-443

    Article  CAS  Google Scholar 

  • Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D (2003) The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-Acyl homoserine lactonase activity. Appl Environ Microbiol 69: 4989-4993

    Article  PubMed  CAS  Google Scholar 

  • Cevallos MA, Porta H, Izquierdo J, Tun-Garrido C, Garcia-de-los-Santos A, Davila G, Brom S (2002) Rhizobium etli CFN42 contains at least three plas-mids of the repABC family: a structural and evolutionary analysis. Plasmid 48: 104-116

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Chen CM, Adams BR, Trost BM (1983) Leucinopine, a characteristic compound of some crown-gall tumors. Proc Natl Acad Sci USA 80: 3573-3576

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115: 971-980

    PubMed  CAS  Google Scholar 

  • Chilton WS, Petit A, Chilton MD, Dessaux Y (2001) Structure and characteriza-tion of the crown gall opines heliopine, vitopine and rideopine. Phytochemis-try 58: 137-142

    Article  CAS  Google Scholar 

  • Chilton WS, Tempé J, Matzke M, Chilton MD (1984) Succinamopine: a new crown gall opine. J Bacteriol 157: 357-362

    PubMed  CAS  Google Scholar 

  • Citovsky V, Warnick D, Zambryski PC (1994) Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 91: 3210-3214

    Article  PubMed  CAS  Google Scholar 

  • Clare BG, Kerr A, Jones DA (1990) Characteristics of the nopaline catabolic plasmid in Agrobacterium strains K84 and K1026 used for biological control of crown gall disease. Plasmid 23: 126-137

    Article  PubMed  CAS  Google Scholar 

  • Conner AJ, Dommisse EM (1992) Monocotyledonous plants as hosts for Agro-bacterium. Int J Plant Sci 153: 550-555

    Article  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21: 1-18

    Article  PubMed  Google Scholar 

  • Cotado-Sampayo M, Segura A, Wuest J, Strasser RJ, Barja F (2001) Interaction of Agrobacterium vitis with grapevine rootstocks. Archs Sci Geneve 54: 223-231

    Google Scholar 

  • Couturier M, Bex F, Bergquist PL, Maas WK (1988) Identification and classifica-tion of bacterial plasmids. Microbiol Rev 52: 375-395

    PubMed  CAS  Google Scholar 

  • Creasap JE, Reid CL, Goffinet MC, Aloni R, Ullrich C, Burr TJ (2005) Effect of wound position, auxin and Agrobacterium vitis strain F2/5 on wound healing and crown gall in grapevine. Phytopathology 95: 362-367

    Article  PubMed  CAS  Google Scholar 

  • Cubero J, Martinez MC, Llop P, Lopez MM (1999) A simple and efficient PCR method for the detection of Agrobacterium tumefaciens in plant tumours. J Appl Microbiol 86: 591-602

    Article  PubMed  CAS  Google Scholar 

  • Cubero J, van der Wolf J, van Beckhoven J, Lopez MM (2002) An internal control for the diagnosis of crown gall by PCR. J Microbiol Methods 51: 387-392

    Article  PubMed  CAS  Google Scholar 

  • De Cleene M (1979) Crown gall: economic importance and control. Zbl Bakt II Abt 134: 551-554

    Google Scholar 

  • De Cleene M (1985) Susceptibility of monocotyledons to Agrobacterium tumefa-ciens. Phytopath Z 113: 81-89

    Article  Google Scholar 

  • De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42: 389-466

    Article  Google Scholar 

  • De Cleene M, De Ley J (1981) The host range of infectious hairy root. Bot Rev 47: 147-194

    Article  Google Scholar 

  • Deng W, Chen L, Wood DW, Metcalfe T, Liang X, Gordon MP, Comai L, Nester EW (1998) Agrobacterium VirD2 protein interacts with plant host cyclophil-ins. Proc Natl Acad Sci USA 95: 7040-7045

    Article  PubMed  CAS  Google Scholar 

  • Dessaux Y, Petit A, Farrand SK, Murphy PJ (1998) Opines and opine-like molecules involved in Plant-Rhizobiaceae interactions. In HP Spaink, A Kondorosi, PJJ Hooykaas, eds, The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria. Kluwer Academic Publisher, Dordrecht-Boston-London, pp 173-197

    Google Scholar 

  • Dong LC, Sun CW, Thies KL, Luthe DS, Graves CH (1992) Use of polymerase chain reaction to detect pathogenic strains of Agrobacterium. Phytopathology 82: 434-439

    Article  CAS  Google Scholar 

  • Donner SC, Jones DA, McClure NC, Rosewarne GM, Tate ME, Kerr A, Fajardo NN, Clare BG (1993) Agrocin 434, a new plasmid-encoded agrocin from the biocontrol Agrobacterium strains K84 and K1026, which inhibits biovar 2 agrobacteria. Physiol Mol Plant Pathol 42: 185-194

    Article  CAS  Google Scholar 

  • Drevet C, Brasileiro AC, Jouanin L (1994) Oncogene arrangement in a shooty strain of Agrobacterium tumefaciens. Plant Mol Biol 25: 83-90

    Article  PubMed  CAS  Google Scholar 

  • Drummond MH, Chilton MD (1978) Tumor-inducing (Ti) plasmids of Agrobacte-rium share extensive regions of DNA homology. J Bacteriol 136: 1178-1183

    PubMed  CAS  Google Scholar 

  • Eastwell KC, Willis LG, Cavileer TD (1995) A rapid and sensitive method to de-tect Agrobacterium vitis in grapevine cuttings using the polymerase chain re-action. Plant Disease 79: 822-827

    CAS  Google Scholar 

  • Ebinuma H, Matsunaga E, Yamada K, Yamakado M (1997) Transformation of hybrid aspen for resistance to crown gall disease. In USDA Forest Service Gen Tech Rep RM-GTR-297, pp 161-164

    Google Scholar 

  • Edmont MB, Riddler SA, Baxter CM, Wicklund BM, Pasculle AW (1993) Agro-bacterium radiobacter: a recently recognized opportunistic pathogen. Clin Infect Dis 16: 388-391

    Google Scholar 

  • Ehemann A (1998) Untersuchung von Interaktionen im Wirt-Parasit System Vitis/Agrobacterium. Dissertation. University Hohenheim, Stuttgart

    Google Scholar 

  • Engler G, Holsters M, Van Montagu M, Schell J, Hernalsteens JP, Schilperoort RA (1975) Agrocin 84 sensitivity: a plasmid determined property in Agrobacterium tumefaciens. Mol Gen Genet 138: 345-349

