Development of Encapsulation Dehydration

  • Florent Engelmann
  • Maria-Teresa Gonzalez Arnao
  • Yongjie Wu
  • Roosevelt Escobar

The application of cryopreservation to plants is relatively recent as the first report of successful cryopreservation was published by Sakai in 1960 with silver birch twigs, and in-vitro cultured flax cells were frozen by Quatrano in 1968. The first protocols developed in the 1980s included pre-treatment with cryoprotectants followed by controlled rate cooling. These protocols were based on freeze-induced dehydration (Sakai 1985; Kartha and Engelmann 1994; Engelmann 1997). Such protocols were applied to numerous species, especially from temperate origin; however, there were cases, particularly for plants of tropical origin, where such controlled cooling protocols did not produce good results (Bagniol et al. 1992; Haskins and Kartha 1980). Further research was thus carried out and at the beginning of the 1990s a set of new, vitrification-based protocols became available (Engelmann 2000, 2003). Vitrification can be defined as the transition of water directly from the liquid phase into an amorphous phase or glass, while avoiding the formation of crystalline ice (Fahy et al. 1984). Among these vitrification techniques a new technique termed encapsulation dehydration was developed for cryopreservation of pear and potato shoot-tips (Dereuddre et al. 1990; Fabre and Dereuddre 1990). This method is based on the technology developed for producing synthetic seeds, i.e. the encapsulation of explants in calcium alginate beads (Redenbaugh et al. 1986). Encapsulated explants are then precultured in liquid medium with a high sucrose concentration and partially desiccated before exposure to liquid nitrogen (LN). Encapsulating the explants allows exposure to extreme treatments including preculture with high sucrose concentrations and desiccation to low moisture contents (MCs) that would be highly damaging or lethal to non-encapsulated samples. Due to the extreme desiccation of explants, most or all freezable water is removed from cells, and vitrification of internal solutes takes place during rapid exposure to LN, thus avoiding lethal intracellular ice crystallization (Engelmann 1997). As a consequence, the whole or a large part of the frozen explant is kept intact after rewarming, which results in high survival, rapid and direct regrowth and reproducible results after cryopreservation (Engelmann 2000).


Somatic Embryo Hairy Root Culture High Sucrose Concentration Microspore Embryo Wasabia Japonica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Accart F, Monod V, Poissonnier M, Dereuddre J, Pâques M (1993) Cryoconservation d’apex de Populus tremula x alba cultivés in vitro transformés génétiquement ou non. Ann Recherches Sylvicoles 1993: 23-29Google Scholar
  2. Al-Ababneh SS, Karam NS, Shibli RA (2002) Cryopreservation of sour orange (Citrus aurantium L.) shoot tips. In Vitro Cell Dev Biol-Plant 38: 602-607CrossRefGoogle Scholar
  3. Al-Ababneh SS, Shibli RA, Karam NS, Shatnawi MA (2003) Cryopreservation of bitter almond (Amygdalus communis L.) shoot tips by encapsulationdehydration and vitrification. Adv Hortic Sci 17: 15-20Google Scholar
  4. Aoshima Y (1997) Cryopreservation of multiple shoots of tea (Camellia sinensis L.O. Kuntze) by alginate encapsulation-dehydration. Tech Bull Shizuoka Tea Exp Stat 21: 13-21Google Scholar
  5. Bachiri Y, Gazeau C, Hansz J, Morisset C, Dereuddre J (1995) Successful cryopreservation of suspension cells by encapsulation-dehydration. Plant Cell Tissue Organ Cult 43: 241-248Google Scholar
