Serotonin Modulation of Cortical Activity

  • Pau Celada
  • Francesc Artigas

Serotonin (5-hydroxytryptamine, 5-HT) is one of the phylogenetically older molecules used in cellular communications. It is present in the central nervous system(CNS) of vertebrate and invertebrate animals, and plays the role of neurotransmitter/neuromodulator. It also operates as a developmental signal in the CNS and regulates a variety of physiological functions in the periphery, such as intestinal motility, platelet aggregation, and vasoconstriction.


Pyramidal Neuron Dorsal Raphe GABAergic Interneuron Apical Dendrite Piriform Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adell, A., Celada, P., Abellán, M.T. and Artigas, F. (2002) Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res. Rev. 39, 154-180.PubMedGoogle Scholar
  2. Aghajanian, G.K. and Lakoski, J.M. (1984) Hyperpolarization of serotonergic neurons by serotonin and LSD: studies in brain slices showing increased K+ conductance. Brain Res. 305, 181-185.PubMedGoogle Scholar
  3. Aghajanian, G.K. and Marek, G.J. (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36, 589-599.PubMedGoogle Scholar
  4. Aghajanian, G.K. and Marek, G.J. (1999a) Serotonin-glutamate interactions: a new target for antipsychotic drugs. Neuropsychopharmacology 21, S122-S133.Google Scholar
  5. Aghajanian, G.K. and Marek, G.J. (1999b) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate re-lease. Brain Res. 825, 161-171.PubMedGoogle Scholar
  6. Amargós-Bosch, M., Bortolozzi, A., Puig, M.V., Serrats, J., Adell, A., Celada, P., Toth, M., Mengod, G. and Artigas, F. (2004) Co-expression and in vivo interaction of serotonin1a and serotonin2a receptors in pyramidal neurons of prefrontal cortex. Cereb. Cortex 14, 281-299.PubMedGoogle Scholar
  7. Andrade, R. (1998) Regulation of membrane excitability in the central nervous system by serotonin receptor subtypes. Ann. N.Y. Acad. Sci. 861, 190-203.PubMedGoogle Scholar
  8. Andrade, R. and Nicoll, R.A. (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurons of the rat hippocampus recorded in vitro. J. Physiol. 394, 99-124.PubMedGoogle Scholar
  9. Andrade, R., Malenka, R.C. and Nicoll, R.A. (1986) A G-protein couples serotonin and GABAB receptors to the same channel in hippocampus. Science 234, 1261-1265.PubMedGoogle Scholar
  10. Araneda, R. and Andrade, R. (1991) 5-Hydroxytryptamine-2 and 5-hydroxytryptamine-1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40, 399-412.PubMedGoogle Scholar
  11. Arvanov, V.L., Liang, X., Magro, P., Roberts, R. and Wang, R.Y. (1999) A pre- and postsy-naptic modulatory action of 5-HT and the 5-HT2A/ 2C receptor agonist DOB on NMDA-evoked responses in the rat medial prefrontal cortex. Eur. J. Neurosci. 11, 2917-2934.PubMedGoogle Scholar
  12. Ashby Jr., C.R., Edwards, E., Harkins, K. and Wang, R.Y. (1989a) Effects of (±)-DOI on medial prefrontal cortical cells: a microiontophoretic study. Brain Res. 498, 393-396.PubMedGoogle Scholar
  13. Ashby Jr., C.R., Edwards, E., Harkins, K. and Wang, R.Y. (1989b) Characterization of 5-hydroxytryptamine3 receptors in the medial prefrontal cortex: a microiontophoretic study. Eur. J. Pharmacol. 173, 193-196.PubMedGoogle Scholar