    Article  PubMed  CAS  Google Scholar 

  • Escobar MA, Civerolo EL, Politito VS, Pinney KA, Dandekar AM (2003) Charac-terization of oncogene-silenced transgenic plants: implications for Agrobacte-rium biology and post-transcriptional gene silencing. Mol Plant Pathol 4: 57-65

    Article  CAS  PubMed  Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA 98: 13437-13442

    Article  PubMed  CAS  Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8: 380-386

    Article  PubMed  CAS  Google Scholar 

  • Escobar MA, Leslie CA, McGranahan GH, Dandekar AM (2002) Silencing crown gall disease in walnut (Juglans regia L.). Plant Sci 163: 591-597

    Article  CAS  Google Scholar 

  • Facciotti D, O’Neal JK, Lee S, Shewmaker CK (1985) Light-inducible expression of a chimeric gene in soybean tissue transformed with Agrobacterium. Bio/Technology 3: 241-246

    Article  CAS  Google Scholar 

  • Farkas E, Haas JH (1985) Biological control of crown gall in rose nursery stock. Phytoparasitica 13: 121-127

    Article  Google Scholar 

  • Farrand SK, Qin Y, Oger P (2002) Quorum-sensing system of Agrobacterium plasmids: analysis and utility. Methods Enzymol 358: 452-484

    Article  PubMed  CAS  Google Scholar 

  • Ferreira JHS, van Zyl FGH (1986) Susceptibility of grapevine rootstocks to strains of Agrobacterium tumefaciens biovar 3. South Afr J Enol Vitic 7: 101-104

    Google Scholar 

  • Fournier P, de Ruffray P, Otten L (1994) Natural instability of Agrobacterium vitis Ti plasmid due to unusual duplication of a 2.3-kb DNA fragment. Mol Plant-Microbe Interact 7: 164-172

    PubMed  CAS  Google Scholar 

  • Garrett CME (1987) The effect of crown gall on growth of cherry trees. Plant Pathol 36: 339-345

    Article  Google Scholar 

  • Gaudin V, Vrain T, Jouanin L (1994) Bacterial genes modifying hormonal bal-ances in plants. Plant Physiol Biochem 32: 11-29

    CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67: 16-37

    Article  PubMed  CAS  Google Scholar 

  • Goodman RN, Butrov D, Tarbah F (1987) The occurrence of Agrobacterium tumefaciens in grapevine-propagating material and a simplified indexing system. Am J Enol Vitic 38: 189-193

    Google Scholar 

  • Goodman RN, Grimm R, Frank M (1993) The influence of grape rootstocks on the crown gall infection process and on tumor development. Am J Enol Vitic 44: 22-26

    Google Scholar 

  • Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling H, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323-2328

    Article  PubMed  CAS  Google Scholar 

  • Grimsley NH, Ramos C, Hein T, Hohn B (1988) Meristematic tissues of maize plants are most susceptible to Agrobacterium with maize streak virus. Bio/Technology 6: 185-189

    Article  Google Scholar 

  • Guyon P, Chilton MD, Petit A, Tempé J (1980) Agropine in “null-type” tumors: evidence for the generality of the opine concept. Proc Natl Acad Sci USA 77: 2693-2697

    Article  PubMed  CAS  Google Scholar 

  • Guyon P, Petit A, Tempé J, Dessaux Y (1993) Transformed plants producing opines specifically promote growth of opine-degrading agrobacteria. Mol Plant-Microbe Interact 6: 92-98

    CAS  Google Scholar 

  • Haas JH, Moore LW, Ream W, Manulis S (1995) Universal PCR primers for de-tection of phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61: 2879-2884

    PubMed  CAS  Google Scholar 

  • Hansen G, Larribe M, Vaubert D, Tempé J, Biermann BJ, Montoya AL, Chilton MD, Brevet J (1991) Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc Natl Acad Sci USA 88: 7763-7767

    Article  PubMed  CAS  Google Scholar 

  • Hao G, Zhang H, Zheng D, Burr TJ (2005) luxR homolog avhR in Agrobacterium vitis affects the development of a grape-specific necrosis and a tobacco hyper-sensitive response. J Bacteriol 187: 185-192

    Article  PubMed  CAS  Google Scholar 

  • Hayes RJ, MacDonald H, Coutts RHA, Buck KW (1988) Agroinfection of Triti-cum aestivum with cloned DNA of wheat dwarf virus. J Gen Virol 69: 891-896

    Article  CAS  Google Scholar 

  • Heil M (1993) Untersuchungen zur Resistenz von Vitis gegen Agrobacterium tumefaciens. Dissertation. University Hohenheim, Stuttgart

    Google Scholar 

  • Herlache TC, Triplett EW (2002) Expression of a crown gall biological control phenotype in an avirulent strain of Agrobacterium vitis by addition of the tri-folitoxin production and resistance genes. BMC Biotechnol 2: 2

    Article  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271-282

    Article  PubMed  CAS  Google Scholar 

  • Holden M, Krastanova S, Xue B, Pang S, Sekiya M, Momol EA, Gonzalves D, Burr TJ (2003) Genetic engineering of grape for resistance to crown gall. Acta Hort 603: 481-484

    Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168: 1291-1301

    PubMed  CAS  Google Scholar 

  • Hooykaas PJ, den Dulk-Ras H, Ooms G, Schilperoort RA (1980) Interactions be-tween octopine and nopaline plasmids in Agrobacterium tumefaciens. J Bacte-riol 143: 1295-1306

    CAS  Google Scholar 

  • Hooykaas-Van Slogteren GMS, Hooykaas PJJ, Schilperoort RA (1984) Expres-sion of Ti plasmid genes in monocotyledonous plants infected with Agrobac-terium tumefaciens. Nature 311: 763-764

    Article  CAS  Google Scholar 

  • Huffman GA, White FF, Gordon MP, Nester EW (1984) Hairy-root-inducing plasmid: physical map and homology to tumor-inducing plasmids. J Bacteriol 157: 269-276

    PubMed  CAS  Google Scholar 

  • Hulse M, Johnson S, Ferrieri P (1993) Agrobacterium infections in humans: experience at one hospital and review. Clin Infect Dis 16: 112-117

    PubMed  CAS  Google Scholar 

  • Hwang HH, Gelvin SB (2004) Plant proteins that interact with VirB2, the Agro-bacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16: 3148-3167

    Article  PubMed  CAS  Google Scholar 

  • Irelan NA, Meredith CP (1996) Genetic analysis of Agrobacterium tumefaciens and A. vitis using randomly amplified polymorphic DNA. Amer J Enol Vitic 47: 145-151

    CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefa-ciens. Nat Biotechnol 14: 745-750

    Article  PubMed  CAS  Google Scholar 

  • Jäger J, Lorenz D, Plapp R, Eichhorn KW (1990) Untersuchungen zum latenten Vorkommen von Agrobacterium tumefaciens Biovar 3 in der Weinrebe (Vitis vinifera L.). Die Weinwissenschaft 45: 14-20

    Google Scholar 

  • Jones DA, Kerr A (1989) Agrobacterium radiobacter strain K1026, a genetically engineered derivative of strain K84, for biological control of crown gall. Plant Disease 73: 15-18

    Article  Google Scholar 

  • Jones DA, Ryder MH, Clare BG, Farrand SK, Kerr A (1988) Construction of a Tra- deletion mutant of pAgK84 to safeguard the biological control of crown gall. Mol Gen Genet 212: 207-214

    Article  CAS  Google Scholar 

  • Jones DA, Ryder MH, Clare BG, Farrand SK, Kerr A (1991) Biological control of crown gall using Agrobacterium strains K84 and K1026. In H Komada, K Kiritani, J Bay-Petersen, eds, The Biological Control of Plant Diseases, FTC Book Series no 42, Vol 42. Food and Fertilizer Technology Center for the Asian and Pacific Region, Taipei, Taiwan, pp 161-170

    Google Scholar 

  • Jones JB, Raju BC (1988) Systemic movement of A. tumefaciens in symptomless stem tissue of Chrysanthemum morifolium. Plant Disease 72: 51-54

    Article  Google Scholar 

  • Kado CI (1998) Origin and evolution of plasmids. Antonie Van Leeuwenhoek 73: 117-126

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, van Montagu M, Gheysen G (2000) Nematodes as vectors to introduce Agrobacterium into plant roots. Mol Plant Pathol 1: 383-387

    Article  CAS  PubMed  Google Scholar 

  • Kauffmann M, Kassemeyer HH, Otten L (1996) Isolation of Agrobacterium vitis from grapevine propagating material by means of PCR after immunocapture cultivation. Vitis 35: 151-153

    Google Scholar 

  • Kerr A (1972) Biological control of crown gall: seed inoculation. J Appl Bacteriol 35: 493-497

    Google Scholar 

  • Kerr A (1980) Biological control of crown gall through production of agrocin 84. Plant Disease 64: 25-30

    Google Scholar 

  • Kerr A, Panagopoulos CG (1977) Biotypes of Agrobacterium radiobacter var. tumefaciens and their biological control. Phytopath Z 90: 172-179

    Article  Google Scholar 

  • Kerr A, Roberts WP (1976) Agrobacterium: correlations between and transfer of pathogenicity, octopine and nopaline metabolism and bacteriocin 84 sensitiv-ity. Physiol Plant Pathol 9: 205-211

    Article  CAS  Google Scholar 

  • Kersters K, De Ley J (1984) Genus III. Agrobacterium Conn. In NR Krieg, JG Holt, eds, Bergey’s Manual of Systematic Bacteriology, Vol 1, Vol 1. Williams and Wilkins Co., Baltimore-London, pp 244-254

    Google Scholar 

  • Khmel IA, Sorokina TA, Lemanova LB, Lipasova VA, Metlitsky OZ, Burdeynaya TV, Chernin LS (1998) Biological control of crown gall in grapevine and raspberry by two Pseudomonas spp. with a wide spectrum of antagonistic ac-tivity. Biocontr Sci Technol 8: 45-57

    Article  Google Scholar 

  • Knauf VC, Panagopoulos CG, Nester EW (1982) Genetic factors controlling the host range of Agrobacterium tumefaciens. Phytopathology 72: 1545-1549

    Article  Google Scholar 

  • Knauf VC, Panagopoulos CG, Nester EW (1983) Comparison of Ti plasmids from three different biotypes of Agrobacterium tumefaciens isolated from grape-vines. J Bacteriol 153: 1535-1542

    PubMed  CAS  Google Scholar 

  • Krimi Z, Petit A, Mougel C, Dessaux Y, Nesme X (2002) Seasonal fluctuations and long-term persistence of pathogenic populations of Agrobacterium spp. in soils. Appl Environ Microbiol 68: 3358-3365

    Article  PubMed  CAS  Google Scholar 

  • Landron C, Le Moal G, Roblot F, Grignon B, Bonnin A, Becq-Giraudon B (2002) Central venous catheter-related infection due to Agrobacterium radiobacter: a report of 2 cases. Scand J Infect Dis 34: 693-694

    Article  PubMed  Google Scholar 

  • Lee H, Humann JL, Pitrak JS, Cuperus JT, Parks TD, Whistler CA, Mok MC, Ream LW (2003) Translation start sequences affect the efficiency of silencing of Agrobacterium tumefaciens T-DNA oncogenes. Plant Physiol 133: 966-977

    Article  PubMed  CAS  Google Scholar 

  • Lehoczky J (1968) Spread of Agrobacterium tumefaciens in the vessels of the grapevine, after natural infection. Phytopath Z 63: 239-246

    Article  Google Scholar 

  • Lehoczky J (1971) Further evidences concerning the systemic spreading of Agro-bacterium tumefaciens in the vascular system of grapevines. Vitis 10: 215-221

    Google Scholar 

  • Lehoczky J (1978) Root-system of the grapevine as a reservoir of Agrobacterium tumefaciens cells. In Proc 4th Internat Conf Plant Path Bact, Angers, France, pp 239-243

    Google Scholar 

  • Levesque H, Delepelaire P, Rouzé P, Slightom J, Tepfer D (1988) Common evo-lutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Plant Mol Biol 11: 731-744

    Article  CAS  Google Scholar 

  • Llop P, Caruso P, Cubero J, Morente C, Lopez MM (1999) A simple extraction procedure for efficient routine detection of pathogenic bacteria in plant mate-rial by polymerase chain reaction. J Microbiol Methods 37: 23-31

    Article  PubMed  CAS  Google Scholar 

  • Llop P, Lastra B, Marsal H, Murillo J, Lopez MM (2003) Tracking Agrobacterium strains by a RAPD system to identify single colonies from plant tumors. Eur J Plant Pathol 109: 381-389

    Article  CAS  Google Scholar 

  • Louws F, Rademaker J, de Bruijn F (1999) The three ds of PCR-based genomic analysis of phytobacteria: diversity, detection, and disease diagnosis. Annu Rev Phytopathol 37: 81-125