  6. Bachiri Y, Song GQ, Plessis P, Shoar-Ghaffari A, Rekab T, Morisset C (2001) Routine cryopreservation of kiwifruit (Actinidia spp) germplasm by encapsulation-dehydration: importance of plant growth regulators. CryoLetters 22: 61-74PubMedGoogle Scholar
  7. Bagniol S, Engelmann F, Michaux-Ferrière N (1992) Histo-cytological study of apices from in vitro plantlets of date palm (Phoenix dactylifera L.) during a cryopreservation process. CryoLetters 13: 405-412Google Scholar
  8. Benson EE (1990) Free radical damage in stored plant germplasm. International Board for Plant Genetic Resources, Rome.Google Scholar
  9. Benson EE, Chabrillange N, Engelmann F (1992) A comparison of cryopreservation methods for the long-term in vitro conservation of cassava. In: Abst. Society for Low Temperature Biology Autumn Meeting, Stirling, 8-9 September 1992.Google Scholar
  10. Blakessey D, Kiernan RJ (2001) Cryopreservation of axillary buds of a Eucalyptus grandis x Eucalyptus camaldulensis hybrid. CryoLetters 22: 13-18Google Scholar
  11. Blakesley D, Pask H, Henshaw GG, Fay MF (1996) Biotechnology and the conservation of forest genetic resources: In vitro strategies and cryopreservation. Plant Growth Regul 20: 11-16CrossRefGoogle Scholar
  12. Chang Y, Barker RE, Reed BM (2000) Cold acclimation improves recovery of cryopreserved grass (Zoysia and Lolium sp.) CryoLetters 21: 107-116PubMedGoogle Scholar
  13. Cho EG, Hor YL, Kim HH, Ramanatha Rao V, Engelmann F (2002) Cryopreservation of Citrus madurensis zygotic embryonic axes by vitrification: Importance of pregrowth and preculture conditions. CryoLetters 23: 325-332PubMedGoogle Scholar
  14. Clavero-Ramirez I, Galvez-Farfan J, Lopez-Aranda JM, Gonzalez-Benito ME (2005) Apex cryopreservation of several strawberry genotypes by two encapsulation-dehydration methods. CryoLetters 26: 17-24PubMedGoogle Scholar
  15. Decruse SW, Seeni S, Pushpangadan P (1999) Cryopreservation of alginate coated shoot tips of in vitro grown Holostemma annulare (Roxb.) K. Schum, an endangered medicinal plant: Influence of preculture and DMSO treatment on survival and regeneration. CryoLetters 20: 243-250Google Scholar
  16. Dereuddre J, Scottez C, Arnaud Y, Duron M (1990) Effets d’un endurcissement au froid des vitroplants de poirier (Pyrus communis L. cv. Beurré Hardy) sur la résistance des apex axillaires à une congélation dans l’azote liquide. C R Acad Sci Paris 310 Sér III: 317-323Google Scholar
  17. Dereuddre J, Blandin S, Hassen N (1991) Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.) to desiccation and freezing in liquid nitrogen. 1. Effects of preculture. CryoLetters 12: 125-134Google Scholar
  18. Engelmann F (1997) In vitro conservation methods. In: Ford-Lloyd BV, Newburry JH, Callow JA (eds) Biotechnology and Plant Genetic Resources: Conservation and Use. CAB International, Wellingford, pp 119-162Google Scholar
  19. Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of Tropical Plant Germplasm—current Research Progress and Applications. JIRCAS, Tsukuba/IPGRI, Rome, pp 8-20Google Scholar
  20. Engelmann F (2003) Current research status and utilization of plant cryopreservation. In: Proceedings of the International Workshop on Cryopreservation of Bio-genetic Resources. International Technical Cooperation Center, RDA, Suwon, Korea, 3-5 June 2003, pp 19-40Google Scholar
  21. Escobar RH, Mafla G, Roca WM (1997) A methodology for recovering cassava plants from shoot tips maintained in liquid nitrogen. Plant Cell Rep 16: 474-478Google Scholar
  22. Escobar-Pérez R.H. (2005) Aspectos logísticos de manejo y determinación de la estabilidad genética de materiales crioconservados de yuca (Manihot esculenta Crantz). MSc. Thesis. Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia-Sede Palmira. ColombiaGoogle Scholar
