Advertisement

Cryopreservation of Embryogenic Cultures

  • Maurizio Lambardi
  • E. Aylin Ozudogru
  • Carla Benelli

The first reports on somatic embryogenesis date back to 1958 (Reinert 1958; Steward et al. 1958) and represent one of the most important milestones in plant tissue culture, as they give clear evidence of the concept of ‘totipotency’ of vegetative cells, a peculiarity which makes possible the regeneration of a whole plant from a single somatic cell (Bajaj 1995). Indeed, thanks to the ‘bipolar’ nature of the somatic embryo, shoot and root formation are generally induced at the same time from a single regenerative act. This differentiates somatic embryogenesis from organogenesis, where de-novo formed ‘unipolar’ structures, mainly shoots, need to be stimulated with growth regulators for the induction of adventitious roots, thus producing a complete plant in two steps. Somatic embryos can be induced directly from cells of the explant cultured in vitro (‘direct’ or ‘adventitious’ somatic embryogenesis), or more often, from the dedifferentiated cells of a proliferative callus (indirect or induced somatic embryogenesis) after the explant tissue is artificially stimulated (i.e., with growth regulators) to develop embryogenic competence (Hartmann et al. 1990; Krikorian 2000). Embryogenic callus, established in vitro from the original explant, are periodically subcultured to maintain their embryogenic potential. These constitute ‘embryogenic cultures’ or ‘embryogenic callus lines’.

The bipolar structure of the somatic embryo, as well as the developmental stages it passes through, makes it similar to the zygotic embryo (Dodeman et al. 1997; Benelli et al. 2001). However, the former evolves into a clonal plant, as it originates directly from a somatic cell without gametic fusion, while the latter produces a new genotype as a result of gametic reproduction. In addition, differently from zygotic embryos, somatic embryos are not protected by a seed coat and they are dependent on the culture medium for nutrition. The synthetic seed technology (i.e., the inclusion of a somatic embryo inside a nutrient-containing alginate bead) was developed to resemble as closely as possible the natural condition of the zygotic embryo.

Keywords

Somatic Embryo Somatic Embryogenesis Embryogenic Callus Zygotic Embryo Embryogenic Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhtar N, Kumari N, Pandey S, Ara H, Singh M, Jaiswal U, Jaiswal VS, Jain SM (2000) Somatic embryogenesis in tropical fruit trees. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic Embryogenesis in Woody Plants, vol. 6. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 93-140Google Scholar
  2. Aronen T, Krajnakova J, Häggman H, Ryynänen L (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142: 163-172CrossRefGoogle Scholar
  3. Attree SM, Fowke LC (1991) Micropropagation through somatic embryogenesis in conifers. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol. 17, High-tech and Micropropagation. Springer-Verlag, Berlin, pp 53-70Google Scholar
  4. Bajaj YPS (1995) Somatic Embryogenesis and Synthetic Seed II, vol. 31, Biotechnology in Agriculture and Forestry. Springer-Verlag, New YorkGoogle Scholar
  5. Becwar MR, Nagmani R, Wann SR (1990) Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can J For Res 20: 810-817CrossRefGoogle Scholar
  6. Benelli C, Fabbri A, Grassi S, Lambardi M, Rugini E (2001) Histology of somatic embryogenesis in mature tissue of olive (Olea europaea L.). J Hortic Sci Biotechnol 76: 112-119Google Scholar