    Article  PubMed  CAS  Google Scholar 

  • Macrae S, Thomson JA, van Staden J (1988) Colonization of tomato plants by two agrocin-producing strains of Agrobacterium tumefaciens. Appl Environm Microbiol 54: 3133-3137

    CAS  Google Scholar 

  • Mahmoodzadeh H, Nazemieh A, Majidi I, Paygami I, Khalighi A (2003) Effects of thermotherapy treatments on systemic Agrobacterium vitis in dormant grape cuttings. J Phytopathol 151: 481-484

    Article  Google Scholar 

  • Mahmoodzadeh H, Nazemieh A, Majidi I, Paygami I, Khalighi A (2004) Evalua-tion of crown gall resistance in Vitis vinifera and hybrids of Vitis spp. Vitis 43: 75-79

    Google Scholar 

  • Manfredi R, Nanetti A, Ferri M, Mastroianni A, Coronado OV, Chiodo F (1999) Emerging gram-negative pathogens in the immunocompromised host: Agro-bacterium radiobacter septicemia during HIV disease. New Microbiol 22: 375-382

    PubMed  CAS  Google Scholar 

  • Mansouri H, Petit A, Oger P, Dessaux Y (2002) Engineered rhizosphere: the tro-phic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl Environ Microbiol 68: 2562-2566

    Article  PubMed  CAS  Google Scholar 

  • Marti R, Cubero J, Daza A, Piquer J, Salcedo CI, Morente C, Lopez MM (1999) Evidence of migration and endophytic presence of Agrobacterium tumefa-ciens in rose plants. Eur J Plant Pathol 105: 39-50

    Article  Google Scholar 

  • McClure NC, Ahmadi AR, Clare BG (1998) Construction of a range of derivatives of the biological control strain Agrobacterium rhizogenes K84: a study of fac-tors involved in biological control of crown gall disease. Appl Environ Microbiol 64: 3977-3982

    PubMed  CAS  Google Scholar 

  • McKenna JR, Epstein L (2003) Susceptibility of Juglans species and interspecific hybrids to Agrobacterium tumefaciens. Hortscience 38: 435-439

    Google Scholar 

  • Messens E, Lenaerts A, van Montagu M, Hedges RW (1985) Genetic basis for opine secretion from crown gall tumor cells. Mol Gen Genet 199: 344-348

    Article  CAS  Google Scholar 

  • Michel MF, Brasileiro ACM, Depierreux C, Otten L, Delmotte F, Jouanin L (1990) Identification of different Agrobacterium strains isolated from the same forest nursery. Appl Environm Microbiol 56: 3537-3545

    CAS  Google Scholar 

  • Miller HN (1975) Leaf, stem, crown, and root galls induced in Chrysanthemum by Agrobacterium tumefaciens. Phytopathology 65: 805-811

    Article  Google Scholar 

  • Mohammadi M, Fatehi-Paykani R (1999) Phenotypical characterization of Iranian isolates of Agrobacterium vitis, the causal agent of crown gall disease of grapevine. Vitis 38: 115-121

    CAS  Google Scholar 

  • Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Défago G (2003) Degradation of pathogen quorum sensing molecules by soil bacteria: a pre-ventive and curative biological control mechanism. FEMS Microbiol Ecol 45: 71-81

    Article  PubMed  CAS  Google Scholar 

  • Momol EA, Burr TJ, Reid CL, Momol MT, Otten L (1998) Genetic diversity of Agrobacterium vitis as determined by DNA fingerprints of the 5’ end of the 23S rRNA gene and Random Amplified Polymorphic DNA. J Appl Microbiol 85: 685-692

    Article  CAS  Google Scholar 

  • Moore LW (1977) Prevention of crown gall on Prunus roots by bacterial antago-nists. Phytopathology 67: 139-144

    Article  Google Scholar 

  • Moore LW, Bouzar H, Burr TJ (2001) Agrobacterium. In NW Schaad, JB Jones, W Chun, eds, Laboratory Guide for Identification of Plant Pathogenic Bacte-ria. American Phytopathological Society Press, St. Paul, Minnesota, pp 17-33

    Google Scholar 

  • Moore LW, Cooksey DA (1981) Biology of Agrobacterium tumefaciens: plant in-teractions. Internat Rev Cytol suppl 13: 15-46

    Google Scholar 

  • Moore LW, Warren G (1979) Agrobacterium radiobacter strain K84 and biologi-cal control of crown gall. Annu Rev Phytopathol 17: 163-179

    Article  Google Scholar 

  • Moriguchi K, Maeda Y, Satou M, Hardayani NS, Kataoka M, Tanaka N, Yoshida K (2001) The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J Mol Biol 307: 771-784

    Article  PubMed  CAS  Google Scholar 

  • Mougel C, Cournoyer B, Nesme X (2001) Novel tellurite-amended media and specific chromosomal and Ti plasmid probes for direct analysis of soil popula-tions of Agrobacterium biovars 1 and 2. Appl Environ Microbiol 67: 65-74

    Article  PubMed  CAS  Google Scholar 

  • Nair GR, Liu Z, Binns AN (2003) Re-examining the role of the cryptic plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58. Plant Physiol 133: 989-999

    Article  PubMed  CAS  Google Scholar 

  • Nam J, Mysore KS, Zheng C, Knue MK, Matthysse AG, Gelvin SB (1999) Identi-fication of T-DNA tagged Arabidopsis mutants that are resistant to transfor-mation by Agrobacterium. Mol Gen Genet 261: 429-438

    Article  PubMed  CAS  Google Scholar 

  • Nesme X, Michel MF, Digat B (1987) Population heterogeneity of Agrobacterium tumefaciens in galls of Populus L. from a single nursery. Appl Environ Microbiol 53: 655-659

    PubMed  CAS  Google Scholar 

  • Nesme X, Ponsonnet C, Picard C, Normand P (1992) Chromosomal and pTi geno-types of Agrobacterium strains isolated from Populus tumors in two nurseries. FEMS Microbiol Ecol 101: 189-196

    Article  CAS  Google Scholar 

  • Novak C, Hevesi M, Keck M, Szegedi E (1998) Susceptibility of vegetable crops to Agrobacterium vitis Ophel and Kerr. Acta Phytopathol Entomol Hung 33: 43-47

    Google Scholar 

  • Ogawa Y, Ishikawa K, Mii M (2000) Highly tumorigenic Agrobacterium tumefa-ciens strain from crown gall tumors of chrysanthemum. Arch Microbiol 173: 311-315

    Article  PubMed  CAS  Google Scholar 

  • Oger P, Mansouri H, Dessaux Y (2000) Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Mol Ecol 9: 881-890

    Article  PubMed  CAS  Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15: 369-372

