Serotonin Involvement in Plasticity of the Visual Cortex

  • Qiang Gu

Serotonin (5-hydroxytryptamine, 5-HT) is widely distributed in the nervous system, and has been implicated in many aspects of behavioral and physiological regulation, including the control of blood pressure, body temperature, sleep, pain perception, sensory processing, anxiety, impulsivity, aggression, depression, sex and feeding behaviors, learning, and memory (Curzon, 1988; Wilkinson and Dourish, 1991; Lucki, 1992; Westenberg et al., 1996). A number of studies over the past decades provided evidence that serotonin also is involved in structural and functional remodeling of cortical circuits. Neurons in cortical areas that process sensory information such as vision, audition, and somatic sensation can modify their response properties following prolonged alterations in input activity, especially during early postnatal life. For instance, visual experience plays a pivotal role in shaping visual cortex structure and function during postnatal development. In addition, it has been also shown that nonvisual inputs to the visual cortex are important regulators for visual cortex plasticity (Gu, 2002, 2003). Neurotransmission of serotonin in the visual cortex is considered one of the nonvisual inputs that may serve as the neurochemical basis of attention, arousal, and motivation. In the following sections, serotonininduced neuronal responses in the visual cortex will be briefly described. The contribution of serotonin to ocular dominance plasticity in the visual cortex and possible underlying mechanisms will then be discussed.


Visual Cortex Primary Visual Cortex Ocular Dominance Cortical Plasticity Monocular Deprivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrade, R. and Chaput, Y. (1991) The electrophysiology of serotonin receptor subtypes. In: S.J. Peroutka (Ed.), Serotonin Receptor Subtypes: Basic and Clinical Aspects. Wiley-Liss, New York, pp. 103-124.Google Scholar
  2. Artola, A. and Singer, W. (1987) Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330, 649-652.CrossRefPubMedGoogle Scholar
  3. Baker, F.H., Grigg, P. and Von Noorden, G.K. (1974) Effects of visual deprivation and stra-bismus on the response of neurones in the visual cortex of the monkey, including studies on the striate and prestriate cortex in the normal animal. J. Brain Res. 66, 185-208.CrossRefGoogle Scholar
  4. Bear, M.F. (1996) Progress in understanding NMDA-receptor-dependent synaptic plasticity in the visual cortex. J. Physiol. (Paris) 90, 223-227.CrossRefGoogle Scholar
  5. Bockaert, J., Fozard, J.R., Dumuis, A. and Clarke, D.E. (1992) The 5-HT4 receptor: a place in the sun. Trends Pharmacol. Sci. 13, 141-145.CrossRefPubMedGoogle Scholar
  6. Bradley, P.B., Engel, G., Feniuk, W., Fozard, J.R., Humphrey, P.P.A., Middlemiss, D.N., Mylecharane, E.J., Richardson, B.P. and Saxena, P.R. (1986) Proposals for the classifica-tion and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacol-ogy 25, 563-576.CrossRefGoogle Scholar
  7. Choi, S.Y., Chang, J., Jiang, B., Seol, G.H., Min, S.S., Han, J.S., Shin, H.S., Gallagher, M. and Kirkwood, A. (2005) Multiple receptors coupled to phospholipase C gate long-term depression in visual cortex. J. Neurosci. 25, 11433-11443.CrossRefPubMedGoogle Scholar
  8. Collingridge, G.L. and Singer, W. (1990) Excitatory amino acid receptors and synaptic plas-ticity. Trends Pharmacol. Sci. 11, 290-296.Google Scholar
