Skip to main content

Cryopreservation protocols contain components which are usually developed empirically using plant-specific strategies that enhance survival. The theory of cryopreservation encompasses several interconnected disciplines ranging from the physiological to cryophysical. Water status and cryoprotection are the most influential determinants of survival in combination with physiological factors. This chapter introduces the basic principles of cryopreservation theory and aspects of biological chemistry pertinent to protocol development. This review is targeted at researchers new to the field and emphasis is placed on understanding cryoprotection, the physiological role of water and the manipulation of its different states. A theoretical understanding of cryobiology will help cryoconservationists to optimize their storage methods and enhance the long-term preservation of plant and algal collections in a stable cryogenic state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benson EE (2004) Cryoconserving algal and plant diversity: Historical perspec- tives and future challenges. In: Fuller B, Lane N, Benson EE (eds) Life in the Frozen State. CRC Press, London, pp. 299-328.

    Google Scholar 

  • Benson EE, Johnston J, Muthusamy J, Harding K (2005) Physical and engineering perspectives of in vitro plant cryopreservation. In: Dutta Gupta S, Ibaraki Y (eds) Plant Tissue Culture Engineering. Springer, the Netherlands, pp. 441-473.

    Google Scholar 

  • Benson EE, Reed BM, Brennan R, Clacher KA, Ross DA (1996) Use of thermal analysis in the evaluation of cryopreservation protocols for Ribes nigrum L. germplasm. CryoLetters 17:347-362.

    Google Scholar 

  • Bourion V, Lejeune-Henaut I, Munier-Jolain N, Salon C (2003) Cold acclimation of winter and spring peas: Carbon partitioning as affected by light intensity. Eur J Agron 19:535-548.

    Article  CAS  Google Scholar 

  • Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: Survival in the dry state. Cryobiology 48:215-228.

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Reed BM (1999) Extended cold acclimation and recovery medium al- teration improve regrowth of Rubus shoot tips following cryopreservation. CryoLetters 20:371-376.

    Google Scholar 

  • Chang Y, Reed BM (2000) Extended alternating-temperature cold acclimation and culture duration improve pear shoot cryopreservation. Cryobiology 40:311-322.

    Article  CAS  PubMed  Google Scholar 

  • Chen THH, Uemura M, Fujikawa S (2006) Cold Hardiness in Plants, Molecular Genetics, Cell Biology and Physiology. CABI Publishing, CAB International, Wallingford, Oxon.

    Google Scholar 

  • Day JG, McClellan MR (1995) Cryopreservation and freeze-drying protocols. Methods in Molecular Biology Volume 38. Humana Press, Totowa, New Jersey.

    Google Scholar 

  • Fahy GM (1987) Biological effect of vitrification and devitrification. In: Pegg DE, Karow AM (eds) The Biophysics of Organ Preservation. Plenum Press, New York, pp. 267-293.

    Google Scholar 

  • Fahy GN, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407-426.

    Article  CAS  PubMed  Google Scholar 

  • Fahy GM, Takahashi T, Meryman HT (1986) Practical aspects of ice-free cryo- preservation. In: Smit-Sibinga TH, Das PC (eds) Aspects of Ice-Free Cryopre- servation. Martinus-Nijhoff, Boston, Massachusetts, pp. 111-122.

    Google Scholar 

  • Fahy GM, Wowk B, Wu J, Paynter S (2004) Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22-35.

    Article  CAS  PubMed  Google Scholar 

  • Fleck RA, Pickup RW, Day JG, Benson, EE (2006) Characterisation of cryoinjury in Euglena gracilis using flow-cytometry and cryomicroscopy. Cryobiology 52:261-268.

    Article  CAS  PubMed  Google Scholar 

  • Franks F (1972) Water: A Comprehensive Treatise Volume I. The Physics and Physical Chemistry of Water. Plenum Press, London.

    Google Scholar 

  • Fuller BJ (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 25:375-388.

    CAS  PubMed  Google Scholar 

  • Hirsh AG (1987) Vitrification in plants as a natural form of cryoprotection. Cryo- biology 24:214-228.

    Article  CAS  Google Scholar 

  • Hirsh AG, Robert JW, Meryman HT (1985) A novel method of natural cryopro- tection: Intracellular glass formation in deeply frozen Populus. Plant Physiol 79:41-56.

    Article  CAS  PubMed  Google Scholar 

  • Kartha KK (1985) Cryopreservation of Plant Cells and Organs. CRC Press Inc., Boca Raton, Florida.

    Google Scholar 

  • Koster KL (1991) Glass formation and desiccation tolerance in seeds. Plant Physiol 96:302-304.

    Article  CAS  PubMed  Google Scholar 

  • Lovelock JE (1953) The mechanism of the cryoprotective effect of glycerol against haemolysis by freezing and thawing. Biochem Biophys Acta 11:28-36.