  7. Bhatti MH, Percival T, Davey CDM, Henshaw GG, Blakesley D (1997) Cryopreservation of embryogenic tissue of a range of genotypes of sweet potato (Ipomoea batatas [L] Lam.) using an encapsulation protocol. Plant Cell Rep 16: 802-806CrossRefGoogle Scholar
  8. Blakesley D, Al Mazrooei S, Bhatti MH, Nenshaw GG (1996) Cryopreservation of non-encapsulated embryogenic tissue of sweet potato (Ipomoea batatas). Plant Cell Rep 15: 873-876CrossRefGoogle Scholar
  9. Chabrillange N, Aberlenc-Bertossi F, Noirot M, Duval Y, Engelmann F (2000) Cryopreservation of oil-palm embryogenic suspensions. In: Engelmann F, Takagi H (eds) Cryopreservation of Tropical Plant Germplasm. IPGRI, International Plant Genomic Resources Institute, Rome, pp 341-343Google Scholar
  10. Chmielarz P, Grenier-de March G, de Boucaud M-T (2005) Cryopreservation of Quercus robur L. embryogenic callus. CryoLetters 26: 349-355PubMedGoogle Scholar
  11. Corredoira E, San-José MC, Ballester A, Vieitez AM (2004) Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. CryoLetters 25: 33-42PubMedGoogle Scholar
  12. Cyr DR (2000) Cryopreservation: Roles in clonal propagation and germplasm conservation of conifers. In: Engelmann F, Takagi H (eds) Cryopreservation of Tropical Plant Germplasm. IPGRI, International Plant Germplasm Research Institute, Rome, pp 261-268Google Scholar
  13. Cyr DR, Lazaroff WR, Grimes SMA, Quan G, Bethune TD, Dunstan DJ, Roberts DR (1994) Cryopreservation of interior spruce (Picea glauca engelmanni complex) embryogenic cultures. Plant Cell Rep 13: 574-577CrossRefGoogle Scholar
  14. Danso KE, Ford-Lloyd BV (2004) Cryopreservation of embryogenic callus of cassava using sucrose cryoprotection and air desiccation. Plant Cell Rep 22: 623-631CrossRefPubMedGoogle Scholar
  15. David A, Laine E, David H (1995) Somatic embryogenesis in Pinus caribaea. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic Embryogenesis in Woody Plants, vol 3, Gymnosperms. Kluwer Academic Publishers, Dordrecht, pp 145-181Google Scholar
  16. Denchev PD, Kuklin AI, Seragg AH (1992) Somatic embryo production in bioreactors. J Biotechnol 26: 99-109CrossRefGoogle Scholar
  17. Dereuddre J, Scottez C, Arnaud Y, Duron M (1990) Resistance of alginate-coated axillary shoot tips of pear tree (Pyrus communis L. cv. Beurre Hardy) in vitro plantlets to dehydration and subsequent freezing in liquid nitrogen. C R Acad Sci Paris 310: 317-323Google Scholar
  18. De Verno LL, Park YS, Bonga JM, Barrett JD (1999) Somaclonal variation in cryopreserved embryogenic clones of white spruce [Picea glauca (Moench) Voss.]. Plant Cell Rep 18: 948-953CrossRefGoogle Scholar
  19. Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48: 1493-1509Google Scholar
  20. Dumet D, Engelmann F, Chabrillange N, Dussert S, Duval Y (2000) Cryopreservation of oil palm polyembryonic cultures. In: Engelmann F, Takagi H (eds) Cryopreservation of Tropical Plant Germplasm. Current Research, Progress and Applications. IPGRI, International Plant Genomic Resources Institute, Rome, pp 172-177Google Scholar
  21. Ellis D (1993) Transformation in spruce (Picea species). In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol 23, Plant Protoplasts and Genetic Engineering IV. Springer, Berlin, Heidelberg, New York, pp 315-330Google Scholar
  22. Engelmann F (2004) Plant cryopreservation: Progress and prospects. In Vitro Cell Dev Biol-Plant 40: 427-433CrossRefGoogle Scholar
  23. Engelmann F, Etienne H (2000) Cryopreservation of embryogenic callus of Hevea brasiliensis. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic Embryogenesis in Woody Plants, vol 6. Kluwer Academic Publishers, the Netherlands, pp 729-745Google Scholar