  9. Crawford, M.L.J., Blake, R., Cool, S.J. and von Noorden, G.K. (1975) Physiological conse-quences of unilateral and bilateral eye closure in macaque monkeys: some further observa-tions. Brain Res. 84, 150-154.CrossRefPubMedGoogle Scholar
  10. Curzon, G. (1988) Serotonergic mechanisms of depression. Clin. Neuropharmacol. 11 (Suppl. 2), S11-S20.PubMedGoogle Scholar
  11. Daw, N.W. (1994) Mechanisms of plasticity in the visual cortex. The Friedenwald Lecture. Invest. Ophthalmol. Vis. Sci. 35, 4168-4179.PubMedGoogle Scholar
  12. Daw, N.W. (1995) Visual Development. Plenum Publishing, New York.Google Scholar
  13. Dyck, R.H. and Cynader, M.S. (1993a) Autoradiographic localization of serotonin receptor subtypes in cat visual cortex: transient regional, laminar, and columnar distributions dur-ing postnatal development. J. Neurosci. 13, 4316-4338.PubMedGoogle Scholar
  14. Dyck, R.H. and Cynader, M.S. (1993b) An interdigitated columnar mosaic of cytochrome oxidase, zinc, and neurotransmitter-related molecules in cat and monkey visual cortex. Proc. Natl. Acad. Sci. U.S.A. 90, 9066-9069.CrossRefPubMedGoogle Scholar
  15. Edagawa, Y., Saito, H. and Abe, K. (1998a) Serotonin inhibits the induction of long-term potentiation in rat primary visual cortex. Prog. Neuropsychopharmacol. Biol. Psychiatry 22, 983-997.CrossRefPubMedGoogle Scholar
  16. Edagawa, Y., Saito, H. and Abe, K. (1998b) 5-HT1A receptor-mediated inhibition of long-term potentiation in rat visual cortex. Eur. J. Pharmacol. 349, 221-224.CrossRefPubMedGoogle Scholar
  17. Edagawa, Y., Saito, H. and Abe, K. (2000) The serotonin 5-HT2 receptor-phospholipase C system inhibits the induction of long-term potentiation in the rat visual cortex. Eur. J. Neu-rosci. 12, 1391-1396.CrossRefGoogle Scholar
  18. Edagawa, Y., Saito, H. and Abe, K. (2001) Endogenous serotonin contributes to a develop-mental decrease in long-term potentiation in the rat visual cortex. J. Neurosci. 21, 1532-1537.PubMedGoogle Scholar
  19. Fagiolini, M. and Hensch, T.K. (2000) Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404, 183-186.CrossRefPubMedGoogle Scholar
  20. Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L. and Maffei, L. (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vis. Res. 34, 709-720.CrossRefPubMedGoogle Scholar
  21. Ferezou, I., Cauli, B., Hill, E.L., Rossier, J., Hamel, E. and Lambolez, B. (2002) 5-HT3 recep-tors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal pep-tide/cholecystokinin interneurons. J. Neurosci. 22, 7389-7397.PubMedGoogle Scholar
  22. Frégnac, Y. and Imbert, M. (1984) Development of neuronal selectivity in primary visual cortex of cat. Physiol. Rev. 64, 325-434.PubMedGoogle Scholar
  23. Frégnac, Y., Shulz, D., Thorpe S. and Bienenstock, E. (1988) A cellular analogue of visual cortical plasticity. Nature 333, 367-370.CrossRefPubMedGoogle Scholar
  24. Gasanov, G.G., Mamedov, Z.G. and Samedova, N.F. (1989) Changes in reactivity of neurons of the visual cortex under influence of the posterolateral hypothalamus and the nuclei of the midbrain raphe. Neurosci. Behav. Physiol. 19, 169-175.CrossRefPubMedGoogle Scholar
  25. Gordon, J.A. and Stryker, M.P. (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274-3286.PubMedGoogle Scholar
  26. Gozlan, H., Daval, G., Verge, D., Spampinato, U., Fattaccini, C.M., Gallissot, M.C., el Mestikawy, S. and Hamon, M. (1990) Aging associated changes in serotoninergic and dopaminergic pre- and postsynaptic neurochemical markers in the rat brain. Neurobiol. Aging 11, 437-449.CrossRefPubMedGoogle Scholar