  23. Fabre J, Dereuddre J (1990) Encapsulation-dehydration: A new approach to cryopreservation of Solanum shoot-tips. CryoLetters 11: 413-426Google Scholar
  24. Fahy GM, MacFarlane DR, Angell, CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21: 407-426CrossRefPubMedGoogle Scholar
  25. Fang JY, Wetten A, Hadley P (2004) Cryopreservation of cocoa (Theobroma cacao L.) somatic embryos for long-term germplasm storage. Plant Sci 166: 669-675CrossRefGoogle Scholar
  26. Flachsland E, Terada G, Scocchi A, Rey H, Mroginski L, Engelmann F (2006) Cryopreservation of seeds and in vitro-cultured protocorms of Oncidium bifolium Sims. (Orchidaceae) by encapsulation-dehydration. CryoLetters 27: 235-242PubMedGoogle Scholar
  27. Fukai S, Togashi M, Gor M (1994) Cryopreservation of in vitro grown Dianthus by encapsulation-dehydration. Tech Bull Fac Agric Kagawa Univ 46: 101-107Google Scholar
  28. Gonzalez-Arnao MT (1996) Desarrollo de una técnica para la crioconservación de meristemos apicales de caña de azúcar. PhD Thesis, Centro Nacional de Investigaciones Cientificas, CubaGoogle Scholar
  29. Gonzalez-Arnao MT, Engelmann F (2006) Cryopreservation of plant germplasm using the encapsulation-dehydration technique: Review and case study on sugarcane. CryoLetters 27: 155-168PubMedGoogle Scholar
  30. Gonzalez-Arnao MT, Engelmann F, Huet C, Urra C (1993a) Cryopreservation of encapsulated apices of sugarcane: effect of freezing procedure and histology. CryoLetters 14: 303-308Google Scholar
  31. Gonzalez-Arnao MT, Engelmann F, Urra C, Lynch PT (1993b) Crioconservacion de meristemos de plantas in vitro de caña de azucar mediante el metodo de encapsulacion/deshidratacion. Biotecnol Apl 10: 225-228Google Scholar
  32. Gonzalez-Arnao MT, Engelmann F, Urra C, Morenza M, Rios M (1998) Cryopreservation of Citrus apices using the encapsulation-dehydration technique. CryoLetters 19: 177-182Google Scholar
  33. Gonzalez-Arnao MT, Juarez J, Ortega C, Navarro J, Duran-Vila N (2003) Cryopreservation of ovules and somatic embryos of citrus using the encapsulationdehydration technique. CryoLetters 24: 85-94PubMedGoogle Scholar
  34. Gonzales-Benito ME, Perez C (1997) Cryopreservation of nodal explants of an endangered plant species (Centaurium rigualii Esteve) using the encapsulation-dehydration method. Biodivers Conserv 6: 583-590CrossRefGoogle Scholar
  35. Gonzales-Benito ME, Herradon E, Martin C (1999) The development of a protocol for the encapsulation-dehydration and in vitro culture of embryonic axes of Quercus suber L. and Q. ilex L. Silvae Genet 48: 25-28Google Scholar
  36. Gonzalez-Benito ME, Nuñez-Moreno Y, Martin C (1998) A protocol to cryopreserve nodal explants of Anthirrhinium microphyllum by encapsulationdehydration. CryoLetters 19: 225-230Google Scholar
  37. Grapin A, Dumet D, Holota H, Dorion N (2003) Cryopreservation of Pelargonium shoot tips by encapsulation-dehydration: effect of sucrose concentration, dehydration duration and genotype. Acta Hortic 623: 225-230Google Scholar
  38. Grospietch M, Stodulkova E, Zamecnik J (1999) Effect of osmotic stress on the dehydration tolerance and cryopreservation of Solanum tuberosum shoot tips. CryoLetters 20: 339-346Google Scholar
  39. Gupta S, Reed BM (2006) Cryopreservation of shoot tips of blackberry and raspberry by encapsulation-dehydration and vitrification. CryoLetters 27: 29-42PubMedGoogle Scholar
  40. Hao YJ, Liu QL, Deng XX (2002) Effect of cryopreservation on apple genetic resources at morphological, chromosomal and molecular levels. Cryobiology 43: 46-53CrossRefGoogle Scholar