    Article  PubMed  CAS  Google Scholar 

  • Ophel K, Burr TJ, Magarey PA, Kerr A (1988) Detection of Agrobacterium tume-faciens biovar 3 in South Australian grapevine propagation material. Austral-asian Plant Pathol 17: 61-66

    Article  Google Scholar 

  • Ophel K, Kerr A (1990) Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. Internat J Syst Bacteriol 40: 236-241

    Article  CAS  Google Scholar 

  • Ophel K, Nicholas PR, Magarey PA, Bass AW (1990) Hot water treatment of dormant grape cuttings reduces crown gall incidence in a field nursery. Am J Enol Vitic 41: 325-329

    Google Scholar 

  • Otten L, Canaday J, Gérard JC, Fournier P, Crouzet P, Paulus F (1992) Evolution of agrobacteria and their Ti plasmids-a review. Mol Plant-Microbe Interact 5: 279-287

    PubMed  CAS  Google Scholar 

  • Otten L, Crouzet P, Salomone JY, De Ruffray P, Szegedi E (1995) Agrobacterium vitis strain AB3 harbors two independent tartrate utilization systems, one of which is encoded by the Ti plasmid. Mol Plant-Microbe Interact 8: 138-146

    CAS  Google Scholar 

  • Otten L, De Ruffray P (1994) Agrobacterium vitis nopaline Ti plasmid pTiAB4: relationship to other Ti plasmids and T-DNA structure. Mol Gen Genet 245: 493-505

    Article  PubMed  CAS  Google Scholar 

  • Otten L, De Ruffray P, Momol EA, Momol MT, Burr TJ (1996) Phylogenetic re-lationships between Agrobacterium vitis isolates and their Ti plasmids. Mol Plant-Microbe Interact 9: 782-786

    CAS  Google Scholar 

  • Otten L, Salomone JY, Helfer A, Schmidt J, Hammann P, De Ruffray P (1999) Sequence and functional analysis of the left-hand part of the T-region from the nopaline-type Ti plasmid, pTiC58. Plant Mol Biol 41: 765-776

    Article  PubMed  CAS  Google Scholar 

  • Otten L, Schmidt J (1998) A T-DNA from the Agrobacterium tumefaciens lim-ited-host-range strain AB2/73 contains a single oncogene. Mol Plant-Microbe Interact 11: 335-342

    Article  PubMed  CAS  Google Scholar 

  • Otten L, van Nuenen M (1993) Natural instability of octopine/cucumopine Ti plasmids of clonal origin. Microb Releases 2: 91-96

    CAS  Google Scholar 

  • Panagopoulos CG, Psallidas PG, Alivizatos AS (1978) Studies on biotype 3 of Agrobacterium radiobacter var. tumefaciens. In Proc 4th Internat Conf Plant Path Bact, Angers, France, pp 221-228

    Google Scholar 

  • Panagopoulos CG, Psallidas PG, Alivizatos AS (1979) Evidence of a breakdown in the effectiveness of biological control of crown gall. In B Schippers, W Gams, eds, Soil-Borne Plant Pathogens. Academic Press, London, pp 569-578

    Google Scholar 

  • Paulus F, Huss B, Bonnard G, Ridé M, Szegedi E, Tempé J, Petit A, Otten L (1989) Molecular systematics of biotype III Ti plasmids of Agrobacterium tumefaciens. Mol Plant-Microbe Interact 2: 64-74

    Google Scholar 

  • Peluso R, Raio A, Morra F, Zoina A (2003) Physiological, biochemical and mo-lecular analyses of an Italian collection of Agrobacterium tumefaciens strains. Eur J Plant Pathol 109: 291-300

    Article  CAS  Google Scholar 

  • Penyalver R, Lopez MM (1999) Cocolonization of the rhizosphere by pathogenic agrobacterium strains and nonpathogenic strains K84 and K1026, used for crown gall biocontrol. Appl Environ Microbiol 65: 1936-1940

    PubMed  CAS  Google Scholar 

  • Penyalver R, Oger P, Lopez MM, Farrand SK (2001) Iron-binding compounds from Agrobacterium spp.: biological control strain Agrobacterium rhizogenes K84 produces a hydroxamate siderophore. Appl Environ Microbiol 67: 654-664

    Article  PubMed  CAS  Google Scholar 

  • Petersen SG, Stummann BM, Olesen P, Henningsen KW (1989) Structure and function of root-inducing (Ri) plasmids and their relation to tumor-inducing (Ti) plasmids. Physiol Plant 77: 427-435

    Article  CAS  Google Scholar 

  • Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempé J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190: 204-214

    Article  CAS  Google Scholar 

  • Pierronnet A, Salesses G (1996) Behaviour of Prunus cultivars and hybrids towards Agrobacterium tumefaciens estimated from hardwood cuttings. Agronomie 16: 247-256

    Article  Google Scholar 

  • Pionnat S, Keller H, Hericher D, Bettachini A, Dessaux Y, Nesme X, Poncet C (1999) Ti plasmids from Agrobacterium characterize rootstock clones that ini-tiated a spread of crown gall disease in Mediterranean countries. Appl Envi-ron Microbiol 65: 4197-4206

    CAS  Google Scholar 

  • Ponsonnet C, Nesme X (1994) Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch Microbiol 161: 300-309

    PubMed  CAS  Google Scholar 

  • Porter JR (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10: 387-421

    Article  Google Scholar 

  • Prima-Putra D, Botton B (1998) Organic and inorganic compounds of xylem exu-dates from five woody plants at the stage of bud breaking. J Plant Physiol 153: 670-676

    CAS  Google Scholar 

  • Pu XA, Goodman RN (1993a) Attachment of agrobacteria to grape cells. Appl Environ Microbiol 59: 2572-2577

    PubMed  CAS  Google Scholar 

  • Pu XA, Goodman RN (1993b) Effects of fumigation and biological control on in-fection of indexed crown gall free grape plants. Am J Enol Vitic 44: 241-248

    Google Scholar 

  • Pu XA, Goodman RN (1993c) Tumor formation by Agrobacterium tumefaciens is suppressed by Agrobacterium radiobacter HLB-2 on grape plants. Am J Enol Vitic 44: 249-254

    Google Scholar 

  • Pulawska J, Malinowski T, Sobiczewski P (1998) Diversity of plasmids of Agro-bacterium tumefaciens isolated from fruit trees in Poland. J Phytopathol 146: 465-468

    Article  CAS  Google Scholar 

  • Pulawska J, Sobiczewski P (2005) Development of a semi-nested PCR based method for sensitive detection of tumorigenic Agrobacterium in soil. J Appl Microbiol 98: 710-721

