Skip to main content

Cryopreservation of Excised Embryos and Embryonic Axes

  • Chapter
Plant Cryopreservation: A Practical Guide

Seeds are categorized into two main groups according to their response to desiccation and their storage physiology: orthodox (desiccation-tolerant) and recalcitrant (desiccation-sensitive) seeds (Roberts 1973). A third category of seeds are those that are relatively desiccation tolerant but do not withstand desiccation down to water contents as low as those tolerated by orthodox seeds. These seeds are freezing sensitive and are referred to as intermediate seeds (Ellis et al. 1990, 1991).

Seed is the most preferred plant propagule for ex situ germplasm conservation due to low storage cost, ease of seed handling and regeneration of whole plants from genetically diverse materials (Chin 1994; Pritchard 1995). While orthodox seeds are acquiescent to storage under conventional gene bank conditions for centuries, (i.e. 3–7% seed water content at –20°C ) (FAO/IPGRI 1994), cryopreservation is the only available option for longterm storage of non-orthodox seeds. However, in circumstances where storage of the whole seed of a non-orthodox species is constrained by desiccation and freezing sensitivity on one hand, and by its relatively large seeds on the other, excised embryos and embryonic axes are an alternative option. In other cases where viability of lipid-rich orthodox seeds under conventional storage conditions is drastically reduced due to the thin seed coat coupled with lipid peroxidation, as in the case of peanuts (Arachis hypogaea), germplasm curators can resort to cryopreservation of the excised embryonic axes (Gagliardi et al. 2002). Several studies on recalcitrant and intermediate species empirically determined that excised embryos and embryonic axes (in most cases) are more tolerant to desiccation and subsequent cryoexposure than whole seeds (e.g. Bajaj 1984; Radhamani and Chandel 1992; Normah et al. 1994; Makeen et al. 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelnour-Esquivel A, Engelmann F (2002) Cryopreservation of chayote (Sechium edule JACQ. SW.) zygotic embryos and shoot tips from in vitro plantlets. CryoLetters 23: 299-308

    PubMed  Google Scholar 

  • Bajaj YPS (1984) Induction of growth in frozen embryos of coconut and ovules of citrus. Curr Sci 53: 1215-1216

    Google Scholar 

  • Bajaj YPS (1985) Cryopreservation of embryos. In: Kartha KK (ed) Cryopreser-vation of Plant Cells and Organs. CRC Press, Boca Raton, pp. 227-267

    Google Scholar 

  • Berjak P, Farrant JM, Pammenter NW (1990) The basis of recalcitrant seed behaviour. In: Taylorson RB (ed) Recent Advances in the Development and Germination of Seeds. Plenum Press, New York, pp. 89-108

    Google Scholar 

  • Berjak P, Mycock DJ, Wesley-Smith J, Dumet D, Watt MP (1996) Strategies for in vitro conservation of hydrated germplasm. In: Normah MN, Narimah MK, Clyde MM (eds) In Vitro Conservation of Plant Genetic Resources. Percetkan Watan SDN. BHD, Kuala Lumpur, pp. 19-52

    Google Scholar 

  • Berjak P, Vertucci CW, Pammenter NW (1993) Effects of developmental status and dehydration rate on characteristics of water and desiccation-sensitivity in recalcitrant seeds of Camellia sinensis. Seed Sci Res 3: 155-166

    Article  Google Scholar 

  • Berjak P, Walker M, Watt MP, Mycock DJ (1999) Experimental parameters underlying failure or success in plant germplasm cryopreservation: a case study on zygotic axes of Quercus robur L. CryoLetters 20: 251-262

    Google Scholar 

  • Buitink J, Claessens MMAE, Hemmings MA, Hoekstra FA (1998) Influence of water content and temperature on molecular mobility and intracellular glasses in seeds and pollen. Plant Physiol 118: 531-541

    Article  CAS  PubMed  Google Scholar 

  • Chandel KPS, Chaudhury R, Radhamani J (1996) Cryopreservation of embryos/ embryonic axes—A novel method for the long-term conservation of recalcitrant seed species. In: Normah MN, Narimah MK, Clyde MM (eds) In Vitro Conservation of Plant Genetic Resources. Percetakan Watan SDN. BHD, Kuala Lumpur, pp. 53-71

    Google Scholar 

  • Chaudhury R, Chandel KPS (1995) Cryopreservation of embryonic axes of almond (Prunus amygdalus Batsch.) seeds. CryoLetters 16: 51-56

    Google Scholar 

  • Chin HF (1994) Seed banks: Conservation of the past for the future. Seed Sci Technol 22: 385-400

    Google Scholar 

  • Chin HF, Krishnapillay B, Alang ZC (1988) Media for embryo culture of some tropical recalcitrant species. Pertanika 11: 357-363

    Google Scholar 

  • Cho EG, Kim HH, Baek HJ, Gwag JG, Normah MN (2003) Cryopreservation of Citrus medica seeds. J Korean Soc Hortic Sci 44: 565-568