  14. Ashby, Jr., C.R., Jiang, L.H., Kasser, R.J. and Wang, R.Y. (1990) Electrophysiological charac-terization of 5-hydroxytryptamine-2 receptors in the rat medial prefrontal cortex. J. Phar-macol. Exp. Ther. 252, 171-178.Google Scholar
  15. Ashby Jr., C.R., Minabe, Y., Edwards, E. and Wang, R.Y. (1991) 5-HT3-like receptors in the rat medial prefrontal cortex: an electrophysiological study. Brain Res. 550, 181-191.PubMedGoogle Scholar
  16. Ashby, Jr., C.R., Edwards, E. and Wang, R.Y. (1992) Action of serotonin in the medial pre-frontal cortex: mediation by serotonin3-like receptors. Synapse 10, 7-15.PubMedGoogle Scholar
  17. Ashby, Jr., C.R., Edwards, E. and Wang, R.Y. (1994) Electrophysiological evidence for a functional interaction between 5-HT(1A) and 5-HT(2A) receptors in the rat medial pre-frontal cortex: an iontophoretic study. Synapse 17, 173-181.PubMedGoogle Scholar
  18. Azmitia, E.C., Gannon, P.J., Kheck, N.M. and Whitaker-Azmitia, P.M. (1996) Cellular local-ization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychophar-macology 14, 35-46.Google Scholar
  19. Barnes, N.M. and Sharp, T. (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38, 1083-1152.PubMedGoogle Scholar
  20. Berendse, H.W. and Groenewegen, H.J. (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42, 73-102.PubMedGoogle Scholar
  21. Beique, J.C., Campbell, B., Perring, P., Hamblin, M.W., Walker, P., Mladenovic, L. and Andrade, R. (2004) Serotonergic regulation of membrane potential in developing rat pre-frontal cortex: coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J. Neurosci. 24, 4807-4817.PubMedGoogle Scholar
  22. Blier, P. and de Montigny, C. (1987) Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse 1, 470-480.PubMedGoogle Scholar
  23. Blue, M.E., Yagaloff, K.A., Mamounas, L.A., Hartig, P.R. and Molliver, M.E. (1988) Corre-spondence between 5-HT2 receptors and serotonergic axons in rat neocortex. Brain Res. 453, 315-328.PubMedGoogle Scholar
  24. Borsini, F., Giraldo, E., Monferini, E., Antonini, G., Parenti, M., Bietti, G. and Donetti, A. (1995) BIMT 17, a 5-HT2A receptor antagonist and 5-HT1A receptor full agonist in rat cerebral cortex. Naunyn-Schmiedeberg’s Arch. Pharmacol. 352, 276-282.Google Scholar
  25. Burnet, P.W., Eastwood, S.L., Lacey, K. and Harrison, P.J. (1995) The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Res. 676, 157-168.PubMedGoogle Scholar
  26. Carr, D.B. and Sesack, S.R. (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J. Neurosci. 20, 3864-3873.PubMedGoogle Scholar
  27. Casanovas, J.M., Berton, O., Celada, P. and Artigas, F. (2000) In vivo actions of the selective 5-HT1A receptor agonist BAY x 3702 on serotonergic cell firing and release. Naunyn-Schmiedebergs Arch. Pharmacol. 362, 248-254.Google Scholar
  28. Celada, P., Puig, M.V., Casanovas, J.M., Guillazo, G. and Artigas, F. (2001) Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J. Neurosci. 21, 9917-9929.PubMedGoogle Scholar
  29. Chaput, Y. and de Montigny, C. (1988) Effects of the 5-hydroxytryptamine receptor antago-nist, BMY 7378, on 5-hydroxytryptamine neurotransmission: electrophysiological studies in the rat central nervous system. J. Pharmacol. Exp. Ther. 246, 359-370.PubMedGoogle Scholar
  30. Clarke, H.F., Dalley, J.W., Crofts, H.S., Robbins, T.W. and Roberts, A.C. (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304, 878-880.PubMedGoogle Scholar
