Advertisement

Cryopreservation of Fruit and Ornamental Trees

  • Yanhua Zhao
  • Yongjie Wu
  • Yongjian Chang
  • Barbara M. Reed

Non-forest woody plants include many fruit trees and ornamental plants. They not only provide delicious fruit but are also important as horticultural landscape plants. Conservation of these germplasm resources is necessary for the continued development of agriculture. As most species and cultivars of woody plants are genetically heterozygous, their genetic integrity must be maintained through vegetative propagation. The conventional method for woody plants is conservation in the field. However for longterm preservation of these genetic resources the field genebank is not only costly, because of the land and constant maintenance, but also susceptible to insects, diseases and environmental stress (Engelmann 2000; Reed et al. 2005). In-vitro cultured plantlets can be mass propagated with limited space and under disease-free conditions. Most cultures can be held under reduced or minimum growth conditions for years without reculture. Thus in-vitro plantlets are suitable materials for short- or medium-term backup storage of plant germplasm (Engelmann 2003; Reed and Chang 1997).

Cryopreserved storage of plants in liquid nitrogen (LN) is the most promising approach to achieve long-term maintenance of woody plant germplasm (Sakai 1995). Cryopreservation can save labor and space, and it complements current germplasm storage methods, making it an important tool for long-term storage of vegetatively propagated plants (Engelmann 2000). Sakai (1960) first demonstrated that winter-hardy twigs survived after immersion in LN for 1 year. Since then many reports indicate that materials with meristems or embryogenic cultures of woody plants can be conserved successfully in LN (Kartha 1985, Sakai 1995, Reed and Chang 1997).