  27. Gu, Q. (2002) Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 111, 815-835.CrossRefPubMedGoogle Scholar
  28. Gu, Q. (2003) Contribution of acetylcholine to visual cortex plasticity. Neurobiol. Learn. Mem. 80, 291-301.CrossRefPubMedGoogle Scholar
  29. Gu, Q. and Singer, W. (1995) Involvement of serotonin in neuronal plasticity of visual cortex. Eur. J. Neurosci. 7, 1146-1153.CrossRefPubMedGoogle Scholar
  30. Hensch, T.K., Fagiolini, M., Mataga, N., Stryker, M.P., Baekkeskov, S. and Kash, S.F. (1998) Local GABA circuit control of experience-dependent plasticity in developing visual cor-tex. Science 282, 1504-1508.CrossRefPubMedGoogle Scholar
  31. Heynen, A.J., Yoon, B.J., Liu, C.H., Chung, H.J., Huganir, R.L. and Bear, M.F. (2003) Mo-lecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat. Neurosci. 6, 854-862.CrossRefPubMedGoogle Scholar
  32. Hoyer, D. and Martin, G. (1997) 5-HT receptor classification and nomenclature: towards a harmonization with the human genome. Neuropharmacology 36, 419-428.CrossRefPubMedGoogle Scholar
  33. Hubel, D.H. and Wiesel, T.N. (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106-154.Google Scholar
  34. Hubel, D.H. and Wiesel, T.N. (1963) Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26, 994-1002.PubMedGoogle Scholar
  35. Hubel, D.H. and Wiesel, T.N. (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419-436.Google Scholar
  36. Hubel, D.H., Wiesel, T.N. and LeVay, S. (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos. Trans. R. Soc. London Ser. B 278, 377-409.CrossRefGoogle Scholar
  37. Issa, N.P., Trachtenberg, J.T., Chapman, B., Zahs, K.R. and Stryker, M.P. (1999) The critical period for ocular dominance plasticity in the ferret’s visual cortex. J. Neurosci. 19, 6965-6978.PubMedGoogle Scholar
  38. Jonsson, G. and Kasamatsu, T. (1983) Maturation of monoamine neurotransmitters and recep-tors in cat occipital cortex during postnatal critical period. Exp. Brain Res. 50, 449-458.CrossRefPubMedGoogle Scholar
  39. Katz, L.C. and Shatz, C.J. (1996) Synaptic activity and the construction of cortical circuits. Science 274, 1133-1138.CrossRefPubMedGoogle Scholar
  40. Kim, H.S., Jang, H.J., Cho, K.H., Hahn, S.J., Kim, M.J., Yoon, S.H., Jo, Y.H., Kim, M.S. and Rhie, D.J. (2006) Serotonin inhibits the induction of NMDA receptor-dependent long-term potentiation in the rat primary visual cortex. Brain Res. 1103, 49-55.CrossRefPubMedGoogle Scholar
  41. Kirkwood, A. and Bear, M.F. (1994) Homosynaptic long-term depression in the visual cortex. J. Neurosci. 14, 3404-3412.PubMedGoogle Scholar
  42. Kojic, L., Gu, Q., Douglas, R.M. and Cynader, M.S. (1997) Serotonin facilitates synaptic plasticity in kitten visual cortex: an in vitro study. Dev. Brain Res. 101, 299-304.CrossRefGoogle Scholar
  43. Kojic, L., Dyck, R., Gu, Q., Douglas, R.M., Matsubara, J. and Cynader, M.S. (2000) Colum-nar distribution of serotonin-dependent plasticity within kitten striate cortex. Proc. Natl. Acad. Sci. U.S.A. 97, 1841-1844.CrossRefPubMedGoogle Scholar
  44. Kojic, L., Gu, Q., Douglas, R.M. and Cynader, M.S. (2001) Laminar distribution of choliner-gic- and serotonergic-dependent plasticity within kitten visual cortex. Dev. Brain Res. 126, 157-162.CrossRefGoogle Scholar
  45. Komatsu, Y. (1996) GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J. Neurosci. 16, 6342-6352.PubMedGoogle Scholar
  46. Komatsu, Y., Fujii, K., Maeda, J., Sakaguchi, H. and Toyama, K. (1988) Long-term potentia-tion of synaptic transmission in kitten visual cortex. J. Neurophysiol. 59, 124-141.PubMedGoogle Scholar