  31. Clemett, D.A., Punhani, T., Duxon, M.S., Blackburn, T.P. and Fone, K.C. (2000) Immunohis-tochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology 39, 123-132.PubMedGoogle Scholar
  32. Compan, V., Segu, L., Buhot, M.C. and Daszuta, A. (1998) Selective increases in serotonin 5-HT1B/1D and 5-HT2A/2C binding sites in adult rat basal ganglia following lesions of se-rotonergic neurons. Brain Res. 793, 103-111.PubMedGoogle Scholar
  33. Cruz, D.A., Eggan, S.M., Azmitia, E.C. and Lewis, D.A. (2004) Serotonin1A receptors at the axon initial segment of prefrontal pyramidal neurons in schizophrenia. Am. J. Psychiatry 161, 739-742.PubMedGoogle Scholar
  34. Czyrak, A., Czepiel, K., Mackowiak, M., Chocyk, A. and Wedzony, K. (2003) Serotonin 5-HT1A receptors might control the output of cortical glutamatergic neurons in rat cingulate cortex. Brain Res. 989, 42-51.PubMedGoogle Scholar
  35. Davies, M.F., Deisz, R.A., Prince, D.A. and Peroutka, S.J. (1987) Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Res. 423, 347-352.PubMedGoogle Scholar
  36. De Felipe, J., Arellano, J.I., Gomez, A., Azmitia, E.C. and Muñoz, A. (2001) Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cere-bral cortex. J. Comp. Neurol. 433, 148-155.Google Scholar
  37. De Quervain, D.J., Henke, K., Aerni, A., Coluccia, D., Wollmer, M.A., Hock, C., Nitsch, R.M. and Papassotiropoulos, A. (2003) A functional genetic variation of the 5-HT2A receptor affects human memory. Nat. Neurosci. 6, 1141-1142.PubMedGoogle Scholar
  38. De Vry, J. (1995) 5-HT1A receptor agonists: recent developments and controversial issues. Psychopharmacology 121, 1-26.PubMedGoogle Scholar
  39. Diaz-Mataix, L., Artigas, F. and Celada, P. (2006) Activation of pyramidal cells in rat medial prefrontal cortex projecting to ventral tegmental area by a 5-HT1A receptor agonist. Eur. Neuropsychopharmacol. 16, 288-296.PubMedGoogle Scholar
  40. Edwards, E., Ashby, C.R. and Wang, R.Y. (1991) The effect of typical and atypical antipsy-chotic drugs on the stimulation of phosphoinositide hydrolysis produced by the 5-HT3 re-ceptor agonist 2-methyl-serotonin. Brain Res. 545, 276-278.PubMedGoogle Scholar
  41. Erlander, M.G., Lovenberg, T.W., Baron, B.M., de Lecea, L., Danielson, P.E., Racke, M., Slone, A.L., Siegel, B.W., Foye, P.E., Cannon, K., Burns, J.E. and Sutcliffe J.G. (1993) Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially ex-pressed in rat brain. Proc. Natl. Acad. Sci. U.S.A. 90, 3452-3456.PubMedGoogle Scholar
  42. Férézou, I., Cauli, B., Hill, E.L., Rossier, J., Hamel, E. and Lambolez, B. (2002) 5-HT3 recep-tors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal pep-tide/cholecystokinin interneurons. J. Neurosci. 22, 7389-7397.PubMedGoogle Scholar
  43. Fuster, J.M. (1997) The prefrontal cortex. Anatomy, physiology and neuropsychology of the frontal lobe. Philadelphia: Lippincott-Raven.Google Scholar
  44. Gerard, C., el Mestikawy, S., Lebrand, C., Adrien, J., Ruat, M., Traiffort, E., Hamon, M. and Martres, M.P. (1996) Quantitative RT-PCR distribution of serotonin 5-HT6 receptor mRNA in the central nervous system of control or 5,7 dihydroxytryptamine-treated rats. Synapse 23, 164-173.PubMedGoogle Scholar