    Article  PubMed  CAS  Google Scholar 

  • Raineri DM, Bottino P, Gordon MP, Nester EW (1990) Agrobacterium-mediated transformation of rice (Oryza sativa L.). Bio/Technology 8: 33-38

    Article  CAS  Google Scholar 

  • Raio A, Peluso R, Nesme X, Zoina A (2004) Chromosomal and plasmid diversity of Agrobacterium strains isolated from Ficus benjamina tumors. Eur J Plant Pathol 110: 163-174

    Article  CAS  Google Scholar 

  • Reynders-Aloisi S, Pelloli G, Bettachini A, Poncet C (1998) Tolerance to crown gall differs among genotypes of rose rootstocks. Hortscience 33: 296-297

    Google Scholar 

  • Ridé M, Ridé S, Petit A, Bollet C, Dessaux Y, Gardan L (2000) Characterization of plasmid-borne and chromosome-encoded traits of Agrobacterium biovar 1, 2, and 3 strains from France. Appl Environ Microbiol 66: 1818-1825

    Article  PubMed  Google Scholar 

  • Rinallo C, Mittempergher L, Frugis G, Mariotti D (1999) Clonal propagation in the genus Ulmus: improvement of rooting ability by Agrobacterium rhizogenes T-DNA genes. J Hortic Sci Biotechnol 74: 502-506

    Google Scholar 

  • Robinette D, Matthysse AG (1990) Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elic-ited by Pseudomonas syringae pv. phaseolicola. J Bacteriol 172: 5742-5749

    PubMed  CAS  Google Scholar 

  • Rossignol G, Dion P (1985) Octopine, nopaline and octopinic acid utilization in Pseudomonas. Can J Microbiol 31: 68-74

    CAS  Google Scholar 

  • Rubio-Cabetas MJ, Minot JC, Voisin M, Esmenjaud D (2001) Interaction of root-knot nematodes (RKN) and the bacterium Agrobacterium tumefaciens in roots of Prunus cerasifera: evidence of the protective effect of the Ma RKN resis-tance genes against expression of crown gall symptoms. Eur J Plant Pathol 107: 433-441

    Article  CAS  Google Scholar 

  • Salomone JY, Crouzet P, De Ruffray P, Otten L (1996) Characterization and dis-tribution of tartrate utilization genes in the grapevine pathogen Agrobacterium vitis. Mol Plant-Microbe Interact 9: 401-408

    PubMed  CAS  Google Scholar 

  • Salomone JY, Szegedi E, Cobanov P, Otten L (1998) Tartrate utilization genes promote growth of Agrobacterium spp. on grapevine. Mol Plant-Microbe Interact 11: 836-838

    Article  CAS  Google Scholar 

  • Savka MA, Black RC, Binns AN, Farrand SK (1996) Translocation and exudation of tumor metabolites in crown galled plants. Mol Plant-Microbe Interact 9: 310-313

    PubMed  CAS  Google Scholar 

  • Savka MA, Farrand SK (1997) Modification of rhizobacterial populations by en-gineering bacterium utilization of a novel plant-produced resource. Nat Bio-technol 15: 363-368

    Article  CAS  Google Scholar 

  • Sawada H, Ieki H, Matsuda I (1995) PCR detection of Ti and Ri plasmids from phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61: 828-831

    PubMed  CAS  Google Scholar 

  • Schroth MN, McCain AH, Foott JH, Huisman OC (1988) Reduction in yield and vigor of grapevine caused by crown gall disease. Plant Disease 72: 241-246

    Article  Google Scholar 

  • Schulz TF, Lorenz D, Eichhorn KW, Otten L (1993) Amplification of different marker sequences for identification of Agrobacterium vitis strains. Vitis 32: 179-182

    CAS  Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261: 108-121

    PubMed  CAS  Google Scholar 

  • Slota JE, Farrand SK (1982) Genetic isolation and physical characterization of pAgK84, the plasmid responsible for agrocin 84 production. Plasmid 8: 175-186

    Article  PubMed  CAS  Google Scholar 

  • Smith RH, Hood EE (1995) Agrobacterium tumefaciens transformation of mono-cotyledons. Crop Sci 35: 301-309

    Article  Google Scholar 

  • Stockwell VO, Moore LW, Loper JE (1993) Fate of Agrobacterium radiobacter K84 in the environment. Appl Environ Microbiol 59: 2112-2120

    PubMed  CAS  Google Scholar 

  • Stover E, Walsh C (1998) Crown gall in apple rootstocks: inoculation above and below soil and relationship to root mass proliferation. Hortscience 33: 92-95

    Google Scholar 

  • Stover EW, Swartz HJ, Burr TJ (1997a) Endophytic Agrobacterium in crown gall-resistant and susceptible Vitis genotypes. Vitis 36: 21-26

    Google Scholar 

  • Stover EW, Swartz HJ, Burr TJ (1997b) Crown gall formation in a diverse collec-tion of Vitis genotypes inoculated with Agrobacterium vitis. Am J Enol Vitic 48: 26-32

    Google Scholar 

  • Strobel GA, Nachmias A (1985) Agrobacterium rhizogenes promotes the initial growth of bare root stock almond. J Gen Microbiol 131: 1245-1249

    Google Scholar 

  • Strobel GA, Nachmias A, Hess WM (1988) Improvements in the growth and yield of olive trees by transformation with the Ri plasmid of Agrobacterium rhizogenes. Can J Bot 66: 2581-2585

    Article  Google Scholar 

  • Süle S (1978) Biotypes of Agrobacterium tumefaciens in Hungary. J Appl Bacte-riol 44: 207-213

    Google Scholar 

  • Süle S (1986) Survival of Agrobacterium tumefaciens in Berlandieri x Riparia grapevine rootstock. Acta Phytopathol Entomol Hung 21: 203-206

    Google Scholar 

  • Süle S, Burr TJ (1998) The effect of resistance of rootstocks to crown gall (Agro-bacterium spp.) on the susceptibility of scions in grapevine cultivars. Plant Pathol 47: 84-88

    Article  Google Scholar 

  • Süle S, Kado CI (1980) Agrocin resistance in virulent derivatives of Agrobacte-rium tumefaciens harboring the pTi plasmid. Physiol Plant Pathol 17: 347-356

    Google Scholar 

  • Süle S, Lehoczky J, Jenser G, Nagy P, Burr TJ (1995) Infection of grapevine roots by Agrobacterium vitis and Meloidogyne hapla. J Phytopathol 143: 169-171