  41. Haskins RH, Kartha KK (1980) Freeze preservation of pea meristems: cell survival. Can J Bot 58: 833-840Google Scholar
  42. Hirata K, Phunchindawan M, Kanemoto M, Miyamoto K, Sakai A (1995) Cryopreservation of shoot primordia induced from horseradish hairy root cultures by encapsulation and two-step dehydration. CryoLetters 16: 122-127Google Scholar
  43. Hirata K, Phunchindawan M, Tukamoto J, Goda S, Miyamoto K (1996) Cryopreservation of microalgae using encapsulation-dehydration. CryoLetters 17: 321-328Google Scholar
  44. Hirata K, Mukai M, Goda S, Ishio-Kinugasa M, Yoshida K, Sakai A, Miyamoto K (2002) Cryopreservation of hairy root cultures of Vinca minor (L.) by encapsulation-dehydration. Biotechnol Newsl 24: 371-376Google Scholar
  45. Hornung R Domas R, Lynch, PT (2001a) Cryopreservation of plumular explants of coconut (Cocos nucifera L.) to support programmes for mass clonal propagation through somatic embryogenesis. CryoLetters 22: 211-220Google Scholar
  46. Hornung R, Holland A, Taylor HF, Lynch PT (2001b) Cryopreservation of auricula shoot tips using the encapsulation/dehydration technique. CryoLetters 22: 27-34PubMedGoogle Scholar
  47. Kartha KK, Engelmann F (1994) Cryopreservation and germplasm storage. In: Vasil IK, Thorpe TA (eds) Plant Cell and Tissue Culture. Kluwer, Dordrecht, pp 195- 230Google Scholar
  48. Kim HM, Shin JH, Sohn JK (2004) Cryopreservation of zygotic embryos of herbaceous peony (Paeonia lactiflora Pall.) by encapsulation-dehydration. Korean J Crop Sci 49: 354-357Google Scholar
  49. Malaurie B, Trouslot MF, Engelmann F, Chabrillange N (1998) Effect of pretreatment conditions on the cryopreservation of in vitro cultured yam (Dioscorea alata and D. bulbifera) shoot apices by encapsulation-dehydration. CryoLetters 19: 15-26Google Scholar
  50. Mandal BB, Chandel KPS, Dwivedi S (1996) Cryopreservation of yam (Dioscorea spp.) shoot apices by encapsulation-dehydration. CryoLetters 17: 165-174Google Scholar
  51. Manrique N (2000) Respuesta varietal de 95 genotipos de la colección núcleo de yuca (Manihot esculenta Crantz) a la crioconservación usando la técnica de Encapsulación-deshidratación. BSc. Thesis. Universidad Nacional de Colombia, Sede Palmira. ColombiaGoogle Scholar
  52. Mari S, Engelmann F, Chabrillange N, Huet C, Michaux-Ferrière N (1995) Histocytological study of coffee (Coffea racemosa and C. sessiliflora) apices of in vitro plantlets during their cryopreservation using the encapsulation-dehydration technique. CryoLetters 16: 289-298Google Scholar
  53. Matsumoto T, Sakai A (1995) An approach to enhance dehydration tolerance of alginate-coated dried meristems cooled to -196°C. CryoLetters 16: 299-306Google Scholar
  54. Matsumoto T, Sakai A, Takahashi C, Yamada K (1995) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by encapsulation-vitrification method. CryoLetters 16: 189-196Google Scholar
  55. Miaja ML, Gambino G, Vallania R, Gribaudo I (2004) Cryopreservation of Vitis vinifera L. somatic embryos by vitrification or encapsulation-dehydration. Acta Hortic 663: 599-603Google Scholar
  56. Moges AD, Shibli RA, Karam NS (2004) Cryopreservation of African violet (Saintpaulia ionantha Wendl.) shoot tips. In Vitro Cell Dev Biol-Plant 40: 389-395CrossRefGoogle Scholar
  57. Niino T, Sakai A (1992) Cryopreservation of alginate-coated in vitro-grown shoot tips of apple, pear and mulberry. Plant Sci 87: 199-206CrossRefGoogle Scholar
  58. Niino, T, Sakai A, Yakuwa H (1992) Cryopreservation of dried shoot tips of mul-berry winter buds and subsequent plant regeneration. CryoLetters 13: 51-58 Pâques M, Poissonnier M, Dumas E, Monod V (1997) Cryopreservation of dormant and non-dormant broad-leaved trees. Acta Hortic 447: 491-497Google Scholar