  45. Gerard, C., Martres, M.P., Lefevre, K., Miquel, M.C., Verge, D., Lanfumey, L., Doucet, E., Hamon, M. and el Mestikawy, S. (1997) Immuno-localization of serotonin 5-HT6 recep-tor-like material in the rat central nervous system. Brain Res. 746, 207-219.PubMedGoogle Scholar
  46. Gustafson, E.L., Durkin, M.M., Bard, J.A., Zgombick, J. and Branchek, T.A. (1996) A recep-tor autoradiographic and in situ hybridization analysis of the distribution of the 5-ht7 receptor in rat brain. Br. J. Pharmacol. 117, 657-666.PubMedGoogle Scholar
  47. Hajós, M., Gartside, S.E. and Sharp, T. (1995) Inhibition of median and dorsal raphe neurones following administration of the selective serotonin reuptake inhibitor paroxetine. Naunyn-Schmied. Arch. Pharmacol. 351, 624-629.Google Scholar
  48. Hajós, M., Hajos-Korcsok, E. and Sharp, T. (1999) Role of the medial prefrontal cortex in 5-HT1A receptor-induced inhibition of 5-HT neuronal activity in the rat. Br. J. Pharmacol. 126, 1741-1750.PubMedGoogle Scholar
  49. Hajós, M., Gartside, S.E., Varga, V. and Sharp, T. (2003) In vivo inhibition of neuronal activ-ity in the rat ventromedial prefrontal cortex by midbrain-raphe nuclei: role of 5-HT1A re-ceptors. Neuropharmacology 45, 72-81.PubMedGoogle Scholar
  50. Hall, H., Farde, L., Halldin, C., Lundkvist, C., Sedvall, G. (2000) Autoradiographic localiza-tion of 5-HT(2A) receptors in the human brain using [3H]M100907 and [11C]M100907. Synapse 38, 421-431.PubMedGoogle Scholar
  51. Harder, J.A. and Ridley, R.M. (2000) The 5-HT1A antagonist WAY 100 635 alleviates cogni-tive impairments induced by dizocilpine (MK-801) in monkeys. Neuropharmacology 39, 547-552.PubMedGoogle Scholar
  52. Higgins, G.A. and Kilpatrick, G.J. (1999) 5-HT(3) receptor antagonists. Expert Opin. Investig. Drugs 8, 2183-2188.Google Scholar
  53. Innis, R.B. and Aghajanian, G.K. (1987) Pertussis toxin blocks 5-HT1A and GABAB receptor-mediated inhibition of serotonergic neurons. Eur. J. Pharmacol. 143, 195-204.PubMedGoogle Scholar
  54. Jacobs, B.L. and Azmitia, E.C. (1992) Structure and function of the brain serotonin system. Physiol. Rev. 72, 165-229.PubMedGoogle Scholar
  55. Jakab, R.L. and Goldman-Rakic, P.S. (1998) 5-Hydroxytryptamine(2A) serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc. Natl. Acad. Sci. U.S.A. 95, 735-740.PubMedGoogle Scholar
  56. Jakab, R.L. and Goldman-Rakic, P.S. (2000) Segregation of serotonin 5-HT2A and 5-HT3 receptors in inhibitory circuits of the primate cerebral cortex. J. Comp. Neurol. 417, 337-348.PubMedGoogle Scholar
  57. Jankowski, M.P. and Sesack, S.R. (2002) Electron microscopic analysis of the GABA projec-tion from the dorsal raphe nucleus to the prefrontal cortex in the rat. Soc. Neurosci. Abs. 587.8.Google Scholar
  58. Jansson, A., Tinner, B., Bancila, M., Verge, D., Steinbusch, H.W., Agnati, L.F. and Fuxe, K. (2001) Relationships of 5-hydroxytryptamine immunoreactive terminal-like varicosities to 5-hydroxytryptamine-2A receptor-immunoreactive neuronal processes in the rat forebrain. J. Chem. Neuroanat. 22, 185-203.PubMedGoogle Scholar
  59. Krnjevic, K. and Phillis, J.W. (1963) Iontophoretic studies of neurones in the mammalian cerebral cortex. J. Physiol. 165, 274-304.PubMedGoogle Scholar