    Article  CAS  PubMed  Google Scholar 

  • Mazur, P (2004) Principles of cryobiology, In: Fuller B, Lane N, Benson EE (eds) Life in the Frozen State. CRC Press, London, pp. 3-66.

    Google Scholar 

  • Meryman HT, Williams RJ (1980) Mechanisms of freezing injury and natural tolerance and the principles of artificial cryoprotection. In: Withers LA, Williams JT (eds) Crop Genetic Resources, The Conservation of Difficult Material. International Union of Biological Sciences, International Board for Plant Genetic Resources, International Genetic Federation. Séries B42, Brie-Comte-Robert Printers, Paris, France pp. 5-38.

    Google Scholar 

  • Meryman HT, Williams, RJ (1985) Basic principles of freezing injury to plant cells: Natural tolerance and approaches to cryopreservation. In: Kartha KK (ed) Cryopreservation of Plant Cells and Organs. CRC Press Inc., Boca Raton, Florida, pp. 14-47.

    Google Scholar 

  • Muldrew K, Acker JP, Elliott AW, McGann LE (2004) The water to ice transition: implications for living cells. In: Fuller B, Lane N, Benson EE (eds) Life in the Frozen State, CRC Press, London, pp. 67-108.

    Google Scholar 

  • Pearce RS (2004) Adaptation of higher plants to freezing. In: Fuller B, Lane N, Benson EE (eds) Life in the Frozen State. CRC Press, London, New York, pp. 171-203.

    Google Scholar 

  • Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666.

    Article  CAS  PubMed  Google Scholar 

  • Reed BM (1988) Cold acclimation as a method to improve survival of cryopre- served Rubus meristems. CryoLetters 9:166-171.

    Google Scholar 

  • Sakai A (1956) Survival of plant tissue at super-low temperatures. Low Temp Sci Ser B 14:17-23.

    Google Scholar 

  • Sakai A (1960) Survival of a twig of woody plants at −196°C. Nature 185:393-394.

    Article  Google Scholar 

  • Sakai A (1966) Survival of a plant tissue at super-low temperature IV cell survival with rapid cooling and rewarming. Plant Physiol 41:1050-1054.

    Article  PubMed  Google Scholar 

  • Sakai A (2004) Plant cryopreservation. In: Fuller B, Lane N, Benson EE (eds) Life in the Frozen State. CRC Press, London, New York, pp. 329-345.

    Google Scholar 

  • Tao D, Li PH (1986) Classification of plant cryoprotectants. J Theor Biol 123:305-310.

    Article  CAS  Google Scholar 

  • Taylor MJ, Song YC, Brockbank KGM (2004) Vitrification in tissue preservation: New developments. In: Fuller B, Lane N, Benson EE (eds) Life in the Frozen State, CRC Press, London, New York, pp. 603-644.

    Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50:571-599.

    Article  CAS  Google Scholar 

  • Thorlby G, Fourrier N, Warren G (2004) The SENSITIVE TO FREEZING2 gene, required for freezing tolerance in Arabidopsis thaliana, encodes a B- glucosidase. The Plant Cell 16:2192-2203.

    Article  CAS  PubMed  Google Scholar 

  • Turner S, Senaratna T, Touchell D, Bunn E, Dixon K, Tan B (2001) Stereochemi- cal arrangement of hydroxyl groups in sugar and polyalcohol molecules as an important factor in effective cryopreservation. Plant Sci. 160:489-497.

    Article  CAS  PubMed  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: Multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173-194.

    Article  CAS  PubMed  Google Scholar 

  • Uemura M, Sakai A (1980) Survival of carnation (Dianthus caryophyllus L.) shoot apices frozen to the temperature of liquid nitrogen. Plant Cell Physiol 21:85-94.

    CAS  Google Scholar 

  • Volk GM, Walters C (2006) Plant vitrification solution 2 lowers water content and alters freezing behaviour in shoot tips during cryoprotection. Cryobiology 52:48-61.

    Article  CAS  PubMed  Google Scholar 

  • Withers LA (1975) Freeze-preservation of cultures cells and tissues. In: Thorpe, TA (ed) Frontiers of Plant Tissue Culture. International Association of Plant Tissue Culture, University of Calgary, Calgary, Alberta, Canada, pp. 297-309.

    Google Scholar 

  • Withers LA, King PJ (1980) A simple freezing unit and routine cryopreservation methods for plant cell cultures. CryoLetters 1:213-220.

    Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893-902.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Benson, E.E. (2008). Cryopreservation Theory. In: Reed, B.M. (eds) Plant Cryopreservation: A Practical Guide. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72276-4_2

Download citation

Publish with us

Policies and ethics