Keywords

Cold Acclimation Cold Hardiness Ornamental Tree Recovery Medium Preculture Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashmore SE, Azimi M, Drew RA (2001). Cryopreservation trials in Carica papaya. In: Sorvari S, Karhu S, Kanervo E, Pihakaski S (eds.) Proc. 4th International Symposium on In Vitro Culture and Horticultural Breeding. Acta Hort 560: 117-120Google Scholar
  2. Brison M, de Boucaud MT, Dosba F (1995) Cryopreservation of in vitro grown shoot tips of two interspecific Prunus rootstocks. Plant Sci 105: 235-242CrossRefGoogle Scholar
  3. Chang Y, Chen S, Zhao Y, Zhang D (1992) Studies of cryopreservation of apple shoot tips. In: China Association for Science and Technology First Academic Annual Meeting of Youths Proceedings (Agricultural Sciences). Chinese Sci. Technol. Press, Beijing, pp 461-464Google Scholar
  4. Chang Y, Reed BM (1999) Extended cold acclimation and recovery medium alteration improve regrowth of Rubus shoot tips following cryopreservation. CryoLetters 20: 371-376Google Scholar
  5. Chang Y, Reed BM (2000a) Cold acclimation improves the cryopreservation of in vitro-grown Pyrus and Rubus meristems. In: Engelmann F, Takagi H (eds.) Cryopreservation of Tropical Germplasm. Current Research Progress and Application. Japan International Research Center for Agricultural Sciences and International Plant Genetic Resources Institute, Rome, Italy, pp 382-384Google Scholar
  6. Chang Y, Reed BM (2000b) Extended alternating-temperature cold acclimation and culture duration improve pear shoot cryopreservation. Cryobiology 40: 311-322CrossRefPubMedGoogle Scholar
  7. Chang Y, Reed BM (2001) Preculture conditions influence cold hardiness and regrowth of Pyrus cordata shoot tips after cryopreservation. HortScience 36: 1329-1333Google Scholar
  8. de Boucaud MT, Brison M (1995) Cryopreservation of germoplasm of walnut (Juglans sp.). In: Bajaj YPS (ed.) Biotechnology in Agriculture and Forestry, Vol 32 Cryopreservation of Plant Germplasm I, Springer, Berlin-Heidelberg, pp 129-147Google Scholar
  9. de Boucaud MT, Brison M, Helliot B, Hervé-Paulus V (2001) Cryopreservation of Prunus. In: Towill LE and Bajaj YPS (eds.) Biotechnology in Agriculture and  Forestry, Vol 50 Cryopreservation of Plant Germplasm II, Springer, BerlinHeidelberg, pp 287-311Google Scholar
  10. de Boucaud MT, Brison M, Helliot B, Hervé-Paulus V (2002) Cryopreservation of Prunus. In: Towill LE, Bajaj YPS, (eds.) Biotechnology in Agriculture and Forestry, Vol 50. Cryopreservation of Plant Germplasm II, Springer, BerlinHeidelberg, pp 287-311)Google Scholar
  11. De Carlo A, Benelli C, Lambardi M 2000. Development of a shoot-tip vitrification protocol and comparison with encapsulation-based procedures for plum (Prunus domestica L.) cryopreservation. CryoLetters 21: 215-222.PubMedGoogle Scholar
  12. De Fossard RA, Myint A, Lee ECM (1974) A broad spectrum tissue culture experiment with tobacco (Nicotiana tabacum, L.) pith callus. Physiol Plant 31: 125-130CrossRefGoogle Scholar
  13. Derreudre J, Scottez C, Arnaud Y, Duron M (1990a) Resistance of alginate-coated axillary shoot tips of pear tree (Pyrus communis L. cv. Beurre Hardy) in vitro plantlets to dehydration and subsequent freezing in liquid nitrogen. C.R. Acad. Sci. Paris 310: 317-323Google Scholar
  14. Derreudre J, Scottez C, Arnaud Y, Duron M (1990b) Effects of cold hardening on cryopreservation of axillary pear (Pyrus Communis L. cv Beurre Hardy) shoot tips of in vitro plantlets. C.R. Acad. Sci. Paris 310: 265-272Google Scholar
  15. Drew R A (1988) Rapid clonal propagation of papaya in vitro from mature fieldgrown trees. HortScience 23: 609-11Google Scholar
  16. Driver JA, Kuniyuki AH (1984) In vitro propagation of Paradox walnut rootstock. HortScience 19: 507-509Google Scholar
  17. Dumet D, Chang Y, Reed BM, Benson EE (2000) Replacement of cold acclimatization with high sucrose pretreatment in black currant cryopreservation. In: Engelmann F, Takagi H (eds.) Cryopreservation of Tropical Plant Germplasm. Current Research Progress and Applications. JIRCAS, Tsukuba and IPGRI, Rome, pp 385-387Google Scholar
  18. Dussert S, Chabrillange N, Engelmann F, Anthony F, Vasquez N, Hamon S (2001) Cryoconservation of Coffee (coffee) Towill LE and Bajaj YPS (eds.) Biotechnology in Agriculture and Forestry, Vol 50 Cryopreservation of Plant Germplasm II, Springer, Berlin-Heidelberg, pp 220-23Google Scholar
  19. Engelmann F (1997) In vitro conservation methods. In: Ford-Lloyd BV, Newbury HJ, Callow JA (eds.) Biotechnology and Plant Genetic Resources-Conservation and use. CABI, UK, pp 119-162Google Scholar