  60. Kia, H.K., Brisorgueil, M.J., Hamon, M., Calas, A. and Vergé, D. (1996) Ultrastructural local-ization of 5-hydroxytryptamine(1A) receptors in the rat brain. J. Neurosci. Res. 46, 697-708.PubMedGoogle Scholar
  61. Lambe, E.K. and Aghajanian, G.K. (2004) Serotonin (5-HT) supresses electrophysiological effects by hallucinogens in rat prefrontal cortex. Program No. 394.3. Abstract Viewer/ Intinerary Planner. Washington, DC: Society for Neuroscience, 2004.Google Scholar
  62. Liu, S., Bubar, M.J., Lanfranco, M.F., Hillman, G.R. and Cunningham, K.A. Serotonin (2C) receptor localization in GABA neurons of the rat medial prefrontal cortex: implications for understanding the neurobiology of addiction. Neuroscience. 2007 Apr 27; [Epub, ahead of print]Google Scholar
  63. López-Giménez, J.F., Vilaró, M.T., Palacios, J.M. and Mengod, G. (1998) [3H] MDL100,907 labels 5-HT2A serotonin receptors selectively in primate brain. Neuropharmacology 37, 1147-1158.PubMedGoogle Scholar
  64. Ma, L., Shalinsky, M.H., Alonso, A. and Dickson, C.T. (2007) Effects of serotonin on the intrinsic membrane properties of layer II medial entorhinal cortex neurons. Hippocampus 17, 114-129.PubMedGoogle Scholar
  65. Martín-Ruiz, R., Puig, M.V., Celada, P., Shapiro, D.A., Roth, B.L., Mengod, G. and Artigas, F. (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A re-ceptors through a glutamate-dependent mechanism. J. Neurosci. 21, 9856-9866.PubMedGoogle Scholar
  66. Martin-Cora, F.J., Pazos, A. (2004) Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species. Br. J. Pharmacol. 141, 92-104.PubMedGoogle Scholar
  67. Martinez, D., Hwang, D.R., Mawlawi, O., Slifstein, M., Kent, J., Simpson, N., Parsey, R.V., Hashimoto, T., Huang, Y.Y., Shinn, A., VanHeertum, R., Abidargham, A., Caltabiano, S., Malizia, A., Cowley, H., Mann, J.J. and Laruelle, M. (2001) Differential occupancy of somatodendritic and postsynaptic 5HT(1A) receptors by pindolol: a dose-occupancy study with [C-11]WAY 100635 and positron emission tomography in humans. Neuropsycho-pharmacology 24, 209-229.Google Scholar
  68. Mello e Souza, T., Rodrigues, C., Souza, M.M., Vinade, E., Coitinho, A., Choi, H. and Izquierdo, I. (2001) Involvement of the serotonergic type 1A (5-HT1A) receptor in the agranular insular cortex in the consolidation of memory for inhibitory avoidance in rats. Behav. Pharmacol. 12, 349-353.PubMedGoogle Scholar
  69. Miner, L.A.H., Backstrom, J.R., Sanders-Bush, E. and Sesack, S.R. (2003) Ultrastructural localization of serotonin-2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience 116, 107-117.PubMedGoogle Scholar
  70. Misane, I. and Ögren, S.O. (2003) Selective 5-HT1A antagonists WAY 100635 and NAD-299 attenuate the impairment of passive avoidance caused by scopolamine in the rat. Neuro-psychopharmacology 28, 253-264.Google Scholar
  71. Morales, M. and Bloom, F.E. (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J. Neurosci. 17, 3157-3167.PubMedGoogle Scholar
  72. Newberry, N.R., Footitt, D.R., Papanastassiou, V. and Reynolds, D.J. (1999) Actions of 5-HT on human neocortical neurones in vitro. Brain Res. 833, 93-100.PubMedGoogle Scholar
  73. Offord, S.J., Ordway, G.A. and Frazer, A. (1988) Application of (125I)iodocyanopindolol to measure 5-hydroxytryptamine1B receptors in the brain of the rat. J. Pharmacol. Exp. Ther. 244, 144-153.PubMedGoogle Scholar