    CAS  Google Scholar 

  • Cho EG, Normah MN, Kim HH, Rao VR, Engelmann F (2002) Cryopreservation of Citrus aurantifolia seeds and embryonic axes using a desiccation protocol. CryoLetters 23: 309-316

    PubMed  Google Scholar 

  • Corredoira E, San-José MC, Ballester A, Vieitez AM (2004) Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. CryoLetters 25: 33-42

    PubMed  Google Scholar 

  • Dussert S, Chabrillange N, Engelmann F, Hamon S (1999) Quantitative estimation of seed desiccation sensitivity using a quantal response model: Application to nine species of the genus Coffea L. Seed Sci Res 9: 135-144

    Google Scholar 

  • Dussert S, Chabrillange N, Rocquelin G, Engelmann F, Lopez M Hamon S (2001) Tolerance of coffee (Coffea spp.) seeds to ultra-low temperature exposure in relation to calorimetric properties of tissue water, lipid composition, and cooling procedure. Physiol Plant 112: 495-504

    Article  CAS  PubMed  Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1990) An intermediate category of seed storage behaviour? I. Coffee. J Exp Bot 41: 1167-1174

    Article  Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1991) An intermediate category of seed storage behaviour? II. Effects of provenance immaturity, and imbibition on desiccation-tolerance in coffee. J Exp Bot 42: 653-657

    Article  Google Scholar 

  • Engelmann F (1997) Importance of desiccation for cryopreservation of recalcitrant seed and vegetatively propagated apices. Plant Genet Resour Newsl 112: 9-18

    Google Scholar 

  • Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of Tropical Germplasm: Current Research Progress and Application. Japan International Research Centre for Agricultural Sciences, Tsukuba, pp. 8-20

    Google Scholar 

  • FAO/IPGRI (1994) Genebank standards. Food and Agriculture Organization/International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Farrant JM, Pammenter NW, Berjak P (1993) Seed development in relation to desiccation tolerance: A comparison between desiccation-sensitive (recalcitrant) seeds of Avicennia marina and desiccation-tolerant types. Seed Sci Res 3: 1-13

    Google Scholar 

  • Gagliardi RF, Pacheco GP, Valls JFM, Mansur E (2002) Cryopreservation of cultivated and wild Arachis species embryonic axes using desiccation and vitrification methods. CryoLetters 23: 61-68

    CAS  PubMed  Google Scholar 

  • Gonzaléz-Rio F, Gurriaran MJ, Gonzalez-Benito E, Revilla MA (1994) Desiccation and cryopreservation of olive (Olea europaea L.) embryos. CryoLetters 15: 337-342

    Google Scholar 

  • Kim HH, Cha YS, Baek HJ, Cho EG, Chae YA, Engelmann F (2002) Cryopreservation of tea (Camellia sinensis L.) seeds and embryonic axes. CryoLetters 23 (4): 209-216

    PubMed  Google Scholar 

  • Kim HH, Yoon JW, Park SU, Kim JH, Cho EG, Engelmann F (2005) Assessment of desiccation sensitivity of tea embryos for cryopreservation. CryoLetters 26 (4): 269-276

    PubMed  Google Scholar 

  • Leprince O, Buitink J, Hoekstra FA (1999) Axes and cotyledons of recalcitrant seeds of Castanea sativa Mill exhibited contrasting responses of respiration to drying in relation to desiccation sensitivity. J Exp Bot 338: 1515-1524

    Article  Google Scholar 

  • Liang Y, Sun WQ (2000) Desiccation tolerance of recalcitrant Theobroma cacao embryonic axes: the optimal drying rate and its physiological basis. J Exp Bot 51: 1911-1919

    Article  CAS  PubMed  Google Scholar 

  • Makeen AM, Normah MN, Dussert S, Clyde MM (2005) Cryopreservation of whole seeds and excised embryonic axes of Citrus suhuiensis cv. limau langkat in accordance to their desiccation sensitivity. CryoLetters 26: 259-268

    PubMed  Google Scholar 

  • Makeen AM, Normah MN, Dussert S, Clyde MM (2006) Seed moisture characteristics in relation to total lipid content of five Citrus taxa using equilibrium dehydration protocol. Seed Sci Techol 34: 453-464

    Google Scholar 

  • Malik SK, Chaudhury R (2006) Successful cryopreservation of embryonic axes of two wild and endangered Citrus species of north eastern India for long-term conservation. Plant Genet Resour: Characterization and Utilization 4: 204-209

    Google Scholar 

  • Mazur P (1984) Freezing of living cells: Mechanisms and applications. Am J Physiol 247: C125-142

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497

    Article  CAS  Google Scholar 

  • Normah MN, Chin HF, Hor YL (1986) Desiccation and cryopreservation of embryonic axes of Hevea brasiliensis Muell.-Arg. Pertanika 9: 299-303

    Google Scholar 

  • Normah MN, Reed PM, Yu X (1994) Seed storage and cryoexposure behaviour in hazelnut (Corylus avellana L. cv. Barcellona). CryoLetters 15: 315-322