  24. Ezura H, Oozawa K (1994) Ploidy of somatic embryos and the ability to regenerate plantlets in melon (Cucumis melo L.). Plant Cell Rep 14: 107-111CrossRefGoogle Scholar
  25. Find JI, Kristensen MMH, Nørgaard JV, Krogstrup P (1998) Effect of culture period and cell density on regrowth following cryopreservation of embryogenic suspension cultures of Norway spruce and Sitka spruce. Plant Cell Tissue Organ Cult 53: 27-33CrossRefGoogle Scholar
  26. Finkle BJ, Ulrich JM (1982) Cryoprotectant removal temperature as a factor in the survival of frozen rice and sugarcane cells. Cryobiology 19: 329-335CrossRefPubMedGoogle Scholar
  27. Ford CS, Jones NB, Van Staden J (2000) Optimization of a working cryopreservation protocol for Pinus patula embryogenic tissue. In Vitro Cell Dev BiolPlant 36: 366-369CrossRefGoogle Scholar
  28. Gnanapragasam S, Vasil IK (1990) Plant regeneration from a cryopreserved embryogenic cell suspension of a commercial sugarcane hybrid (Saccharum sp.). Plant Cell Rep 9: 419-423CrossRefGoogle Scholar
  29. González-Arnao MT, Juárez J, Ortega C, Navarro L, Duran-Vila N (2003) Cryopreservation of ovules and somatic embryos of Citrus using the encapsulationdehydration technique. CryoLetters 24: 85-94PubMedGoogle Scholar
  30. Goussard PG, Wiid J (1992) The elimination of fanleaf virus from grapevines using in vitro somatic embryogenesis combined with heat therapy. S Afr J Enol Vitic 13: 81-83Google Scholar
  31. Grenier-de March G, de Boucaud M-T, Chmielarz P (2005) Cryopreservation of Prunus avium L. embryogenic tissues. CryoLetters 26: 341-348PubMedGoogle Scholar
  32. Gupta PK, Durzan DJ, Finale BJ (1987) Somatic polyembryogenesis in embryogenic cell masses of Picea abies (Norway spruce) and Pinus taeda (loblolly pine) after thawing from liquid nitrogen. Can J For Res 17: 1130-1134CrossRefGoogle Scholar
  33. Häggman H, Ryyänen L, Aronen T, Krajnakova J (1998) Cryopreservation of embryogenic cultures of Scots pine. Plant Cell Tissue Organ Cult 54: 45-53CrossRefGoogle Scholar
  34. Häggman H, Aronen T, Ryyänen LA (2000) Cryopreservation of embryogenic cultures of conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic Embryogenesis in Woody Plants, vol 6. Kluwer Academic Publishers, the Netherlands, pp 707-728Google Scholar
  35. Harding K (1996) Approaches to assess the genetic stability of plants recovered from in vitro culture. In: Normah MN, Narimah MK, Clyde MMJ (eds) Techniques in In Vitro Conservation. Proceedings of the International Workshop on In Vitro Conservation of Plant Genomic Resources. Universiti K ebangsaan Malaysia Publishers, Kuala Lumpur, Malaysia, pp 135-168Google Scholar
  36. Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25: 3-22PubMedGoogle Scholar
  37. Hargreaves CL, Grace LJ, Holden DG (2002) Nurse culture for efficient recovery of cryopreserved Pinus radiata D. Don embryogenic cell lines. Plant Cell Rep 21: 40-45CrossRefGoogle Scholar
  38. Hartmann HT, Kester DE, Davies Jr FT (1990) Principles of tissue culture for micropropagation. In: Hartmann HT, Kester DE, Davies Jr FT (eds) Plant Propagation, Principles and Practices, Fifth Edition, Prentice Hall, Englewood Cliffs, NJ, pp 459-495Google Scholar
  39. Högberg KA, Ekberg I, Norell L, Von Arnold S (1998) Integration of somatic embryogenesis in a tree breeding programme: A case study with Picea abies. Can J For Res 28: 1536-1545CrossRefGoogle Scholar