  74. Pandey, G.N., Dwivedi, Y., Ren, X., Rizavi, H.S., Faludi, G., Sarosi, A. and Palkovits, M. (2006) Regional distribution and relative abundance of serotonin(2c) receptors in human brain: effect of suicide. Neurochem. Res. 31, 167-176.PubMedGoogle Scholar
  75. Paxinos, G. and Watson, C. (1998) The rat brain in stereotaxic coordinates. 4th edn. Sydney: Academic Press.Google Scholar
  76. Pazos, A. and Palacios, J.M. (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res. 346, 205-230.PubMedGoogle Scholar
  77. Pazos, A., Cortés, R. and Palacios, J.M. (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res. 346, 231-249.PubMedGoogle Scholar
  78. Pompeiano, M., Palacios, J.M. and Mengod, G. (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J. Neurosci. 12, 440-453.PubMedGoogle Scholar
  79. Pompeiano, M., Palacios, J.M. and Mengod, G. (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Mol. Brain. Res. 23, 163-178.PubMedGoogle Scholar
  80. Puig, M.V., Celada, P., Díaz-Mataix, L. and Artigas, F. (2003) In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors. Re-lationship to thalamocortical afferents. Cereb. Cortex 13, 1870-1882.Google Scholar
  81. Puig, M.V., Santana, N., Celada, P., Mengod, G. and Artigas, F. (2004) In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. Cereb. Cor-tex 14, 1365-1375.Google Scholar
  82. Puig, M.V., Artigas, F. and Celada, P. (2005) Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb. Cortex 15, 1-14.PubMedGoogle Scholar
  83. Reader, T.A., Ferron, A., Descarries, L. and Jasper, H.H. (1979) Modulatory role for biogenic amines in the cerebral cortex. Microiontophoretic studies. Brain Res. 160, 217-229.PubMedGoogle Scholar
  84. Riad, M., Garcia, S., Watkins, K.C., Jodoin, N., Doucet, E., Langlois, X., El Mestikawy, S., Hamon, M. and Descarries, L. (2000) Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J. Comp. Neurol. 417, 181-194.PubMedGoogle Scholar
  85. Roberts, M.H. and Straughan, D.W. (1967) Excitation and depression of cortical neurones by 5-hydroxytryptamine. J. Physiol. 193, 269-294.PubMedGoogle Scholar
  86. Santana, N., Bortolozzi, A., Serrats, J., Mengod, G. and Artigas, F. (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb. Cortex 14, 1100-1109.PubMedGoogle Scholar
  87. Sari, Y. (2004) Serotonin(1B) receptors: from protein to physiological function and behavior. Neurosci. Biobehav. Rev. 28, 565-582.PubMedGoogle Scholar
  88. Sheldon, P.W. and Aghajanian, G.K. (1991) Excitatory responses to serotonin (5-HT) in neurons of the rat piriform cortex: evidence for mediation by 5-HT1C receptors in py-ramidal cells and 5-HT2 receptors in interneurons. Synapse 9, 208-218.PubMedGoogle Scholar
  89. Sprouse, J.S. and Aghajanian, G.K. (1987) Electrophysiological responses of serotonergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1, 3-9.PubMedGoogle Scholar
  90. Staubli, U. and Xu, F.B. (1995) Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J. Neurosci. 15, 2445-2452.PubMedGoogle Scholar
  91. Sirota, P., Mosheva, T., Shabtay, H., Giladi, N. and Korczyn, A.D. (2000) Use of the selective serotonin 3 receptor antagonist ondansetron in the treatment of neuroleptic-induced tardive dyskinesia. Am. J. Psychiatry 157, 287-289.PubMedGoogle Scholar