  47. Krnjevic, K. and Phillis, J.W. (1963) Iontophoretic studies of neurons in the mammalian cerebral cortex. J. Physiol. (Lond.) 165, 274-304.Google Scholar
  48. Lidov, H.G.W., Grzanna, R. and Molliver, M.E. (1980) The serotonin innervation of the cere-bral cortex in the rat - an immunohistochemical analysis. Neuroscience 5, 207-227.CrossRefPubMedGoogle Scholar
  49. Lucki, I. (1992) 5-HT1 receptors and behavior. Neurosci. Biobehav. Rev. 16, 83-93.CrossRefPubMedGoogle Scholar
  50. Maffei, L., Berardi, N., Domenici, L., Parisi, V. and Pizzorusso, T. (1992) Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J. Neurosci. 12, 4651-4662.PubMedGoogle Scholar
  51. Marcinkiewicz, M., Verge, D., Gozlan, H., Pichat, L. and Hamon, M. (1984) Autoradio-graphic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Res. 291, 159-163.CrossRefPubMedGoogle Scholar
  52. McCormick, D.A., Wang, Z. and Huguenard, J. (1993) Neurotransmitter control of neocortical neuronal activity and excitability. Cereb. Cortex 3, 387-398.CrossRefPubMedGoogle Scholar
  53. Morales, M. and Bloom, F.E. (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J. Neurosci. 17, 3157-3167.PubMedGoogle Scholar
  54. Movshon, J.A. and van Sluyters, R.C. (1981) Visual neural development. Ann. Rev. Psychol. 32, 477-522.CrossRefGoogle Scholar
  55. Moyanova, S. and Dimov, S. (1986) Modulation of visual excitability cycles in some brain structures by high-frequency stimulation of raphe dorsal nucleus in cats. Acta Physiol. Pharmacol. Bulg. 12, 17-25.Google Scholar
  56. Murphy, K.M., Duffy, K.R., Jones, D.G. and Mitchell, D.E. (2001) Development of cyto-chrome oxidase blobs in visual cortex of normal and visually deprived cats. Cereb. Cortex 11, 122-135.CrossRefPubMedGoogle Scholar
  57. Nedergaard, S., Engberg, I. and Flatman, J.A. (1987) The modulation of excitatory amino acid responses by serotonin in the cat neocortex. Cell. Mol. Neurobiol. 7, 367-379.CrossRefPubMedGoogle Scholar
  58. Panicker, M.M., Parker, I. and Miledi, R. (1991) Receptors of the serotonin 1C subtype ex-pressed from cloned DNA mediate the closing of K+ membrane channels encoded by brain mRNA. Proc. Natl. Acad. Sci. U.S.A. 88, 2560-2562.CrossRefPubMedGoogle Scholar
  59. Perkins IV A.T. and Teyler, T.J. (1988) A critical period for long-term potentiation in the developing rat visual cortex. Brain Res. 439, 222-229.CrossRefPubMedGoogle Scholar
  60. Paspalas, C.D. and Papadopoulos, G.C. (2001) Serotoninergic afferents preferentially inner-vate distinct subclasses of peptidergic interneurons in the rat visual cortex. Brain Res. 891, 158-167.CrossRefPubMedGoogle Scholar
  61. Pazos, A. and Palacios, J.M. (1985) Quantitative autoradiographic mapping of serotonin re-ceptors in the rat brain. I. Serotonin-1 receptors. Brain Res. 346, 205-230.CrossRefPubMedGoogle Scholar
  62. Rauschecker, J.P. (1991) Mechanisms of visual plasticity: Hebb synapses, NMDA receptors, and beyond. Physiol. Rev. 71, 587-615.PubMedGoogle Scholar
  63. Reader, T.A. (1978) The effects of dopamine, noradrenaline and serotonin in the visual cortex of the cat. Experimentia 34, 1586-1588.CrossRefGoogle Scholar
  64. Reynolds, J.N., Baskys, A. and Carlen, P. (1988) The effects of serotonin on N-methyl-D-aspartate and synaptically evoked depolarizations in rat neocortex. Brain Res. 456, 286-292.CrossRefPubMedGoogle Scholar
  65. Rittenhouse, C.D., Shouval, H.Z., Paradiso, M.A. and Bear, M.F. (1999) Monocular depriva-tion induces homosynaptic long-term depression in visual cortex. Nature 397, 347-350.CrossRefPubMedGoogle Scholar