  40. Huang CN, Wang JH, Yan QS, Zhang XQ, Yan QF (1995) Plant regeneration from rice (Oryza sativa L.) embryogenic suspension cells, cryopreserved by vitrification. Plant Cell Rep 14: 730-734CrossRefGoogle Scholar
  41. Isabel N, Tremblay L, Michaud M, Tremblay FM, Bousquet J (1993) RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis-derived populations of Picea mariana (Mill.) B. S. P. Theor Appl Genet 86: 81-87Google Scholar
  42. Jackson JF, Linskens HF (2003) Genetic transformation of plants. Molecular Methods of Plant Analysis. vol 23. Springer, the Netherlands, pp 202Google Scholar
  43. Jain SM, Gupta PK (2005) (eds) Protocol for Somatic Embryogenesis in Woody Plants. Forestry Sciences vol 77. Springer, the Netherlands, pp 590Google Scholar
  44. Jain S, Jain RK, Wu RA (1996) A simple and efficient procedure for cryopreservation of embryogenic cells of aromatic Indica rice varieties. Plant Cell Rep 15: 712-717CrossRefGoogle Scholar
  45. Jitsuyama Y, Suzuki T, Harada T, Fujikawa S (2002) Sucrose incubation increases freezing tolerance of asparagus (Asparagus officinalis L.) embryogenic cell suspensions. CryoLetters 23: 103-112PubMedGoogle Scholar
  46. Kartha KK, Fowke LC, Leung NL, Caswell KL, Hakman I (1988) Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). J Plant Physiol 132: 529-539Google Scholar
  47. Krikorian AD (2000) Historical insights into some contemporary problems in somatic embryogenesis. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic Embryogenesis in Woody Plants, vol 6. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 17-49Google Scholar
  48. Kristensen MMH, Find JI, Floto F, Møller JD, Nørgaard JV, Krogstrup P (1994) The origin and development of somatic embryos following cryopreservation of an embryogenic suspension culture of Picea sitchensis. Protoplasma 182: 65-70CrossRefGoogle Scholar
  49. Lainé E, Bade P, David A (1992) Recovery of plants from cryopreserved embryogenic cell suspensions of Pinus caribaca. Plant Cell Rep 11: 295-298CrossRefGoogle Scholar
  50. Lambardi M (2000) Somatic embryogenesis in cypress (Cupressus sempervirens L.). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic Embryogenesis in Woody Plants, vol 6. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 553-567Google Scholar
  51. Lambardi M, Lynch PT, Benelli C, Mehra A, Siddika A (2002) Towards the cryopreservation of olive germplasm. Adv Hortic Sci 16: 165-174Google Scholar
  52. Lambardi M, De Carlo A, Capuana M (2005) Cryopreservation of embryogenic callus of Aesculus hippocastanum L. by vitrification/one-step freezing. CryoLetters 26: 185-192PubMedGoogle Scholar
  53. Lambardi M, Benelli C, Ozudogru EA, Ozden-Tokatli Y (2006) Synthetic seed technology in ornamental plants. In: Teixeira da Silva JA (ed) Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues. Global Science Books, London, UK, pp 347-354Google Scholar
  54. Litvay JD, Johnson MA, Verma D, Einspahr D, Wergrand K (1981) Conifer suspension culture medium development using analytical data from developing seeds. Technical paper series vol 115. Just Paper Chemistry, Appleton, Wisconsin, pp 1-7Google Scholar
  55. Lynch PT, Benson EE, Jones J, Cocking EC, Power JB, Davey MR (1995) The embryogenic potential of rice cell suspensions affects their recovery following cryogenic storage. Euphytica 85: 347-349CrossRefGoogle Scholar
  56. Marin ML, Duran-Vila N (1988) Survival of somatic embryos and recovery of plants of sweet orange (Citrus sinensis (L.) Osb.) after immersion in liquid nitrogen. Plant Cell Tissue Organ Cult 14: 51-57CrossRefGoogle Scholar