  92. Swanson, L.W. (1998) Brain Maps: Structure of the Rat Brain. Elsevier. Amsterdam.Google Scholar
  93. Tada, K., Kasamo, K., Ueda, N., Suzuki, T., Kojima, T. and Ishikawa, K. (1999) Anxiolytic 5-hydroxytryptamine1A agonists suppress firing activity of dorsal hippocampus CA1 py-ramidal neurons through a postsynaptic mechanism: single-unit study in unanesthetized, unrestrained rats. J. Pharmacol. Exp. Ther. 288, 843-848.PubMedGoogle Scholar
  94. Tanaka, E. and North, R.A. (1993) Actions of 5 hydroxytryptamine on neurons of the rat cingulate cortex. J. Neurophysiol. 69, 1749-1757.PubMedGoogle Scholar
  95. Vilaró, M.T., Cortes, R., Gerald, C., Branchek, T.A., Palacios, J.M. and Mengod, G. (1996) Localization of 5-HT4 receptor mRNA in rat brain by in situ hybridization histochemistry. Brain Res. Mol. Brain Res. 43, 356-360.PubMedGoogle Scholar
  96. Vilaró, M.T., Cortés, R. and Mengod, G. (2005) Serotonin 5-HT4 receptors and their mPRNAs in rat and guinea pig brain: distribution and effect of neurotoxic lesions. J. Comp. Neurol. 484, 418-439.PubMedGoogle Scholar
  97. Villalobos, C., Beique, J.C., Gingrich, J.A. and Andrade, R. (2005) Serotonergic regulation of calcium-activated potassium currents in rodent prefrontal cortex. Eur. J. Neurosci. 22, 1120-1126.PubMedGoogle Scholar
  98. Waeber, C., Sebben, M., Nieoullon, A., Bockaert, J. and Dumuis, A. (1994) Regional distribu-tion and ontogeny of 5-HT4 binding sites in rodent brain. Neuropharmacology 33, 527-541.PubMedGoogle Scholar
  99. Watling, K.J., Beer, M.S. and Stanton, J.A. (1989) Effects of clozapine and other neuroleptics on binding of [3H]-Q ICS 205-930 to central 5-HT3 recognition sites. Br. J. Pharmacol. 98 (Suppl.), 813P.Google Scholar
  100. Williams, G.V. and Goldman-Rakic P.S. (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376, 572-575.PubMedGoogle Scholar
  101. Williams, J.T., Colmers, W.F. and Pan, Z.Z. (1988) Voltage- and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vivo. J. Neurosci. 8, 3499-3506.PubMedGoogle Scholar
  102. Williams, G.V., Rao, S.G. and Goldman-Rakic, P.S. (2002) The physiological role of 5-HT2A receptors in working memory. J. Neurosci. 22, 2843-2854.PubMedGoogle Scholar
  103. Willins, D.L., Deutch, A.Y. and Roth, B.L. (1997) Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27, 79-82.PubMedGoogle Scholar
  104. Xiang, Z. and Prince, D.A. (2003) Heterogeneous actions of serotonin on interneurons in rat visual cortex. J. Neurophysiol. 89, 1278-1287.PubMedGoogle Scholar
  105. Zhang, Z.W. (2003) Serotonin induces tonic firing in layer V pyramidal neurons of rat pre-frontal cortex during postnatal development. Neuroscience 23(8), 3373-3384.PubMedGoogle Scholar
  106. Zhang, J.Y., Ashby, C.R. and Wang, R.Y. (1994) Effect of pertussis toxin on the response of rat medial prefrontal cortex cells to the iontophoresis of serotonin receptor agonists. J. Neural. Transm-Gen. Sect. 95, 165-172.PubMedGoogle Scholar
  107. Zhou, F.M. and Hablitz, J.J. (1999) Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. J. Neurophysiol. 82, 2989-2999.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Pau Celada
    • 1
  • Francesc Artigas
    • 1
  1. 1.Department of Neurochemistry and NeuropharmacologyInstitut d' Investigacions Biomèdiques de Barcelona (CSIC), IDIBAPSSpain

Personalised recommendations