    Article  Google Scholar 

  • Süle S, Mozsar J, Burr TJ (1994) Crown gall resistance of Vitis spp. and grapevine rootstocks. Phytopathology 84: 607-611

    Article  Google Scholar 

  • Suzuki K, Hattori Y, Uraji M, Ohta N, Iwata K, Murata K, Kato A, Yoshida K (2000) Complete nucleotide sequence of a plant tumor-inducing Ti plasmid. Gene 242: 331-336

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Tanaka N, Kamada H, Yamashita I (2001) Mikimopine synthase (mis) gene on pRi1724. Gene 263: 49-58

    Article  PubMed  CAS  Google Scholar 

  • Szegedi E (2003) Opines in naturally infected grapevine crown gall tumors. Vitis 42: 39-41

    CAS  Google Scholar 

  • Szegedi E, Bottka S (2002) Detection of Agrobacterium vitis by polymerase chain reaction in grapevine bleeding sap after isolation on a semiselective medium. Vitis 41: 37-42

    CAS  Google Scholar 

  • Szegedi E, Bottka S, Mikulas J, Otten L, Süle S (2005) Characterization of Agro-bacterium tumefaciens strains isolated from grapevine. Vitis 44: 49-54

    CAS  Google Scholar 

  • Szegedi E, Czakó M, Otten L (1996) Further evidence that the vitopine-type pTi’s of Agrobacterium vitis represent a novel group of Ti plasmids. Mol Plant-Microbe Interact 9: 139-143

    CAS  Google Scholar 

  • Szegedi E, Czakó M, Otten L, Koncz C (1988) Opines in crown gall tumors in-duced by biotype 3 isolates of Agrobacterium tumefaciens. Physiol Mol Plant Pathol 32: 237-247

    Article  CAS  Google Scholar 

  • Szegedi E, Dula T (2005) Detection of Agrobacterium infection in grapevine graftings (in Hungarian with English abstract). Növényvédelem (in press)

    Google Scholar 

  • Szegedi E, Korbuly J, Koleda I (1984) Crown gall resistance in East-Asian Vitis species and in their V. vinifera hybrids. Vitis 23: 21-26

    Google Scholar 

  • Szegedi E, Korbuly J, Otten L (1989) Types of resistance of grapevine varieties to isolates of Agrobacterium tumefaciens biotype 3. Physiol Mol Plant Pathol 35: 35-43

    Article  Google Scholar 

  • Szegedi E, Kozma P (1984) Studies on the inheritance of resistance to crown gall disease of grapevine. Vitis 23: 121-126

    Google Scholar 

  • Szegedi E, Oberschall A, Bottka S, Oláh R, Tinland B (2001) Transformation of tobacco plants with virE1 gene derived from Agrobacterium tumefaciens pTiA6 and its effect on crown gall tumor formation. Int J Hortic Sci 7: 54-57

    Google Scholar 

  • Szegedi E, Otten L (1998) Incompatibility properties of tartrate utilization plas-mids derived from Agrobacterium vitis strains. Plasmid 39: 35-40

    Article  PubMed  CAS  Google Scholar 

  • Szegedi E, Süle S, Burr TJ (1999) Agrobacterium vitis strain F2/5 contains tartrate and octopine utilization plasmids which do not encode functions for tumor in-hibition on grapevine. J Phytopath 17: 665-669

    Article  Google Scholar 

  • Tarbah FA, Goodman RN (1986) Rapid detection of Agrobacterium tumefaciens in grapevine propagating material and the basis for an efficient indexing sys-tem. Plant Disease 70: 566-568

    Article  Google Scholar 

  • Tarbah FA, Goodman RN (1987) Systemic spread of Agrobacterium tumefaciens biovar 3 in the vascular system of grapes. Phytopathology 77: 915-920

    Article  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79: 140-146

    Article  CAS  Google Scholar 

  • Thies KL, Graves CH (1992) Meristem micropropagation protocols for Vitis rotundifolia Michx. Hortscience 27: 447-449

    Google Scholar 

  • Thies KL, Griffin DE, Graves CH, Hedgewood CP (1991) Characterization of Agrobacterium isolates from muscadine grape. Plant Disease 75: 634-637

    Google Scholar 

  • Thomas P, Schiefelbein JW (2001) Combined in vitro and in vivo propagation for rapid multiplication of grapevine cv. Arka Neelamani. Hortscience 36: 1107-1110

    CAS  Google Scholar 

  • Thomas P, Schiefelbein JW (2004) Roles of leaf in regulation of root and shoot growth from a single node softwood cuttings of grape (Vitis vinifera). Ann Appl Biol 144: 27-23

    Article  Google Scholar 

  • Thomashow MF, Knauf VC, Nester EW (1981) Relationship between the limited and wide host range octopine-type Ti plasmids of Agrobacterium tumefaciens. J Bacteriol 146: 484-493

    PubMed  CAS  Google Scholar 

  • Thomashow MF, Panagopoulos CG, Gordon MP, Nester EW (1980) Host range of Agrobacterium tumefaciens is determined by the Ti plasmid. Nature 283: 794-796

    Article  Google Scholar 

  • Thomson J (1986) The potential for biological control of crown gall disease on grapevines. Trends Biotechnol 4: 219-224

    Article  Google Scholar 

  • Tipton PA, Beecher BS (1994) Tartrate dehydrogenase, a new member of the fam-ily of metal-dependent decarboxylating R-hydroxyacid dehydrogenases. Arch Biochem Biophys 313: 15-21

    Article  PubMed  CAS  Google Scholar 

  • Tremblay G, Gagliardo R, Chilton WS, Dion P (1987a) Diversity among opine-utilizing bacteria: identification of coryneform isolates. Appl Environ Micro-biol 53: 1519-1524

    CAS  Google Scholar 

  • Tremblay G, Lambert R, Lebeuf H, Dion P (1987b) Isolation of bacteria from soil and crown-gall tumors on the basis of their capacity for opine utilization. Phy-toprotection 68: 35-42

    Google Scholar 

  • Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12: 121-129

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Li J, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20: 375-383

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an Arabidopsis protein that inter-acts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20: 3596-3607

    Article  PubMed  CAS  Google Scholar 

  • Unger L, Ziegler SF, Huffman GA, Knauf VC, Peet R, Moore LW, Gordon MP, Nester EW (1985) New class of limited-host-range Agrobacterium mega-tumor-inducing plasmids lacking homology to the transferred DNA of a wide-host-range, tumor-inducing plasmid. J Bacteriol 164: 723-730

    PubMed  CAS  Google Scholar 

  • Van Larebeke N, Genetello C, Schell J, Schilperoort RA, Hermans AK, Van Montagu M, Hernalsteens JP (1975) Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature 255: 742-743