  57. Marin ML, Gorgorcena Y, Ortiz J, Duran-Vila M (1993) Recovery of whole plants of sweet orange from somatic embryos subjected to freezing thawing treatments. Plant Cell Tissue Organ Cult 34: 27-33CrossRefGoogle Scholar
  58. Martinez-Montero M, González-Arnao MT, Borroto-Nordelo C, Puentes-Diaz C, Engelmann F (1998) Cryopreservation of sugarcane embryogenic callus using a simplified freezing process. CryoLetters 19: 171-176Google Scholar
  59. Martínez MT, Ballester A, Vieitez AM (2003) Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology 46: 182-189CrossRefPubMedGoogle Scholar
  60. Marum L, Estêvão C, Oliveira MM, Amâncio S, Rodriguez L, Miguel C (2004) Recovery of cryopreserved embryogenic cultures of maritime pine - effect of cryoprotectant and suspension density. CryoLetters 25: 363-374PubMedGoogle Scholar
  61. Mathur G, Alkutkar VA, Nadgauda RS (2003) Cryopreservation of embryogenic culture of Pinus roxburghii. Biol Plant 46: 205-210CrossRefGoogle Scholar
  62. Meryman HT, Williams RJ (1985) Basic principles of freezing injury to plant cells, natural tolerance and approaches to cryopreservation. In: Kartha KK (ed) Cryopreservation of Plant Cells and Organs. CRC Press Inc, Boca Raton, pp 13-47Google Scholar
  63. Morel G, Wetmore RH (1951) Tissue culture of monocotyledons. Am J Bot 38: 138-140CrossRefGoogle Scholar
  64. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497CrossRefGoogle Scholar
  65. Nørgaard JV, Duran V, Johnsen Ø, Krogstrup P, Baldursson S, Von Arnold S (1993) Variations in cryotolerance of embryogenic Picea abies cell lines and the association to genetic, morphological, and physiological factors. Can J For Res 23: 2560-2567CrossRefGoogle Scholar
  66. Ozawa K, Ling DH, Komamine A (1996) High frequency somatic embryogenesis from small suspension cultured clusters of cells of an interspecific hybrid of Oryza. Plant Cell Tissue Organ Cult 46: 157-159CrossRefGoogle Scholar
  67. Panis B, Lambardi M (2005) Status of cryopreservation technologies in plants (crops and forest trees). The Role of Biotechnology. Villa Gualino, Turin, Italy, pp 43-54Google Scholar
  68. Panis BJ, Withers LA, de Langhe EAL (1990) Cryopreservation of Musa suspension cultures and subsequent regeneration of plants. CryoLetters 11: 337-350Google Scholar
  69. Park YS, Pond SE, Bonga JM (1994) Somatic embryogenesis in white spruce (Picea glauca): Genetic control in somatic embryos exposed to storage, matu-ration treatments, germination and cryopreservation. Theor Appl Genet 89: 742-750CrossRefGoogle Scholar
  70. Pérez RM (2000) Cryostorage of Citrus embryogenic cultures. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic Embryogenesis in Woody Plants, vol 6. Kluwer Academic Publishers, the Netherlands, pp 687-705Google Scholar
  71. Pérez RM, Navarro L, Duran-Vila N (1997) Cryopreservation and storage of embryogenic callus cultures of several Citrus species and cultivars. Plant Cell Rep 17: 44-49CrossRefGoogle Scholar
  72. Pérez RM, Mas O, Navarro L, Duran-Vila N (1999) Production and cryoconservation of embryogenic cultures of mandarin and mandarin hybrids. Plant Cell Tissue Organ Cult 55: 71-74CrossRefGoogle Scholar
  73. Redenbaugh K, Fuji JA, Slade D, Viss P, Kossler M (1991) Artificial seeds: Encapsulated somatic embryos. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol. 17. Springer-Verlag, Berlin, Germany, pp 395-414Google Scholar
  74. Reinert J (1958) Morphogenes und ihre kontrolle an gewebekuteren aus carotten. Naturwissenschaften 45: 344-345CrossRefGoogle Scholar