  66. Roerig, B. and Katz, L.C. (1997) Modulation of intrinsic circuits by serotonin 5-HT3 receptors in developing ferret visual cortex. J. Neurosci. 17, 8324-8338.PubMedGoogle Scholar
  67. Roerig, B., Nelson, D.A. and Katz, L.C. (1997) Fast synaptic signaling by nicotinic acetylcho-line and serotonin 5-HT3 receptors in developing visual cortex. J. Neurosci. 17, 8353-8362.PubMedGoogle Scholar
  68. Sherman, S.M. and Spear, P.D. (1982) Organization of visual pathways in normal and visually deprived cats. Physiol. Rev. 62, 738-855.PubMedGoogle Scholar
  69. Schoen, S.W., Leutenecker, B., Kreutzberg, G.W. and Singer, W. (1990) Ocular dominance plasticity and developmental changes of 5′-nucleotidase distributions in the kitten visual cortex. J. Comp. Neurol. 296, 379-392.CrossRefPubMedGoogle Scholar
  70. Singer, W. (1995) Development and plasticity of cortical processing architectures. Science 270, 758-764.CrossRefPubMedGoogle Scholar
  71. Singer, W., Artola, A., Greuel, J. and Gu, Q. (1988) Gating of NMDA-receptor mediated neuronal plasticity. In: E.A. Cavalheiro, J. Lehman and L. Turski (Eds.), Frontiers in Exci-tatory Amino Acid Research. Alan R. Liss, New York, pp. 443-450.Google Scholar
  72. Tecott, L.H., Maricq, A.V. and Julius, D. (1993) Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc. Natl. Acad. Sci. U.S.A. 90, 1430-1434.CrossRefPubMedGoogle Scholar
  73. Trepel, C., Duffy, K.R., Pegado, V.D. and Murphy, K.M. (1998) Patchy distribution of NMDAR1 subunit immunoreactivity in developing visual cortex. J. Neurosci. 18, 3404-3415.PubMedGoogle Scholar
  74. Wang, Y.-C., Gu, Q. and Cynader, M.S. (1997) Blockade of serotonin-2c receptors by mesul-ergine reduces ocular dominance plasticity in kitten visual cortex. Exp. Brain Res. 114, 321-328.CrossRefPubMedGoogle Scholar
  75. Waterhouse, B.D., Azizi, S.A., Burne, R.A. and Woodward, D.J. (1990) Modulation of rat cortical area 17 neuronal responses to moving visual stimuli during norepinephrine and se-rotonin microiontophoresis. Brain Res. 514, 276-292.CrossRefPubMedGoogle Scholar
  76. Westenberg, H.G., Murphy, D.L. and Den Boer, J.A. (1996) Advances in the Neurobiology of Anxiety Disorders. Wiley, New York.Google Scholar
  77. Wiesel, T.N. and Hubel, D.H. (1963a) Effects of visual deprivation on morphology and physi-ology of cells in the cat’s lateral geniculate body. J. Neurophysiol. 26, 978-993.PubMedGoogle Scholar
  78. Wiesel, T.N. and Hubel, D.H. (1963b) Single-cell responses in striate cortex of kittens de-prived of vision in one eye. J. Neurophysiol. 26, 1003-1017.PubMedGoogle Scholar
  79. Wiesel, T.N. and Hubel, D.H. (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28, 1029-1040.PubMedGoogle Scholar
  80. Wilkinson, L.O. and Dourish, C.T. (1991) Serotonin and animal behavior. In: S.J. Peroutka (Ed.), Serotonin Receptor Subtypes: Basic and Clinical Aspects. Wiley-Liss, New York, pp. 147-210.Google Scholar
  81. Xiang, Z. and Prince, D.A. (2003) Heterogeneous actions of serotonin on interneurons in rat visual cortex. J. Neurophysiol. 89, 1278-1287.CrossRefPubMedGoogle Scholar
  82. Xiang, Z., Huguenard, J.R. and Prince, D.A. (1998) GABAA receptor-mediated currents in interneurons and pyramidal cells of rat visual cortex. J. Physiol. (Lond.) 506, 715-730.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Qiang Gu
    • 1
  1. 1.Department of Neurobiology and AnatomyWake Forest University School of Medicine, Medical Center BoulevardWinston-SalemUSA

Personalised recommendations