    Article  PubMed  CAS  Google Scholar 

  • Vanderleyden J, Desair J, De Meirsman C, Michiels K, Van Gool AP, Chilton M-D, Jen GC (1986) Nucleotide sequence of an insertion sequence (IS) ele-ment identified in the T-DNA region of a spontaneous variant of the Ti-plasmid pTiT37. Nucleic Acids Res 14: 6699-6709

    Article  PubMed  CAS  Google Scholar 

  • Vaudequin-Dransart V, Petit A, Poncet C, Ponsonnet C, Nesme X, Jones JB, Bouzar H, Chilton WS, Dessaux Y (1995) Novel Ti plasmids in Agrobacte-rium strains isolated from fig tree and chrysanthemum tumors and their opine-like molecules. Mol Plant-Microbe Interact 8: 311-321

    PubMed  CAS  Google Scholar 

  • Veena, Jiang H, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir pro-teins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35: 219-236

    Article  PubMed  CAS  Google Scholar 

  • Vicedo B, Lopez MJ, Asins MJ, Lopez MM (1996) Spontaneous transfer of the Ti plasmid of Agrobacterium tumefaciens and the nopaline catabolism plasmid of A. radiobacter strain K84 in crown gall tissue. Phytopathology 86: 528-534

    Article  CAS  Google Scholar 

  • Viss WJ, Pitrak J, Humann J, Cook M, Driver J, Ream W (2003) Crown-gall-resistant transgenic apple trees that silence Agrobacterium tumefaciens onco-genes. Mol Breed 12: 283-295

    Article  CAS  Google Scholar 

  • von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41: 455-482

    Article  CAS  Google Scholar 

  • Vrain TC, Copeman RJ (1987) Interactions between Agrobacterium tumefaciens and Pratylenchus penetrans in the roots of two red raspberry cultivars. Can J Plant Pathol 9: 236-240

    Google Scholar 

  • Wabiko H, Kagaya M, Sano H (1991) Polymorphism of Nopaline-type T-DNAs from Agrobacterium tumefaciens. Plasmid 25: 3-15

    Article  PubMed  CAS  Google Scholar 

  • Wample RL (1993) Influence of pre- and post-treatment storage on budbreak of hot water treated Cabernet Sauvignon. Am J Enol Vitic 44: 153-158

    Google Scholar 

  • Wang HM, Wang HX, Ng TB, Li JY (2003) Purification and characterization of an antibacterial compound produced by Agrobacterium vitis strain E26 with activity against A. tumefaciens. Plant Pathol 52: 134-139

    Article  CAS  Google Scholar 

  • Watson B, Currier TC, Gordon MP, Chilton MD, Nester EW (1975) Plasmid re-quired for virulence of Agrobacterium tumefaciens. J Bacteriol 123: 255-264

    PubMed  CAS  Google Scholar 

  • Webster J, Dos Santos M, Thomson JA (1986) Agrocin-producing Agrobacterium tumefaciens strain active against grapevine isolates. Appl Environ Microbiol 52: 217-219

    PubMed  CAS  Google Scholar 

  • Webster J, Thomson J (1988) Genetic analysis of an Agrobacterium tumefaciens strain producing an agrocin active against biotype 3 pathogens. Mol Gen Genet 214: 142-147

    Article  CAS  Google Scholar 

  • White FF, Nester EW (1980) Relationship of plasmids responsible for hairy root and crown gall tumorigenicity. J Bacteriol 144: 710-720

    PubMed  CAS  Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67: 5849-5854

    Article  PubMed  CAS  Google Scholar 

  • Willmitzer L, Dhaese P, Schreier PH, Schmalenbach W, Van Montagu M, Schell J (1983) Size, location and polarity of T-DNA-encoded transcripts in nopaline crown gall tumors; common transcripts in octopine and nopaline tumors. Cell 32: 1045-1056

    Article  PubMed  CAS  Google Scholar 

  • Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida Jr. NF, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee Sr. D, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri P, Raymond C, Rouse R, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 2317-2323

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Pan SQ (2000) An Agrobacterium catalase is a virulence factor involved in tumorigenesis. Mol Microbiol 35: 407-414

    Article  PubMed  CAS  Google Scholar 

  • Xue B, Ling KS, Reid CL, Krastanova S, Sekiya M, Momol EA, Süle S, Mozsar J, Gonsalves D, Burr TJ (1999) Transformation of five grapevine rootstocks with plant virus genes and a virE2 gene from Agrobacterium tumefaciens. In Vitro Cell Dev Biol-Plant 35: 226-231

    Article  CAS  Google Scholar 

  • Zhao Z, Sagulenko E, Ding Z, Christie PJ (2001) Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium Type IV secretion pathway. J Bacteriol 183: 3855-3865

    Article  PubMed  CAS  Google Scholar 

  • Zheng D, Zhang H, Carle S, Hao G, Holden MR, Burr TJ (2003) A luxR homolog, aviR, in Agrobacterium vitis is associated with induction of necrosis on grape and a hypersensitive response on tobacco. Mol Plant-Microbe Interact 16: 650-658

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Oger PM, Schrammeijer B, Hooykaas PJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182: 3885-3895

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Nam J, Humara JM, Mysore K, Lee LY, Cao H, Valentine L, Li J, Kaiser A, Kopecky A, Hwang HH, Bhattacharjee S, Rao P, Tzfira T, Rajagopal J, Yi HC, Yadav VBS, Crane Y, Lin K, Larcher Y, Gelvin M, Knue M, Zhao X, Davis S, Kim SI, Kumar CTR, Choi YJ, Hallan V, Chattopadhyay S, Sui X, Ziemienowitz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132: 494-505

    Article  PubMed  CAS  Google Scholar 

  • Zoina A, Raio A, Peluso R, Spasiano A, (2001) Characterization of agrobacteria from weeping fig (Ficus benjamina). Plant Pathol 50: 620-627

    Article  Google Scholar 

  • Zupan J, Muth TR, Draper O, Zambryski PC (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23: 11-28

    Article  PubMed  CAS  Google Scholar 

  • Zutra D (1982) Crown gall bacteria (Agrobacterium radiobacter var. tumefaciens) on cotton roots in Israel. Plant Disease 66: 1200-1201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Otten, L., Burr, T., Szegedi, E. (2008). Agrobacterium: A disease-causing bacterium. In: Tzfira, T., Citovsky, V. (eds) Agrobacterium: From Biology to Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72290-0_1

Download citation

Publish with us

Policies and ethics