  20. Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds.) Cryopreservation of Tropical Plant Germplasm. Current Research Progress and Applications. JIRCAS, Tsukuba and IPGRI, Rome, pp 8-20Google Scholar
  21. Engelmann F (2003) Current research status and utilization of plant cryopreservation. In: Proceedings of The International Workshop on Cryopreservation of Bio-Genetic Resources. NIABRDA, Suwon, Republic of Korea. pp 19-37Google Scholar
  22. Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicum esculentum. Planta 107: 161-70CrossRefGoogle Scholar
  23. Gupta S, Reed BM (2006) Cryopreservation of shoot tips of blackberry and raspberry by encapsulation-dehydration and vitrification. CryoLetters 27: 29-42PubMedGoogle Scholar
  24. Kartha KK (1985) Meristem culture and germplasm preservation. In: Kartha KK (ed.) Cryopreservation of Plant Cells and Organs. CRC Press, Boca Raton, Florida. pp 115-134Google Scholar
  25. Katano M, Ishihara A, Sakai A (1984) Survival of apple shoot tips cultured in vitro after immersion in liquid nitrogen. Japan Jol Breed 59 (Suppl 1): 46-47Google Scholar
  26. Kuo CC, Lineberger RD (1985) Survival of in vitro cultured tissue of ‘Jonathan’ apples exposed to −196°C. HortScience 20: 764-767Google Scholar
  27. Liu Y, Wang X, Liu L (2004) Analysis of genetic variation in surviving apple shoots following cryopreservation by vitrification. Plant Sci 166: 677-685CrossRefGoogle Scholar
  28. Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant Prop Soc 30: 421-427Google Scholar
  29. Lynch PT (2001) Cryopreservation of Rose (Rose). In: Towill LE and Bajaj YPS (eds.) Biotechnology in Agriculture and Forestry, Vol 50. Cryopreservation of Plant Germplasm II, Springer, Berlin-Heidelberg, pp 344-356Google Scholar
  30. Martínez D, Arroyo-García R, Revilla MA (1999) Cryopreservation of in vitro grown shoot-tips of Olea europaea L. var Arbequina. CryoLetters 20: 29-36Google Scholar
  31. Morel G, Wetmore R M (1951) Fern callus tissue culture. Am J Bot 38: 141-143CrossRefGoogle Scholar
  32. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473-497CrossRefGoogle Scholar
  33. Niino T, Oka S (1990) Plant regeneration from in vitro grown mulberry shoot tips frozen in liquid nitrogen. Jol Seric Sci Japan 59: 111-117Google Scholar
  34. Niino T, Sakai A (1992) Cryopreservation of alginate-coated in vitro-grown shoot tips of apple, pear and mulberry. Plant Sci 87: 199-206CrossRefGoogle Scholar
  35. Niino T, Sakai A, Enomoto S, Magoshi J, Kato S (1992) Cryopreservation of in vitro grown shoot tips of mulberry by vitrification. CryoLetters 13: 303-312Google Scholar
  36. Niino T, Sakai A, Yakuwa H, Nojiri K (1992) Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tiss Org Cult 28: 261-266CrossRefGoogle Scholar
  37. Paulus V, Brison M, Dosba F, de Boucaud MT (1993) Preliminary studies on cryopreservation of peach shoot tips by vitrification. Comptes Rendus de l’Academie d’Agriculture de France, Series 7, 79: 93-102Google Scholar
  38. Quoirin M, Lepoivre P (1977) Improved media for in vitro culture of Prunus. Acta Hort 78: 437-442Google Scholar
  39. Reed BM (1988) Cold acclimation as a method to improve survival of cryopreserved Rubus meristems. CryoLetters 9: 166-171Google Scholar
  40. Reed BM (1990) Survival of in vitro grown apical meristems of Pyrus following cryopreservation. HortScience 25: 111-113Google Scholar
  41. Reed BM (1993) Responses to ABA and cold acclimation are genotype dependent for cryopreserved blackberry and raspberry meristems. Cryobiology 30: 179-184CrossRefGoogle Scholar
  42. Reed BM (1996) Pretreatment strategies for cryopreservation of plant tissues. In: Normah MN, Narimah MK, Clyde MM (eds.) In Vitro Conservation of Plant Genetic Resources. Universiti Kebangsaan, Malaysia, pp 73-87Google Scholar
  43. Reed BM (2001) Implementing cryogenic storage of clonally propagated plants. CryoLetters 22: 97-104PubMedGoogle Scholar
  44. Reed BM, Chang Y (1997) Chapter 4. Medium and long-term storage of in vitro cultures of temperate fruit and nut crops. In: Razdan MK Cocking EC (eds.) Conservation of Plant Genetic Resources In Vitro. M/S Science Publishers, Inc, USA., Vol 1, pp 67-105Google Scholar
  45. Reed BM, Engelmann F, Dulloo E, Engels J (eds.) (2005) Technical Guidelines for the Management of Field and In Vitro Germplasm Collections. IPGRI/FAO/SGRP, Rome, ItalyGoogle Scholar
  46. Reed BM, Lagerstedt HB (1987) Freeze preservation of apical meristems of Rubus in liquid nitrogen. HortScience 22: 302-303Google Scholar