  59. Paul H, Daigny G, Sangwann-Norreel BS (2000) Cryopreservation of apple (Malus x domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep 19: 768-774CrossRefGoogle Scholar
  60. Paulet F, Engelmann F, Glaszmann JC (1993) Cryopreservation of apices of in vitro plantlets of sugarcane (Saccharum sp.) using encapsulation/dehydration. Plant Cell Rep 12: 525-529CrossRefGoogle Scholar
  61. Pennycooke JC, Towill LE (2001) Medium alterations improve regrowth of sweet potato (Ipomoea batatas {L.} Lam.) shoot tips cryopreserved by vitrification and encapsulation-dehydration CryoLetters 22: 381-389PubMedGoogle Scholar
  62. Perán R, Berjak P, Pammenter NW, Kioko JI (2006) Cryopreservation, encapsulation and promotion of shoot production of embryonic axes of a recalcitrant species Ekebergia capensis, Sparrm. CryoLetters 27: 5-16Google Scholar
  63. Phunchindawan M, Hirata K, Sakai A, Miyamoto K (1997) Cryopreservation of encapsulated shoot primordia induced in horseradish (Armoracia rusticana) hairy root cultures. Plant Cell Rep 16: 469-473Google Scholar
  64. Plessis P, Leddet C, Dereuddre J (1991) Resistance to dehydration and to freezing in liquid nitrogen of alginate coated shoot-tips of grape vine (Vitis vinifera L. cv. Chardonnay). C R Acad Sci Paris 313 Sér III: 373-380Google Scholar
  65. Poissonnier M, Monod V, Pâques M, Dereuddre J (1991) Cryopreservation in liquid nitrogen of Eucalyptus gunnii shoot tips grown in vitro following encapsulation and dehydration. Ann Rech Sylv AFOCEL1991 1992: 5-23Google Scholar
  66. Quatrano RS (1968) Freeze-preservation of cultured flax cells utilizing dimethyl sulfoxide. Plant Physiol 43: 2057-2061CrossRefPubMedGoogle Scholar
  67. Redenbaugh K, Paasch BD, Nichol JW, Kossler ME, Viss PR, Walker KA (1986) Somatic seeds: Encapsulation of asexual plant embryos. Biotechnology 4: 797-801CrossRefGoogle Scholar
  68. Reed BM, Yu X (1995) Cryopreservation of in vitro-grown gooseberry and currant meristems. CryoLetters 16: 131-136Google Scholar
  69. Reed BM, Schumacher L, Dumet D, Benson E (2005) Evaluation of a modified encapsulation-dehydration procedure incorporating high sucrose pretreatments for the cryopreservation of Ribes germplasm. In Vitro Cell Dev Biol-Plant 41: 431-436CrossRefGoogle Scholar
  70. Reed BM, Schumacher L, Wang N, D’Achino J, Barker RE (2006) Cryopreserva-tion of bermudagrass germplasm by encapsulation dehydration. Crop Sci 46:6-11CrossRefGoogle Scholar
  71. Sakai A (1960) Survival of the twig of woody plants at -196°C. Nature 185: 393-394CrossRefGoogle Scholar
  72. Sakai A (1985) Cryopreservation of shoot-tips of fruit trees and herbaceous plants. In: Kartha KK (ed) Cryopreservation of Plant Cells and Tissues. CRC Press, Boca Raton, Florida, pp 135-170Google Scholar
  73. Sakai A (2000) Development of cryopreservation techniques. In: Engelmann F, Takagi H (eds) Cryopreservation of Tropical Plant Germplasm—Current Research Progress and Applications. JIRCAS, Tsukuba/IPGRI, Rome, pp 1-7Google Scholar
  74. Sakai A, Matsumoto T, Hirai D, Niino TI (2000) Newly developed encapsulationdehydration protocol for plant cryopreservation. CryoLetters 21: 53-62PubMedGoogle Scholar
  75. Sales E, Neubauer SG, Arrillaga I, Segura J (2001) Cryopreservation of Digitalis obscura selected genotypes by encapsulation-dehydration. Planta Medica 67: 833-838CrossRefPubMedGoogle Scholar
  76. Sangeeta A, Mandal BB, Sonali-Dixit S, Srivastava PS (2002) Molecular, phenotypic and biosynthetic stability in Dioscorea floribunda plants derived from cryopreserved shoot tips. Plant-Sci 163: 971-977CrossRefGoogle Scholar