    Google Scholar 

  • Normah MN, Vengadasalam M (1992) Effects of moisture content on cryopreservation of Coffea and Vigna seeds and embryos. CryoLetters 13: 199-208

    Google Scholar 

  • Pammenter NW, Berjak P (1999) A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Sci Res 9: 13-37

    Google Scholar 

  • Pammenter NW, Greggains V, Kioko JI, Wesley-Smith J, Berjak P, Finch-Savage WE (1998) Effects of differential drying rates on viability retention of recalcitrant seeds of Ekebergia capensis. Seed Sci Res 8: 463-471

    Article  Google Scholar 

  • Pammenter NW, Vertucci CW, Berjak P (1991) Homeohydrous (recalcitrant) seeds: dehydration, the state of water and viability characteristics in Landolphia kirkii. Plant Physiol 96: 1093-1098

    Article  PubMed  Google Scholar 

  • Pammenter NW, Vertucci CW, Berjak P (1993) Responses to dehydration in relation to non-freezable water in desiccation-sensitive and -tolerant seeds. In: Côme D, Corbineau F (eds) Proc. of the 4th International Workshop on Seeds: Basic and Applied Aspects of Seed Biology. AFSIS, Paris, pp. 667-672

    Google Scholar 

  • Pritchard HW (1995) Cryopreservation of seeds. In: Day JG, McLellan MR (eds) Methods in Molecular Biology: Cryopreservation and Freeze-Drying Protocols. Humana Press Inc., New Jersey, pp. 133-144

    Chapter  Google Scholar 

  • Pritchard HW, Manger KR (1998) A calorimetric perspective on desiccation stress during preservation procedures with recalcitrant seeds of Quercus robur L. CryoLetters 19: 23-30

    Google Scholar 

  • Radhamani J, Chandel KPS (1992) Cryopreservation of embryonic axes of trifoliate orange (Poncirus trifoliata (L.) Raf.). Plant Cell Rep 11: 204-206

    Google Scholar 

  • Reed BM, Normah MN, Yu X (1994) Stratification is necessary for successful cryopreservation of axes from stored hazelnut. CryoLetters 15: 377-384

    CAS  Google Scholar 

  • Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol 1: 499-514

    Google Scholar 

  • Sakai A (1986) Cryopreservation of germplasm of woody plants. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol. 1: Trees. Springer- Verlag, Berlin, Heidelberg, pp. 113-129

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1991) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb.) by a simple freezing method. Plant Sci 74: 243-248

    Article  Google Scholar 

  • Steponkus PL (1985) Cryobiology of isolated protoplasts: applications to plant cell cryopreservation. In: Kartha KK (ed) Cryopreservation of Plant Cells and Organs. CRC Press, Boca Raton, Ann Arbor, Boston, pp. 49-58

    Google Scholar 

  • Tompsett PB, Pritchard HW (1998) The effect of chilling and moisture status on the germination, desiccation tolerance and longevity of Aesculus hippocastanum L. seed. Ann Bot 82: 249-261

    Article  Google Scholar 

  • Touchell D, Walters C (2000) Recovery of embryos of Zizania palustris following exposure to liquid nitrogen. CryoLetters 21: 261-270

    PubMed  Google Scholar 

  • Vertucci CW (1989) Effects of cooling rates on seeds exposed to liquid nitrogen temperature. Plant Physiol 90: 1478-1485

    Article  PubMed  Google Scholar 

  • Vertucci CW, Berjak P, Pammenter NW, Crane J (1991) Cryopreservation of em-bryonic axes of an homeohydrous (recalcitrant) seed in relation to calorimetric properties of tissue water. CryoLetters 12: 339-350

    Google Scholar 

  • Walters C, Pammenter NW, Berjak P, Crane J (2001) Desiccation damage, accelerated aging and metabolism in desiccation tolerant and sensitive seeds. Seed Sci Res 11: 135-148

    Google Scholar 

  • Walters C, Touchell DH, Power P, Wesley-Smith J, Antolin MF (2002) A cryopreservation protocol for embryos of the endangered species Zizania texana. CryoLetters 23: 291-298

    PubMed  Google Scholar 

  • Wesley-Smith J, Vertucci CW, Berjak P, Pammenter NW, Crane J (1992) Cryopreservation of desiccation-sensitive axes of Camellia sinensis in relation to dehydration, freezing rate and the thermal properties of tissue water. J Plant Physiol 140: 596-604

    Google Scholar 

  • Wesley-Smith J, Walters C, Berjak P, Pammenter NW (2004) The influence of water content, cooling and warming rate upon survival of embryonic axes of Poncirus trifoliata (L.). CryoLetters 25: 129-138

    PubMed  Google Scholar 

  • Yu X, Reed BM (1993) Improved shoot multiplication of mature hazelnut (Corylus avellana L.) in vitro using glucose as a carbon source. Plant Cell Rep 12: 256-259

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Normah, M.N., Makeen, A.M. (2008). Cryopreservation of Excised Embryos and Embryonic Axes. In: Reed, B.M. (eds) Plant Cryopreservation: A Practical Guide. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72276-4_10

Download citation

Publish with us

Policies and ethics