  75. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9: 30-33CrossRefGoogle Scholar
  76. Schenk R, Hildebrandt A (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50: 199-204CrossRefGoogle Scholar
  77. Shibli RA (2000) Cryopreservation of black iris (Iris nigricans) somatic embryos by encapsulation-dehydration. CryoLetters 21: 39-46PubMedGoogle Scholar
  78. Shibli RA, Al-Juboory KH (2000) Cryopreservation of ‘Nabali’ olive (Olea europaea L.) somatic embryos by encapsulation-dehydration and encapsulationvitrification. CryoLetters 21: 357-366PubMedGoogle Scholar
  79. Shimonishi K, Karube M, Ishikawa M (2000a) Cryopreservation of somatic embryos of sweet potato by slow prefreezing method. In: Engelmann F, Takagi H (eds) Cryopreservation of Tropical Plant Germplasm. IPGRI, International Plant Genetic Resources Institute, Rome, pp 368-370Google Scholar
  80. Shimonishi K, Ishikawa M, Suzuki S, Oosawa K (2000b) Cryopreservation of melon somatic embryos by desiccation method. In: Engelmann F, Takagi H (eds) Cryopreservation of Tropical Plant Germplasm. IPGRI, International Plant Genetic Resources Institute, Rome, pp 167-171Google Scholar
  81. Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74: 15-35CrossRefGoogle Scholar
  82. Steward FC, Mapes MO, Smith J (1958) Growth and organised development of cultured cells. II. Organisation in cultures grown from freely suspended cells. Am J Bot 45: 705-708CrossRefGoogle Scholar
  83. Tonon G, Lambardi M, De Carlo A, Rossi C (2001) Crioconservazione di linee embriogeniche di Fraxinus angustifolia Vhal. In: Russo G (ed) Atti del ‘VI Convegno Nazionale Biodiversità’. Bari, Italy, September 6-7, pp 619-625 (Abstract in English)Google Scholar
  84. Touchell DH, Chiang VL, Tsai CJ (2002) Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21: 118-124CrossRefGoogle Scholar
  85. Tsukazaki H, Mii M, Tokuhara K, Ishikawa K (2000) Cryopreservation of Doritaenopsis suspension culture by vitrification. Plant Cell Rep 19: 1160-1164CrossRefGoogle Scholar
  86. Turner SR, Senaratna T, Touchell DH, Bunn E, Dixon KW, Tan B (2001) Stereo-chemical arrangement of hydroxyl groups in sugar and polyalcohol molecules as an important factor in effective cryopreservation. Plant Sci 48: 489-497CrossRefGoogle Scholar
  87. Uragami A, Sakai A, Nagai M, Takahashi T (1989) Survival of cultured cells and somatic embryos of Asparagus officinalis cryopreserved by vitrification. Plant Cell Rep 8: 418-421CrossRefGoogle Scholar
  88. Valladares S, Toribio M, Celestino C, Vieitez AM (2004) Cryopreservation of embryogenic cultures from mature Quercus suber trees using vitrification. CryoLetters 25: 177-186PubMedGoogle Scholar
  89. Wang ZY, Legris G, Nagel J, Potrykus I, Sprangenberg G (1994) Cryopreservation of embryogenic cell suspensions in Festuca and Lolium species. Plant Sci 103: 93-106CrossRefGoogle Scholar
  90. Winkelmann T, Muβmann V, Serek M (2004) Cryopreservation of embryogenic suspension cultures of Cyclamen persicum Mill. Plant Cell Rep 23: 1-8CrossRefPubMedGoogle Scholar
  91. Wu Y-J, Huang X-L, Xiao J-N, Li -J, Zhou M-D, Engelmann F (2003) Cryopreservation of mango (Mangifera indica L.) embryogenic cultures. CryoLetters 24: 303-314PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Maurizio Lambardi
    • 1
  • E. Aylin Ozudogru
    • 2
  • Carla Benelli
    • 1
  1. 1.Istituto per la Valorizzazione del Legno e delle Specie Arboree CNRItaly
  2. 2.Gebze Institute of Technology, Department of BiologyLaboratory of Plant Tissue CultureTurkey

Personalised recommendations