  77. Santos IRI, Stushnoff C (2002) Cryopreservation of embryonic axes of Citrus species by encapsulation-dehydration. Plant Genet Resour Newsl 131: 36-41Google Scholar
  78. Scottez C, Chevreau E, Godard N, Arnaud Y, Duron M, Dereuddre J (1992) Cryopreservation of cold-acclimated shoot tips of pear in vitro cultures after encapsulation-dehydration. Cryobiology 29: 691-700CrossRefGoogle Scholar
  79. Shatnawi M, Engelmann F, Frattarelli A, Damiano C, Withers LA (1999) Cryopreservation of apices from in vitro plantlets of almond (Prunus dulcis Mill.). CryoLetters 20: 13-20Google Scholar
  80. Shatnawi MA, Johnson KA (2004) Cryopreservation by encapsulation-dehydration of “Christmas bush” (Ceratopetalum gummiferum) shoot tips. In Vitro Cell Dev Biol-Plant 40: 239-244CrossRefGoogle Scholar
  81. Shatnawi MA, Johnson KA, Torpy FR (2004) In vitro propagation and cryostorage of Sygysium francissi (Myrtaceae) by the encapsulation-dehydration method. In Vitro Cell Dev Biol-Plant 40: 403-407CrossRefGoogle Scholar
  82. Sherlock G, Block W, Benson EE (2005) Thermal analysis of the plant encapsulation-dehydration cryopreservation protocol using silica gel as the desiccant. CryoLetters 26: 45-54PubMedGoogle Scholar
  83. Shibli RA (2000) Cryopreservation of black iris (Iris nigricans) somatic embryos by encapsulation-dehydration. CryoLetters 21: 39-46PubMedGoogle Scholar
  84. Shibli RA, Al-Juboory KH (2000) Cryopreservation of ‘Nabali’ olive (Olea europaea L.) somatic embryos by encapsulation-dehydration and encapsulationvitrification. CryoLetters 21: 357-366PubMedGoogle Scholar
  85. Shibli RA, Smith MAL, Shatnawi MA (1998) Pigment recovery from encapsulated-dehydrated Vaccinium pahalae (ohelo) cryopreserved cells. Plant Cell Tissue Organ Cult 55: 119-123CrossRefGoogle Scholar
  86. Shibli RA, Haagenson DM, Cunningham SM, Berg WK, Volenec JJ (2001) Cryopreservation of alfalfa (Medicago sativa L.) cells by encapsulation-dehydration. Plant Cell Rep 20: 445-450CrossRefGoogle Scholar
  87. Sonali-Dixit S, Ahuja Ghosh S, Mandal BB, Srivastava PS (2005) Metabolic stability of plants regenerated from cryopreserved shoot tips of Dioscorea deltoidea - an endangered medicinal plant. Sci Hortic 105: 513-517CrossRefGoogle Scholar
  88. Sudarmonowati E, Rosmithayani (1997) Cryopreservation of Acacia mangium shoot tips. In: Jenie UA (ed) Proc Indonesian Biotech Conf: Challenges of Biotechnology in the 21st Century, Bogor, June 17-19 1997, vol. 2, pp 733- 742Google Scholar
  89. Suzuki M, Niino T, Miura N, Akihama T (1996) Viability of cryopreserved shoot tips from kiwifruit seedlings at different growth stages in vitro. Bull Fac Agric Meiji Univ 107: 27-35Google Scholar
  90. Swann TW, Deakin EA, Hunjan G, Souch GR, Spencer ME, Stafford AM, Lynch PT (1998) Cryopreservation of cell suspensions of Polygonum aviculare using traditional controlled rate freezing and encapsulation/dehydration protocols, a comparison of post-thaw cell recovery. CryoLetters 19: 237-248Google Scholar
  91. Tahtamouni RW, Shibli RA (1999) Preservation at low temperature and cryopreservation in wild pear (Pyrus syriaca). Adv Hortic Sci 13: 156-160Google Scholar
  92. Tannoury M, Vintejoux C, Dereuddre J (1995) Cryoconservation par encapsulation et déshydratation d’apex d’oeillet (Dianthus caryophyllus L.) cultivés in vitro. Acta Bot Gallic 142: 415-424Google Scholar
  93. Uragami A (1993) Cryopreservation of cultured cells of vegetables. In: Cryopreservation of Plant Genetic Resources. Technical Assistance Activities for Genetic Resources Projects Ref N°6. Japan International Cooperation Agency, Tokyo, pp 107-135Google Scholar