  47. Reed BM, Hummer KE (2001) Cryopreservation of Ribes. In: Towill LE, Bajaj YPS (eds.) Biotechnology in Agriculture and Forestry, Vol 50. Cryopreservation of plant germplasm II, Springer, Berlin-Heidelberg, pp 322-343Google Scholar
  48. Revilla MA, Martinez D, Martinez-Zapater JM, Arroyo-Garcia R (2001) Cryopreservation of Olea europaea L (Olive). In: Towill LE, Bajaj YPS (eds.) Biotechnology in Agriculture and Forestry, Vol 50. Cryopreservation of Plant Germplasm II, Springer, Berlin-Heidelberg, pp 287-311Google Scholar
  49. Sakai A (1960) Survival of the twig of woody plants at −196°C. Nature 185: 393-394CrossRefGoogle Scholar
  50. Sakai A (1995) Cryopreservation for germplasm collection in woody plants. In: Jain SM (ed.) Somatic Embryogenesis in Woody Plants: History, Molecular and Biochemical Aspects, and Applications, Vol 1, pp 293-315Google Scholar
  51. Shatnawi MA, Engelmann F, Frattarelli A, Damiano C (1999) Cryopreservation of apices of in vitro plantlets of almond (Prunus dulcis Mill.). CryoLetters 20: 13-20Google Scholar
  52. Stushnoff C, Seufferheld M (1995) Cryopreservation of Apple (Malus species) genetic resources. In: Bajaj YPS (ed.) Biotechnology in Agriculture and Forestry, Vol 32. Cryopreservation of Plant Germplasm I, Springer, BerlinHeidelberg, pp 87-101Google Scholar
  53. Stushnoff C, Seufferheld MJ, Creegan T (1998) Oligosaccharides as endogenous cryoprotectants in woody plants. In: Li P, Chen THH (eds.) Plant Cold Hardiness. Plenum Press, New York. pp 301-309Google Scholar
  54. Takagi H (2000) Recent developments in cryopreservation of shoot apices of tropical species. In: Engelmann F, Takagi H (eds.) Cryopreservation of Tropical Plant Germplasm. Current Research Progress and Applications. JIRCAS, Tsukuba and IPGRI, Rome, pp 178-193Google Scholar
  55. Verleysen H, Samyn G, Van Bockstaele E, Debergh P (2003) Cryopreservation of azalea by encapsulation-dehydration. Acta Hort 612: 139-145Google Scholar
  56. Verleysen H, Samyn G, Van Bockstaele E, Debergh P (2004) Evaluation of analytical techniques to predict viability after cryopreservation. Plant Cell Tiss Org Cult 77: 11-21CrossRefGoogle Scholar
  57. Verleysen H, Van Bockstaele E, Debergh P (2005) An encapsulation-dehydration protocol for cryopreservation of the azalea cultivar ‘Nordlicht’ (Rhododendron simsii Planch.). Scientia Hort 106: 402-414CrossRefGoogle Scholar
  58. Vidal N, Sánchez C, Jorquera L, Ballester A, Vieitez AM (2005) Cryopreservation of chestnut by vitrification of in vitro-grown shoot tips. In Vitro Cell Dev Biol-Plant 41: 63-68CrossRefGoogle Scholar
  59. Wang Q, Batuman O, Li P, Bar-Joseph M, Gafny R (2002) A simple and efficient cryopreservation of in vitro-grown shoot tips of ‘Troyer’ citrange (Poncirus trifoliata (L.) Raf. × Citrus sinensis (L.)). Euphytica 128: 135-142CrossRefGoogle Scholar
  60. Withers LA (1980) Low temperature storage of plant tissue cultures. In: Fiechler A (ed.) Advances in Biochemical Engineering. Springer Verlag, Berlin, pp 101-150Google Scholar
  61. Wu Y, Engelmann F, Zhao Y, Zhou M, Chen S (1999) Cryopreservation of apple shoot tips: Importance of cryopreservation technique and of conditioning of donor plants. CryoLetters 20: 121-130Google Scholar
  62. Yakuwa H, Oka S (1988) Plant regeneration through meristem culture from vegetative buds of mulberry (Morus bombycis Koidz) stored in liquid nitrogen. Ann. Bot. 62: 79-82Google Scholar
  63. Zeng J, Yi G, Zhang Q (2004) Cryopreservation of in vitro Papaya shoot-tips by vitrification technique and its regeneration. Acta Hort Sinica 31:29-33Google Scholar
  64. Zhao Y, Chen S, Wu Y, Chang Y, Zhang D (1995) Cryopreservation of in vitro shoot tips of apple by vitrification. In: China Association for Science and Technology Second Academic Annual Meeting of Youths Proceedings (Horticultural Sciences). Beijing Agricultural University Press, Beijing. pp 406- 409Google Scholar
  65. Zhao Y, Wu Y, Li C (2004) Comparison of three cryopreservation methods for pear in vitro shoot tips freezing. J Hebei Agr Sci 8(4): 93-95Google Scholar
  66. Zhao Y, Wu Y, Zhou M (1999) Cryopreservation of in vitro culture shoot tips of Prunus mahaleb. Acta Hort Sinica 26: 402-403Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yanhua Zhao
    • 1
  • Yongjie Wu
    • 1
  • Yongjian Chang
    • 2
  • Barbara M. Reed
    • 3
  1. 1.Changli Institute of PomologyHebei Academy of Agricultural and Forestry SciencesHebeiChina
  2. 2.North American Plants, LLCMcMinnvilleUSA
  3. 3.USDA-ARS National Clonal Germplasm RepositoryCorvallisUSA

Personalised recommendations