  94. Vandenbussche B, De Proft MP (1996) Cryopreservation of in vitro sugar beet shoot-tips using the encapsulation-dehydration technique: Development of a basic protocol. CryoLetters 17: 137-140Google Scholar
  95. Vandenbussche B, Demeulemeester MAC, De Proft MP (1993) Cryopreservation of alginate-coated in vitro grown shoot-tips of chicory (Cichorium intybus L.) using rapid freezing. CryoLetters 14: 259-266Google Scholar
  96. Verleysen H, Bockstaele (van) E, Debergh P (2005) An encapsulation-dehydration protocol for cryopreservation of the azalea cultivar “Nordlicht” (Rhododendron simsii Planch). Sci Hortic 106: 402-414Google Scholar
  97. Vigneron T, Arbault S, Kaas R (1997) Cryopreservation of gametophytes of Laminaria digitata (L.) Lamouroux by encapsulation-dehydration. CryoLetters 18: 93-98Google Scholar
  98. Wang QC, Tanne E, Amir A, Gafny R (2000) Cryopreservation of in vitro grown shoot tips of grapevine by encapsulation-dehydration. Plant Cell Tissue Organ Cult 63: 41-46CrossRefGoogle Scholar
  99. Wang QC, Batuman O, Li P, Bar J, Gafny R (2002a) Cryopreservation of in vitrogrown shoot tips of “Troyer” citrange (Poncirus trifoliata (L.) Raf. x Citrus sinensis Osbeck.) by encapsulation-dehydration. Plant Cell Rep 20: 901-906CrossRefGoogle Scholar
  100. Wang QC, Gafny R, Sahar N, Ilan S, Munir M, Tanne E, Avihai P (2002b) Cryopreservation of grapevine (Vitis vinifera L.) embryogenic cell suspensions by encapsulation-dehydration and subsequent plant regeneration. Plant Sci 162: 551-558CrossRefGoogle Scholar
  101. Wang Q, Laamanen J, Uosukainen M, Valkonen JPT (2005) Cryopreservation of in vitro-grown shoot tips of raspberry (Rubus idaeus L.) by encapsulationvitrification and encapsulation-dehydration. Plant Cell Rep 24: 280-288CrossRefPubMedGoogle Scholar
  102. Wilkinson T, Wetten A, Fay MF (1998) Cryopreservation of Cosmos atrosanguineus shoot tips by a modified encapsulation/dehydration method. CryoLetters 19: 293-302Google Scholar
  103. Wood CB, Pritchard HW, Miller AP (2000) Simultaneous preservation of orchid seed and its fungal symbiont using encapsulation-dehydration is dependent on moisture content and storage temperature. CryoLetters 21: 125-136PubMedGoogle Scholar
  104. Wu Y, Engelmann F, Zhao Y, Zhou M, Chen S (1999) Cryopreservation of apple shoot tips: Importance of cryopreservation technique and of conditioning of donor plants. CryoLetters 20: 121-130Google Scholar
  105. Wu Y, Zhao Y, Engelmann F, Zhou M (2001) Cryopreservation of apple dormant buds and shoot tips. CryoLetters 22: 277-284.PubMedGoogle Scholar
  106. Zhai ZY, Wu YJ, Engelmann F, Chen RZ, Zhao YH (2003) Genetic stability assessments of plantlets regenerated from cryopreserved in vitro cultured grape and kiwi shoot tips using RAPD. CryoLetters 24: 315-322PubMedGoogle Scholar
  107. Zhao Y, Wu Y, Engelmann F, Zhou M, Zhang D, Chen S (1999) Cryopreservation of apple shoot tips by encapsulation-dehydration: effect of preculture, dehydration and freezing procedure on shoot regeneration. CryoLetters 20: 103-108Google Scholar
  108. Zhao Y, Wu Y, Engelmann F, Zhou M (2001) Cryopreservation of axillary buds of grape (Vitis vinifera) in vitro plantlets. CryoLetters 22: 321-328PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Florent Engelmann
    • 1
  • Maria-Teresa Gonzalez Arnao
    • 2
  • Yongjie Wu
    • 3
  • Roosevelt Escobar
    • 4
  1. 1.Institut de Recherche pour le Développement (IRD)France
  2. 2.Facultad de Ciencias QuímicasUniversidad VeracruzanaOrizabaMéxico
  3. 3.Changli Institute of PomologyHebei Academy of Agricultural and Forestry SciencesHebeiChina
  4. 4.Centro Internacional de Agricultura Tropical (CIAT)Colombia

Personalised recommendations